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Analytical pair correlations in ideal quantum gases:
Temperature-dependent bunching and antibunching
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The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases
has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical
expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic
and fermionic g(r) display “Bose pile” and “Fermi hole” typically akin to bunching and antibunching as observed
experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost
featureless, but bosons show a rich structure including long-range correlations near Tc. The coherent state at
T = 0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with
decrease in temperature for T < Tc should be observable in accurate experiments.
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Introduction. The surge in the study of various properties
of ultracold atomic gases has prompted a search for atomic
analog of the Hanbury-Brown-Twiss (HBT) effect [1] by
various research groups as reported in Refs. [2–4] and
references therein. The suppression of density fluctuations,
a signature of the Pauli exclusion principle at work in real
space and thereby antibunching, has been demonstrated in
Refs. [2,3]. On the other hand, Jeltes et al. [4] have compared
results of the two-particle correlations of a polarized, but
not Bose-condensed, sample of ultracold 4He∗ atoms with
those of polarized 3He∗ atoms. The experimental conditions in
Ref. [4] were such that the gases could be treated almost ideal.
Hence bunching for bosons and antibunching for fermions at
small interatomic separations have been attributed to purely
quantum effects associated with the exchange symmetries
of wave functions of indistinguishable particles. Also, the
measurement of correlations has been reported [5] both above
and below the Bose-Einstein condensation (BEC) temperature
in atomic 4He∗.

An elegant form for the correlation function ν(r) of
the density fluctuations in ideal quantum gases (IQG) has
been derived by Landau and Lifshitz [6]. Although many
qualitative features and limiting expressions for ν(r), which
is related to the pair distribution function g(r), have been
discussed by them, quantitative descriptions would require
availability of general analytical forms. References [7–9]
have discussed expressions for gBE(r) of an ideal Bose gas
(IBG) in one or the other range in the temperature domain
0 < T < T +

c , whereas Lee and Long [10] have given gFD(r)
of an ideal electron gas at T = 0. Reference [11] has discussed
a model analytic expression for the unpolarized homogeneous
electron gas in solids. However, these expressions cannot be
utilized to get comprehensive theoretical values to compare
with the observed HBT effect reported in Refs. [4,5]. The
main purpose of this Brief Report is to fill up the gap
by deriving exact analytical expressions for g(r) of IQGs.
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The improvements on some asymptotic results, both for
fermions and bosons, available in the literature are also
discussed.

A unified approach is presented for evaluation of
temperature-dependent g(r) for ideal Bose-Einstein (BE),
Fermi-Dirac (FD), and Maxwell-Boltzmann (MB) gases
wherein the unification has been achieved using polyloga-
rithm [12–17]. Our method starts from the expression for
the density response function derived in Ref. [17] using
the method of second quantization, applies the fluctuation-
dissipation theorem to get a general new expression for the
static structure factor, introduces a function which is related
to the one-particle density matrix, and ultimately gets the
general form for g(r) valid for all quantum gases at all
temperatures. The computed values of gBE(r) and gFD(r)
using our analytical expressions are depicted graphically as
a function of r at various temperatures showing at small-r
the appearance of bump and dip, which we term as “Bose
pile” and “Fermi hole.” The plots are further compared
with the experimental results [4,5] for ultracold atomic
gases.

Basic expressions. The pair-distribution function g(r) of
a uniform one-component fluid consisting of N particles in
volume V is defined by the thermal average of an operator
that counts pairs of particles located distance r apart, divided
by the square of number density. It is related to the static
structure factor S(q) of the fluid by the spatial Fourier
transform:

n [g(r) − 1] = 1

V

∑
q

eiq·r [S(q) − 1] , (1)

with n = N/V denoting the number density. Taking due
account of the fact that the operator of the total particle
number, N̂ ≡ Nq=0, is a constant of motion, the fluctuation-
dissipation theorem for a uniform system, χ ′′(q,ω) =
(nπ/h̄)(1 − e−βh̄ω)S(q,ω), can be solved for the van Hove
function S(q,ω) = (h̄/nπ )(1 − δq,0) χ ′′(q,ω)/(1 − e−βh̄ω) +
〈(δN̂ )2/N〉δq,0δ(ω), where 〈· · · 〉 represents averaging in the
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grand canonical ensemble (GCE). The expression S(q) =∫ ∞
−∞ dω S(q,ω) then yields

S(q) = (1 − δq,0)
h̄

nπ

∫ ∞

0
dω coth

(
βh̄ω

2

)
χ ′′(q,ω)

+ δq,0
〈(δN̂ )2〉

N
. (2)

Upon inserting Eq. (2) in Eq. (1), the q sum on the
right-hand side separates into two parts: the first part contains
the summation with the restriction q �= 0, while the second
results in an additive constant, [n〈(δN̂/N)2〉 − 1/V ], which
vanishes in the thermodynamic limit for all IQGs except for
an IBG at T � Tc. The pathological aspect of GCE for the
condensate fluctuations has been ameliorated by replacing
〈[δ(a†

0a0)]2〉GCE by 〈[δ(a†
0a0)]2〉CE, with a0 and a

†
0 being the

ground-state annihilation and creation operators, as suggested
in Ref. [18] based on results in Ref. [19], and which has
been utilized by others; see, e.g., Ref. [20]. The “law of large
numbers”considered by us in order to make the constant vanish

in the Bose-condensed phase has the form
√

〈(δN̂/N )2〉 ∝
N−1/3; see, e.g., Ref. [21, Eqs. (3.55) and (3.57)].

We substitute χ ′′(q,ω) = nπ
∑

k Ck{δ[h̄ω − �k(q)] −
δ[h̄ω + �k(q)]} from [17] for the IQG with �k(q) = ε|k+q| −
εk , and obtain for q �= 0 ,

S(q) =
∑

k

Ck coth

[
1

2
β(ε|k+q| − εk)

]
(q > 0) , (3)

where Ck denotes the thermal-average fraction of particles
having momentum h̄k,

Ck = gs

N

1

eβ(εk−μ) − η
≡ gs

Nη
ζ0(ηλe−βεk ),

∑
k

Ck = 1.

(4)

Here η = +1,−1,0 refer to BE, FD, MB gases, respectively.
gs = 2s + 1 is the spin-degeneracy factor for spin s, λ =
eβμ is the fugacity, and the function ζν(x) denotes the
polylogarithm [12,13] of order ν. The solution of the equation
μ ≡ μη(n,T ) = 0 gives the characteristic temperature which
can be expressed as T

(η)
0 = εu/kB[6

√
π ζ3/2(η)/η]−2/3 with

εu = h̄2k2
u/(2m) and ku = 2(6π2n/gs)1/3 serving as units of

energy and wave number, respectively.
For further analytical discussions, Eq. (3) will now be recast

into an appropriate form by (i) substituting k → k + q to
get 2S(q), (ii) expressing exponentials in coth functions in
accordance with the first equation in Eq. (4), and (iii) using∑

k(Ck + C|k+q|) = 2. The procedure finally yields a new
form:

S(q) − 1 = ηN

gs

∑
k

CkC|k+q| (q > 0), (5)

from which we read

1

V

∑
q �=0

eiq·r [S(q) − 1]

= nη

gs

{
2 C0

∑
q �=0

Cqe
iq·r +

∣∣∣∣
∑
q �=0

Cqe
iq·r

∣∣∣∣
2}

, (6)

with C0 = N0(T )/N denoting the fraction of particles which
occupy the zero-momentum state. Introducing the thermal de
Broglie wavelength  =

√
2πh̄2β/m and the dimensionless

function

F (r) =
∑

k

eik·rCk

= C0(T ) + 2gs√
πn3η

×
∫ ∞

0
dκ ζ1(ηλ e−κ2

) cos

(
2
√

π r


κ

)
, (7)

which is related to the one-body density matrix [21] by
n(1)(r,r′) = (n/gs) F (|r − r′|), the condensed fraction C0(T )
can be extracted from the normalization condition F (0) = 1.
The evaluation of the κ integration thus leads to C0(T ) =
δη,1�(Tc − T )[1 − (T/Tc)3/2], with �(x) the Heaviside unit
step and δi,j the Kronecker delta, in conformity with [17] and
the condensed-IBG result [21, Chap. 3.2].

Equations (5) and (6) constitute our basic results which
are valid at all temperatures and for all ideal gases. Inserting
Eq. (6) into Eq. (1), we find

g(r) = 1 + η

gs

[
F 2(r) − C2

0 (T )
]
, (8)

which, in conjunction with Eq. (7), yields an expression in
agreement with that discussed in Problem 4 of [6, §117] for an
IBG at T <Tc. Thus Eq. (8), which is valid at all temperatures
for all IQGs, generalizes [6, Eq. (117.8)], whose validity is for
an FD gas at all T but for a BE gas at T >Tc only.

It seems pertinent to mention that for bosons g(r) is not
simply the sum of condensate and noncondensate (or thermal)
contributions as it is for the one-body density matrix, Eq. (7),
or the density-response function [17,21]. The presence of
the Fourier convolution in Eq. (5) has resulted into Eq. (8),
wherein the thermal contribution [F (r) − C0(T )] appears as a
factor in the second term on the right-hand side. This factor
vanishes in the limit T → 0 and hence is responsible for the
“flattening,”g(r) → 1, observed at T � Tc.

There is another significant aspect regarding the derivation
of our results in the context of the grand canonical ensemble
used here. On the dynamic route leading to Eq. (3), and thereby
Eq. (5), we neither needed to nor did we use the Bogoliubov
prescription which replaces a0 and a

†
0 by c numbers. For

a consistency check, we took recourse to the static route
(not elaborated here) starting from S(q) = 〈δNqδN

†
q〉/N with

Nq = ∑
k,σ a

†
k,σ ak+q,σ . We obtain for a uniform fluid the

counterpart of Eq. (5), wherein the right-hand side con-
tains additional terms representing correlations of number
fluctuations, 〈δ(a†

k,σ ak′,σ ′)δ(a†
k′+q,σ ′ak+q,σ )〉. However, for any

q �= 0, these extra terms vanish for ideal gases, irrespective of
population of any single-particle state. Hence it is comforting
to note that static and dynamic routes lead to exactly the same
result.

Analytic expressions for F (r). For a BE or an FD gas,
the integral in Eq. (7) can be carried out analytically in the
region −∞ < μ � 0, i.e., for 0 < λ � 1. This region covers
the complete domain of the IBG, while it describes only the
high-T domain (T (−1)

0 � T < ∞) of the ideal Fermi gas (IFG).

042101-2



BRIEF REPORTS PHYSICAL REVIEW E 84, 042101 (2011)

On series expansion of ζ1(z) and subsequent term-by-term
integration, we get

F (r) = C0(T ) + gs

n3η

∞∑
�=1

(ηλ)�

�3/2
exp

(
−πr2

2

1

�

)
. (9)

An alternative form, equivalent to Eq. (9) and most suitable
for evaluation at r � , is

F (r) = C0(T ) + 1 − C0(T )

ζ3/2 (ηλ)

∞∑
�=0

(−1)�

�!

(
πr2

2

)�

ζ�+3/2(ηλ),

(10)

which results from series expansion of the exponential function
in Eq. (9) and subsequent interchange of summations. Also,

we have used the relation obtained on implementing F (0) = 1
in Eq. (9).

For analytical evaluation of the integral in Eq. (7) for
η = −1 in the region where μ > 0, i.e., for λ > 1, which
describes the low-T domain (0 � T < T

(−1)
0 ) of an IFG, we

split the integral into a sum of two integrals over intervals
(0,

√
βμ) and (

√
βμ,∞), respectively. In the latter integral, the

polylogarithm ζ1(z) with z = −eβμ−κ2
can be expanded into

a power series in z, since 0 � |z| < 1. In the former integral,
where |z| > 1, we apply the identity ζ1(z) = ζ1(1/z) − ln(−z)
valid for z /∈ (0,1) and subsequently expand ζ1(1/z) into a
power series in 1/z, since |1/z| = 1/|z| < 1. Term-by-term
integration of the resulting infinite sum finally yields, for
low-T IFG (μ > 0),

F FD(r) = k̃3
F

k3
F

⎡
⎣3

j1(k̃F r)

k̃F r
− 6π2

(k̃F )3

∞∑
�=1

(−1)�

�3/2

⎧⎨
⎩

Im
[
erfc

(√
πr


1√
�

− i k̃F 

2
√

π

√
�
)]

exp
[(

k̃F 

2
√

π

)2
� − (√

πr



)2 1
�

] +
Re

[
erfc

(
k̃F 

2
√

π

√
� + i

√
πr


1√
�

)]
exp

[(√
πr



)2 1
�

− (
k̃F 

2
√

π

)2
�
]

⎫⎬
⎭

⎤
⎦ , (11)

where j1(x) is the spherical Bessel function of the first kind
and order 1, and erfc(x) is the complementary error function.
Also, k̃F = h̄−1√2mμ−1(n,T ) denotes a generalized Fermi
wave number with limT →0 k̃F = kF = (6π2n/gs)1/3 and is a
measure of the chemical potential. In the low-temperature
limit, i.e., for T → 0 and  → ∞, one easily retrieves the

following from Eq. (11): F FD(r)
T →0−→ 3j1(kF r)/(kF r), the

expression given, e.g., in Ref. [10].
Pair distribution functions. From Eq. (8), one readily finds

for a dilute quantum gas, gMB(r) = 1, which coincides with
the classical ideal-gas result. One also deduces the results
g(0) = 1 + (η/gs)[1 − C2

0 (T )] and g(∞) = 1 leading to the
following bounds: gFD(0) ≡ 1 − 1/gs � gFD(r) � gFD(∞) ≡
1 and gBE(∞) ≡ 1 � gBE(r) � gBE(0), with

gBE(0) =
{

1 + 1/gs if T > Tc,

1 + (1/gs)[2(T/Tc)3/2 − (T/Tc)3] if T � Tc.

(12)

The small- and large-r asymptotic behaviors for
T < Tc are obtained as gBE(r → 0) = gBE(0) −
(2πr2/gs

2)(T/Tc)3/2[ζ (5/2)/ζ (3/2)] + O[(r/)4] and
gBE(r → ∞) = 1 + 2C0(T )/(n2r) + gs/(n24r2). We
find that the latter asymptote improves the expression given
in [9, Eq. (21)], and is in agreement with [6, p. 359];
the expression given in Ref. [9] would be valid only at
T � Tc, whereas the validity of ours is in the entire range
0 � T � Tc. Also, for T → 0, one gets gFD(r → 0) =
(gs − 1)/gs + (k2

F r2/5gs)[1 − 3k2
F r2/35 + O(r4)], wherein

the first two terms on the right-hand side give the result
as obtained by Lee and Long [10] while discussing
the static structure for an ideal electron gas at T = 0.
Also, for large distance r , we get gFD(r → ∞) =
1 − 9[cos2(kF r) − sin(2kF r)/(kF r)]/(gsk

4
F r4) + O(r−6) ap-

proaching unity as r−4 by damped oscillations, which
improves on a result given in [6, §117].

On substituting in Eq. (8) the high-T asymptote of F (r)
deduced from Eq. (9), the Gaussian form,

g(r)
T �T

(η)
0−→ 1 + η

gs

exp

(
−2πr2

2

)
, (13)

is obtained. In fact, the asymptote (13) generalizes to the
spinor gases the earlier results derived by others for zero-spin
particles; see, e.g., Ref. [22]. Although the experimental results
for a thermal bosonic gas were fitted by Schellekens et al. [5]
using an expression like Eq. (13), a detailed analysis together
with the theoretical plots showing contrasting behavior for
spinor bosons and fermions is lacking.

The computed values of (2s + 1)[g(r) − 1] = η[F 2(r) −
C2

0 (T )] are depicted in Fig. 1 for a set of six reduced temper-
atures T ∗ ≡ kBT /εu = 0.491,0.164,0.114,0.104,0.055, and
0.011 corresponding to T/Tc = 4.5,1.5,1.05,0.95,0.5, and
0.1, respectively. The value gMB(r) = 1 of an ideal dilute
quantum gas coincides with the abscissa at all T and it is
to be noted that the pair-correlation properties of an IQG
differ qualitatively from those of the corresponding dilute
gas, even at high temperatures. As displayed in Fig. 1,
gBE(r) � 1 and gFD(r) � 1 at all T . We term the appearance
of a bump (dip) as the Bose pile (Fermi hole), which reflects
the statistical “effective” attraction (repulsion) in ideal gases,
an interaction which weakens with increasing spin. For s � 1,
one would recover the result g(r) = 1 true for a classical ideal
gas.

It is found in the low-r region that gFD(r) monotonically
decreases (increases in magnitude) with increase in r as
T decreases. However, for bosons in that domain, gBE(r)
increases as T decreases for T > Tc and the trend reverses
with decrease in T below Tc. Let us look further into the
behavior of fermionic curves at all T and bosonic at T > Tc,
i.e., those marked (a) to (c) above the abscissa. It can be seen
that the pile (hole) being generated by rotating the Gaussian
curves about the ordinate merely narrows down, retaining
its original spin-dependent height (depth) as T is increased.
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FIG. 1. (Color online) Pair correlation functions of ideal BE
(above abscissa), FD (below abscissa), and MB (coinciding with
the abscissa for all T ) gases at reduced temperatures T ∗ = 0.491
(a, red), 0.164 (b, green), 0.114 (c, blue), 0.104 (d, short-dashed),
0.055 (e, dot-dashed), and 0.011 (f, long-dashed). T = 0 results:
bosons (coinciding with abscissa); fermions (lowermost curve, black,
shadowing the long-dashed line).

They ultimately acquire congruent bell-shaped forms [cf.
Eq. (13)] in the high-T regime having width (at half maximum)
=√

ln 2/2π ≈ 0.332. Also, it can be seen that gBE(r) and
gFD(r) show different behaviors at T = 4.5Tc, as opposed to
studies wherein it was found that response functions [17],
dynamical structure factors [23], and momentum distribution
functions [17] of BE, FD, and MB gases are essentially
independent of statistics at this temperature. However, in the
limit T → ∞, we get g(r) = 1 independent of statistics, as
expected.

The bosonic curve marked (c) clearly demonstrates that
gBE(r) becomes long-ranged as T reaches in the close vicinity
of Tc from the high-T side. However, unlike this, gFD(r) is of
much shorter range at all T . It is estimated that the correlation
length ξFD(T ) � 10k−1

u , which presents a measure of the
largest distance at which fermion pairs are still correlated.
If T is raised, ξFD(T ) further decreases and at high T it is of
the order of  [cf. Eq. (13)].

It is tempting to compare both the curves marked (a) in
Fig. 1 with Fig. 2 of Ref. [4], wherein the HBT effect showing
bunching and antibunching for ultracold atoms of 4He∗ and
3He∗ have been depicted. The striking resemblance between
the theoretical and experimental plots is remarkable. The direct
comparison of our curves with the experimental ones will
have to await availability of data free from the uncertainty and
systematic errors in measurements, mentioned by Jeltes et al.
[4]. However, the interesting physics is unfolded in the BEC
phase represented by the curves (d) to (f). The height of the
Bose pile goes on decreasing and the curve gets increasingly
flattened as T → 0 [cf. Eq. (12)]. The curve (f) for T = 0.1Tc

is almost flat and ultimately the plot for an IBG at T = 0
coincides with the abscissa analogous to the Bose-condensed
phase experimental result [5,24], revealing that the system is
completely coherent. In fact, it is just like the situation in
a single-mode laser in which the photons are not bunched
[25]. Furthermore, our studies depict temperature-dependent
aspects of bunching and antibunching.
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