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Rendezvous effects in the diffusion process on bipartite metapopulation networks
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Epidemic outbreaks have been shown to be closely related to the rendezvous-induced transmission of infection,
which is caused by casual contact with infected individuals in public gatherings. To investigate rendezvous effects
in the spread of infectious diseases, we propose an epidemic model on metapopulation networks bipartite-divided
into two sets of location and rendezvous nodes. At a given transition rate γ

p

kk′ , each individual transfers from
location k to rendezvous p (where rendezvous-induced disease incidence occurs) and thereafter moves to location
k′. We find that the eigenstructure of a transition-rate-dependent matrix determines the epidemic threshold
condition. Both analytical and numerical results show that rendezvous-induced transmission accelerates the
progress of infectious diseases, implying the significance of outbreak control measures including prevention of
public gatherings or decentralization of a large-scale rendezvous into downsized ones.
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I. INTRODUCTION

In the last decade, extensive attention has been paid to
epidemics and their mathematical spreading models [1–11].
Modern human societies have undergone more and more
serious crises of large-scale outbreaks of communicable
diseases. One of the causes of epidemic outbreaks can be a
concentrated population participating in gathering activities in
public places. There are particular risks of infection arising
from casual contact with infected individuals through use of
public transportation, travel to certain areas, or participation in
gatherings. Examples can be found in studies of the worldwide
spread of severe acute respiratory syndrome (SARS) in 2003
[12–14]. The SARS case had stringent outbreak control
measures that ranged from distributing health alert notices
to visitors and travelers in countries with SARS to canceling
or postponing academic courses, business meetings, sporting
events, and other public gatherings. In this paper, we address
the issue of modeling and analyzing gathering processes of
individuals and their role in the spread of infectious diseases,
which we may term the rendezvous effects.

Recently, metapopulation models for understanding the
spread of infectious diseases have been the topic of intensive
investigation [15–19]. In these models, the entire population
is demographically divided into different geographic
regions, allowing migration of individuals between these
subpopulations or sublocations. Thus in a metapopulation
network, nodes represent subpopulations at discrete locations,
and links represent individual diffusions between location
nodes. To incorporate rendezvous effects of public gatherings
into epidemic dynamics on metapopulation networks, we
introduce rendezvous nodes to provide pathways via which
casual contact (which spreads infections of the disease) occurs
to those individuals passing through the same rendezvous
node. We extendedly associate each link between location
nodes with one of rendezvous nodes representing the
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rendezvous places for casual contact of individuals when
diffusing between the sublocations. Therefore we can use
a bipartite graph to describe the metapopulation structure
since there is no allowed link that directly connects with
location or rendezvous nodes in the network, as shown in
Fig. 1. In this paper, we focus our attention on the role of
rendezvous-induced transmission in the spread of infectious
diseases; our results show that the presence of rendezvous
effects in a densely concentrated population of individuals
can dramatically alter the spreading behavior of epidemics.

The remainder of this paper is organized as follows. In
Sec. II, we explain our basic assumptions on an extended
epidemic model on metapopulation networks. In Sec. III, we
provide a theoretical analysis of our model using the mean-
field approximation. We find that the epidemic threshold, given
by the basic reproductive number R0, relies on the leading
eigenvalue and/or eigenvector of the transition-rate-dependent
matrices. In Sec. IV, we carry out extensive numerical
simulations to verify the validity of our analytical prediction.
Further, we numerically study the role of both the rendezvous
node number and the heterogeneous size distribution of
populations concentrated at these rendezvous nodes in the
spread of epidemics. Finally, Sec. V concludes our study.

II. MODEL ASSUMPTION

Consider a standard susceptible-infected-susceptible (SIS)
epidemiological model on metapopulation networks. Individ-
uals can only exist in two discrete states: susceptible (S) or
infected (I), and the spread of infections is formulated as
a reaction-diffusion-decay process: S + I → 2I , I → S. We
extend the metapopulation network by introducing rendezvous
nodes to mimic public places for gathering activities of indi-
viduals. In our model, the following assumptions are made:

(A1) The transfer of individuals from different locations
occurs at different transition rates but at synchronous time
steps.

(A2) The metapopulation network is bipartite. Individuals
cannot directly transfer between location nodes because
geographic regions of different locations are discrete. Also,
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FIG. 1. An illustrative metapopulation structure described by a
bipartite metapopulation network. Each individual in a location node
( �) can transfer to another location through an associated rendezvous
node (�); therein, one may make contact with other infected
individuals, if any are present. This causes rendezvous-induced
infection during the gathering process of individuals.

direct transfer between rendezvous nodes is disallowed, i.e.,
individuals leaving from a rendezvous node are assumed to
be incapable of continuing to move on to another rendezvous
node.

(A3) An individual can optionally stay at a location node
without transfer to other locations, whereas an individual at a
rendezvous node compulsively leaves from it at the next time
step (that is, the individual transition rate of departure from
a rendezvous place is a unit 1). This assumption arises from
the simple fact that there are no nonmoving residents in public
places.

For the gathering process, using Assumptions (A1)–(A3)
we have set up bipartite metapopulation networks for an
extended metapopulation epidemic model with rendezvous-
induced infection. For the spreading process, the following
assumptions about rendezvous-node-related epidemiological
properties are made:

(A4) Only simultaneously incoming and outgoing indi-
viduals gathering at the same rendezvous node can make
contact with each other and, therefore, have risk of rendezvous-
induced infection.

(A5) Compared to locations, rendezvous nodes have a rela-
tively high transmission rate. This assumption relies on the fact
that rendezvous nodes in which gatherings of individuals take
place are typically characterized by a high population density
and/or a high population mobility and, therefore, the per capita
contact rate is much higher than that of location nodes (where
infection spreads via, for example, household contact of
patients). Here we further assume a positive linear dependence
of the transmission rate on the population density (or the
individual number) at the rendezvous node for simplicity.

(A6) Rendezvous nodes have a nearly zero rate of recovery,
since an individual’s sojourning time at rendezvous nodes
is negligibly short compared to a disease’s recovery period,
according to Assumption (A3).

Until now, we have specified the epidemic diffusion
processes accompanied with rendezvous of individuals on
metapopulation networks.

III. ANALYTICAL RESULTS

A. Population dynamics

We first consider the population dynamics on bipartite
metapopulation networks composed of n location nodes

(labeled by the subscript k = 1,2, . . . ,n) and m rendezvous
nodes (labeled by the superscript p = 1,2, . . . ,m). Introduc-
ing the transition matrix with respect to rendezvous p by
�p = (γ p

kk′)n×n whose entries denote the transition rates of
individuals transferring from location k to location k′ via
rendezvous p, we obtain the population dynamics as follows:

d

dt
xk =

m∑
p=1

(−xkγ
p

k,◦ + γ
p

◦,ky
p
)
,

(1)
d

dt
yp =

n∑
k=1

(
xkγ

p

k,◦ − γ
p

◦,ky
p
)
,

where xk and yp denote the population sizes at location k and
rendezvous p, respectively, γ

p

k,◦ = ∑
k′ γ

p

kk′ is the transition
rate of individuals at location k leaving for rendezvous p, and
γ

p

◦,k is the transition rate of individuals at rendezvous p moving
to location k. More precisely,

γ
p

◦,k =
∑n

k′=1 xk′γ
p

k′k∑n
k′=1 xk′γ

p

k′,◦
, (2)

where according to Assumption (A3), γ
p

◦,k is a posterior
probability derived from the Bayesian rule which satisfies the
normalization condition

∑
k′ γ

p

◦,k′ = 1 for every rendezvous p.
When the population distribution in the network reaches

a steady state, the stationary metapopulation size is given by
x̄k = ∑

p γ̄
p

◦,kȳ
p/

∑
p γ

p

k,◦ and ȳp = ∑
k x̄kγ

p

k,◦, where γ̄
p

◦,k =∑
k′ x̄k′γ

p

k′k/ȳ
p. Eliminating ȳp yields a set of linear equations

with stationary population sizes x̄k in n locations; rewriting in
matrix form gives

x̄ = Ax̄, (3)

where x̄ = (x̄1, . . . ,x̄n)′ [here (·)′ denotes the transpose of the
matrix] and the coefficient matrix A is given by

An×n = (aij ) =
∑m

p=1 γ
p

ji∑m
p=1

∑n
k=1 γ

p

ik

. (4)

Therefore, population dynamics in Eq. (1) converges to a
stationary state x̄ proportional to A’s leading eigenvector, and
thus,

ȳ = Tx̄, (5)

where Tm×n = (γ p

k,◦). The stationary population distribution in
the network is given by Eqs. (3) and (5) with the normalization
condition

∑
k x̄k + ∑

p ȳp = N , where N is the population
size on the entire metapopulation network.

Remarks. To interpret the coefficient matrix A, we rewrite
Eq. (4) in the form A = D−1�′ with � = ∑

p �p, and
D = diag(

∑
p γ

p

k,◦).1 Note that the entry in the ith row and
the j th column of �′ denotes the total transition rate at
which individuals leaving location j arrive at location i via

1We assume that all diagonal elements of D are positive; that is, we
do not take account of isolated metapopulations of individuals who
never participate in any gatherings; the transition rate of individuals
leaving location k for (at least one) rendezvous p is above zero,
γ

p

k,◦ > 0.
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any one of the rendezvous nodes; the ith diagonal entry
of D denotes the total transition rate at which individuals
leave location i. Therefore, we obtain from Eq. (3) that
�′x̄ = Dx̄, implying a balanced population of immigration
(=�′x̄) and emigration (=Dx̄) in each location under a
stationary population distribution.

B. Epidemic dynamics

Next we consider the process of epidemic diffusion. Thus
the subpopulation at each location and rendezvous node is
divided into two compartments: susceptible and infected.
Under the mean-field approximation we have the following
rate equations for epidemic dynamics:

d

dt
sk = −αk

skik

sk + ik
+ βkik +

m∑
p=1

(−skγ
p

k,◦ + γ
p

◦,ks
p
)
,

d

dt
ik = αk

skik

sk + ik
− βkik +

m∑
p=1

(−ikγ
p

k,◦ + γ
p

◦,ki
p
)
,

(6)
d

dt
sp = −αp spip

sp + ip
+

n∑
k=1

(
skγ

p

k,◦ − γ
p

◦,ks
p
)
,

d

dt
ip = αp spip

sp + ip
+

n∑
k=1

(
ikγ

p

k,◦ − γ
p

◦,ki
p
)
,

where sk,ik and sp,ip are the numbers of susceptible and
infected individuals at location k and at rendezvous p,
respectively; αk and βk are the transmission and recovery rates
at location k; αp is the transmission rate at rendezvous p [here
we set the recovery rate at rendezvous nodes βp = 0 under
Assumption (A6)]; γ

p

k,◦ and γ
p

◦,k , defined the same as in the
population dynamics Eq. (1), are given by

γ
p

k,◦ =
n∑

k′=1

γ
p

kk′, γ
p

◦,k =
∑n

k′=1 (sk′ + ik′)γ p

k′k∑n
k′=1 (sk′ + ik′)γ p

k′,◦
. (7)

Note that αk , βk , and γ
p

k,◦ appear as constant parameters, and
that αp and γ

p

◦,k are state-dependent parameters in our model.
Under the assumption that the recovery period of diseases

is much longer than the duration of individuals’ transitions
between locations and rendezvous nodes (1/βk � 1), the
population dynamics quickly evolves to the stationary state.
Therefore, we shall essentially consider the epidemic dynam-
ics on the network with a stationary population distribution,
(x̄,ȳ), in which the transition rate γ̄

p

◦,k = ∑
k′ x̄k′γ

p

k′k/ȳ
p at

which individuals at rendezvous p transfer to location k, as
well as the rendezvous-induced transmission rate ᾱp under
(x̄,ȳ), are independent of system states.

Therefore, substituting x̄k, ȳp, ᾱp, and γ̄
p

◦,k into Eq. (6)
yields

d

dt
ik = αkik(1 − ik/x̄k) − βkik +

m∑
p=1

(−ikγ
p

k,◦ + γ̄
p

◦,ki
p
)
,

(8)
d

dt
ip = ᾱpip(1 − ip/ȳp) +

n∑
k=1

(
ikγ

p

k,◦ − γ̄
p

◦,ki
p
)
,

where the equations with respect to sk and sp are omitted in the
simplified rate equations, because the normalization conditions

sk + ik = x̄k and sp + ip = ȳp hold in a stationary population
distribution.

Here, we focus our attention on the epidemic threshold
condition related to the stability of the disease-free equilibrium
(DFE), īk = īp = 0. The epidemic threshold is given by the
basic reproductive number R0, which determines whether an
initial outbreak of diseases will die out quickly (R0 < 1), or
survive longer and spread out appreciably to cover a population
of a considerable size (R0 > 1). The biological interpretation
of R0 is the expected number of secondary cases produced by
one infected individual during his entire infectious period in a
completely susceptible population [20–22].

To estimate the basic reproductive number R0, consider the
number i0 (�N ) of infected individuals initially introduced
into a completely susceptible population. The infected individ-
uals cause αki0 new cases if they are placed at location k with
probability x̄k/N , and similarly, they cause ᾱpi0 new cases if
being posited at rendezvous p with probability ȳp/N . On the
other hand, βki0 infectives decrease because of recovery with
probability x̄k/N for location k, and βpi0 infectives recover to
susceptibles with probability ȳp/N for rendezvous p. Thus,
an estimate of R̂0 can be obtained using the effective spreading
rate, the ratio of the increase and decrease of the infectives as

R̂0 =
∑

k αki0x̄k/N + ∑
p ᾱpi0ȳ

p/N∑
k βki0x̄k/N + ∑

p βpi0ȳp/N
,

and eliminating i0 and N yields

R̂0 =
∑

k αkx̄k + ∑
p ᾱpȳp∑

k βkx̄k + ∑
p βpȳp

, (9)

showing that R0 is linearly dependent on both transmission
rates αk and ᾱp at location and rendezvous nodes, respectively.

Remarks. Equation (9) implies that rendezvous effects (in-
duced by additional infectious contact at rendezvous nodes that
transmits infection) may cause epidemic outbreaks, R0 > 1,
even if infectious diseases will be eradicated without the
presence of rendezvous effects (i.e., αk/βk < 1 holds for every
location k). A similar result is reported in Refs. [23,24].

More precisely, R0 can be obtained by using the next
generation matrix FV−1 of Eq. (8), the spectral radius (the
dominant eigenvalue) of which defines the basic reproductive
number [16,25]

R0 = ρ(FV−1). (10)

Here the matrix F is given by

F =
[

∂Fk

∂ik

∂Fk

∂ip

∂Fp

∂ik

∂Fp

∂ip

]∣∣∣∣∣
DFE

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 · · · 0
...

. . .
...

0 · · · αn

0

0

ᾱ1 · · · 0
...

. . .
...

0 · · · ᾱm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(11)

where Fk (Fp) is the rate of appearance of new infections at
location k (rendezvous p) due to casual contact with infected
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individuals. And the matrix V is given by

V =
[

∂Vk

∂ik

∂Vk

∂ip

∂V p

∂ik

∂V p

∂ip

]∣∣∣∣∣
DFE

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 +
m∑

p=1
γ

p

1,◦ · · · 0 −γ̄ 1
◦,1 · · · −γ̄ m

◦,1

...
. . .

...
...

. . .
...

0 · · · βn+
m∑

p=1
γ

p
n,◦ −γ̄ 1

◦,n · · · −γ̄ m
◦,n

−γ 1
1,◦ · · · −γ 1

n,◦
n∑

k=1
γ̄ 1

◦,k · · · 0

...
. . .

...
...

. . .
...

−γ m
1,◦ · · · −γ m

n,◦ 0 · · ·
n∑

k=1
γ̄ m

◦,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

where Vk = V −
k − V +

k , and V −
k (V +

k ) is the rate of diffusion of infected individuals out of (into) location k. Note that V −
k includes

the recovery process, I → S, which also causes the decrease in the number of infectives. And V p for every rendezvous p can be
similarly defined. Both matrices F and V are evaluated at īk = īp = 0, related to the disease-free equilibrium.

On the other hand, by linearizing dynamics Eq. (8) around the stationary state (ī1, . . . ,īn, ī1, . . . ,īp) we calculate the Jacobian
matrix J which is given by

J|(ī1,...,īn, ī1,...,īp)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 − 2ī1

x̄1

)
α1 − β1 −

m∑
p=1

γ
p

1,◦ · · · 0

...
. . .

...

0 · · · (
1 − 2īn

x̄n

)
αn − βn −

m∑
p=1

γ
p
n,◦

γ̄ 1
◦,1 · · · γ̄ m

◦,1
...

. . .
...

γ̄ 1
◦,n · · · γ̄ m

◦,n

γ 1
1,◦ · · · γ 1

n,◦
...

. . .
...

γ m
1,◦ · · · γ m

n,◦

(
1 − 2ī1

ȳ1

)
ᾱ1 −

n∑
k=1

γ̄ 1
◦,k · · · 0

...
. . .

...

0 · · · (
1 − 2īm

ȳm

)
ᾱm −

n∑
k=1

γ̄ m
◦,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

Thus the stationary state is locally asymptotically stable if all
of the eigenvalues of J have a negative real part. Therefore
the epidemic threshold specified by R0 < 1 is equivalent to
the stability of the epidemic dynamics locally linearized at the
DFE, noting that Jacobian matrix J, evaluated at the origin
īk = īp = 0, satisfies

J|DFE = F − V, (14)

where F and V are the same as in the next generation
matrix.

Remarks. It suffices to guarantee the outbreak of a disease
if at least one of the following k conditions holds: αk − βk >

2
∑

p γ
p

k,◦ (implying an increase rate of infected individuals
greater than twice the total transition rate for location k). In this
case, it directly follows from the Gershgorin disk theorem that
the Jacobian matrix Eq. (13) has at least one eigenvalue with a
positive real part [26]. This also implies that the disease cannot
be eliminated if the spreading rate in this metapopulation is

sufficiently high, relative to their population-mobility-related
properties, even if rendezvous nodes have nonzero recovery
rates (βp > 0).

IV. NUMERICAL SIMULATIONS

In this section, we perform agent-based computer simula-
tions to mimic diffusion processes of individuals. Initially, all
the individuals of a population of size N = 104 are uniformly
distributed in the location nodes, and a number 10 (=0.1%)
of the initially infected individuals are randomly dispersed
in the population. At each time step, individuals at every
location and rendezvous node successively undergo the spread
processes S + I → 2I and the recovery process I → S to
update their states according to epidemiological parameters of
the location or rendezvous node, and then the state-updated
individuals select to transfer to a next rendezvous or location
node at the corresponding transition rate according to the
basic Assumptions (A1)–(A3) about gathering processes in
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FIG. 2. Time course of the metapopulation size in each location
and rendezvous during the epidemic spreading process on a bipartite
network composed of n = 3 locations and m = 2 rendezvous nodes.
This figure shows that simulation results agree well with the analytical
prediction (dotted line) derived from the population dynamics of
Eq. (1), and that the stationary population sizes in location nodes
are proportional to the leading eigenvector ( 17

42 , 1
3 , 11

42 )′ of matrix
A defined by Eq. (4), where the transition rate matrices via both

rendezvous nodes are respectively set as �1 =
(0.05 0.03 0.02

0.03 0.04 0.02
0.02 0.03 0.02

)
and

�2 =
(0.03 0.01 0.02

0.02 0.02 0.01
0.04 0.01 0.01

)
.

our model. To confirm analytical predictions of the rate
equations under the mean-field approximation, we first carry
out simulations with a given set of model parameters, as
shown in Figs. 2 and 3. The simulation results agree well

FIG. 3. Time course of the infective individual number at each
location and at each rendezvous during the epidemic spreading
process. The epidemiological parameters are set at αk = 0.1,
βk = 0.05 (homogeneously for all location nodes), and ᾱp = 0.5
(under the stationary population of both rendezvous nodes), and other
parameters are set the same as those in Fig. 2. Simulation results agree
well with the analytical prediction (dotted line) derived from epidemic
dynamics of Eq. (6).

FIG. 4. (Color online) Percent of infective individuals in the sta-
tionary population i(∞) as an increasing function of the rendezvous-
induced transmission rate ᾱp . The epidemic critical point separating
the disease-free phase [i(∞) = 0] from the endemic phase [i(∞) > 0]
corresponds to the condition R0 = 1. The inset plots the basic
reproductive number R0 (circles) obtained using the next generation
matrix Eq. (10), and its estimate R̂0 (boxes) given by Eq. (9). The
epidemiological parameters are set at αk = 0.1 and βk = 0.2 for
all location nodes; other parameters are set the same as those in
Fig. 2.

with the predictions given by population dynamics of Eq. (1)
and epidemic dynamics of Eq. (6).

To visualize rendezvous effects in epidemic spreading,
we study a population of individuals in which each location
has a stable DFE (i.e., αk < βk); we find that a sufficiently
large rate ᾱp of transmission occurrence that accompanies
gathering processes of individuals can greatly affect the
epidemic dynamics and even result in an endemic state in
the entire population [the percent of infected individuals in
the stationary population i(∞) > 0], as shown in Fig. 4. The
inset of Fig. 4 plots the basic reproductive number R0; the
critical point defined by R0 = 1 gives the epidemic threshold
that separates a disease-free state and an endemic state for the
system.

Figure 5 plots the color-coded i(∞) and R0 values versus
the relative transmission rates in location and rendezvous
nodes; this provides a more comprehensive view of effects
of epidemiological parameters on the spread of infectious
diseases. In particular, Fig. 5(b) shows that R0 linearly
depends (approximately) on both αk and ᾱp, as given by
Eq. (9).

Next, we study the role of transition rate matrices �p in the
spread of infectious diseases. These matrices determine the
(stationary) number of individuals involved in rendezvous-
induced contacts during gathering processes, ȳ, and hence,
affect the epidemiological parameter αp, which relates to the
rendezvous-induced transmission. According to Assumption
(A6), we assume, for simplicity, a linear dependence of
αp on its metapopulation size in the form of αp = κyp/N ,
where κ is a positive parameter. We first observe the basic
reproductive number as the number m of rendezvous nodes
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FIG. 5. (Color online) (a) Stationary infective percent i(∞) for
various transmission rates αk and ᾱp relative to the recovery rate
βk . Here, αk , βk , and ᾱp are homogeneously set for all location
and rendezvous nodes. (b) Color-coded plot of the analytically
predicted basic reproductive number R0 value Eq. (10) as a function
of relative transmission rates in location and rendezvous nodes. Other
parameters are set the same as those in Fig. 2.

varies. Randomly splitting a given transition rate matrix �

into m non-negative matrices �p yields a group of transition
rate matrices for all rendezvous nodes (

∑
p �p = �),2 and

hence under one such set of parameters, R0 can be analytically
given by the next generation matrix Eq. (10); the final infective
percent in the stationary population i(∞) can be obtained by
carrying out agent-based simulations. We vary the number of
rendezvous nodes, fixing the total transition matrix in the form
of � = t1/n, where 1 denotes the matrix for which each entry
is 1, and t denotes the probability of individuals participating
in gatherings per unit time. Figure 6 shows that the rendezvous

2For convenience of comparison, we fix the total transition rate
matrix �, and thus the stationary population distribution x̄ in locations
is proportional to the leading eigenvalue of matrix A of Eq. (4), which
solely depends on �. Therefore the total number of individuals who
are temporally located in all rendezvous nodes and participating in
gatherings keeps invariant given a fixed �.

FIG. 6. (Color online) Basic reproductive number R0 and the
stationary infective percent i(∞) (inset) as decreasing functions of the
number m of rendezvous nodes. Each line corresponds to a different
transition matrix � = t1/n; the rendezvous-induced transmission
rate αp = κyp/N with the proportionality factor κ = 2 (see text).
Other parameters are set as follows: N = 104, n = 3, αk = 0.05,
and βk = 0.1. Each data point is obtained by averaging over 100
independent realizations; the length of the bar indicates the maximum
and minimum values.

effect is reduced as the number of rendezvous nodes increases
(accordingly, the concentrated populations in these rendezvous
nodes are reduced in size), which is of benefit to the outbreak
control of infectious diseases.

We further study the role of heterogeneity of rendezvous
sizes in the epidemic spreading process. Many real networks,
unlike homogeneous or structureless ones, usually exhibit
the scale-free feature with heterogeneous degree distribution
which typically obeys a power law, P (k) ∼ k−γ [27–29].
To generate heterogeneous size distribution of populations
gathered at rendezvous nodes, we consider that transition rates
for different rendezvous nodes satisfy γ

p

kk′ ∼ p−δ .3 Figure 7
plots the basic reproductive number R0 as a function of
parameter δ, which shows that heterogeneously distributed
ȳp usually forms a few densely populated, hublike rendezvous
nodes (as shown in the inset of Fig. 7), and thus, induces
rendezvous effects, which greatly accelerate the progress of
infectious diseases.

3The construction of the power-law distributed λ
p

kk′ is as follows:
First randomly split � into transition rate matrices �p for each
rendezvous node; then by weighing factor p−δ for the transition
rate matrix �p of rendezvous p, the randomly split �p is rescaled
to ap−δ�p , where a is a normalization constant obtained by a =∑

p ȳp/
∑

p p−δ ȳp , where ȳp is the stationary population size at
rendezvous p and is given by Eq. (5). As a result of the heterogeneous
distribution of transition rates �p , a few rendezvous (with smallest
superscripts p) act as hub nodes that are selected by most individuals
for their rendezvous places.
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FIG. 7. (Color online) Basic reproductive number R0 as a function
of the exponent δ under different rendezvous numbers m. We adopt
t = 50% and γ

p

kk′ ∼ p−δ (see Footnote 3); other parameters are
set the same as those in Fig. 6. Each data point is obtained by
averaging over 100 independent realizations. The inset shows the
accumulative distribution P>(y) of (relative) population size ȳp/N

at rendezvous nodes in a logarithmic plot, implying a power-law
distributed population size at rendezvous nodes. One can verify
that the distribution function reads P (y) ∼ y−γ with the power-law
exponent γ ≈ 1 + 1/δ.

V. CONCLUSION

In summary, we have proposed an extended metapopulation
epidemic model which includes migration of individuals be-
tween discrete locations. In our model, we consider gathering
and rendezvous processes of individuals, where additional
transmission of infectious diseases occurs due to casual
contact at rendezvous nodes of the network during diffusion
processes of individuals. We have both analytically and
numerically evaluated the rendezvous effects in the spread
of infectious diseases, showing that a highly concentrated

population at rendezvous nodes can importantly affect the
dynamic spreading behavior of metapopulation networks.

In particular, we also find that a heterogeneously distributed
population size at rendezvous nodes can enhance rendezvous
effects and accelerate the spreading of epidemics greatly.
Our results are consistent with the basic finding by Eubank
et al. [30] at the level of contact networks whose nodes
represent individuals and whose links represent pairwise
contacts between individuals. Here we have quantitatively
obtained similar results but related to the diffusion model
defined at the metapopulation level, in which network nodes
represent subpopulations or locations, and network links
represent individual transitions between metapopulations.

In this paper, we have made several assumptions. For
example, the recovery rate at rendezvous nodes is assumed
to be zero (βp = 0). This condition can be relaxed, assuming
that some rendezvous nodes are associated with a relatively
high recovery rate to mimic places like hospitals, in which
case Eqs. (9) and (10) still hold for the estimation or
calculation of the basic reproductive number R0. To make
a population-level analysis tractable, we have also considered
the assumptions that both susceptible and infected individuals
have the same diffusion rate, and that individuals’ sojourning
times at rendezvous places are negligible in our model. There
are many other conceivable rules of rendezvous processes,
which provide a new possibility for altering the dynamical
behavior of both physical and social systems by partly coupling
a small portion of the system’s components. These issues
deserve further study.
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