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Denaturation of circular DNA: Supercoil mechanism
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The denaturation transition which takes place in circular DNA is analyzed by extending the Poland-Scheraga
(PS) model to include the winding degrees of freedom. We consider the case of a homopolymer whereby the
winding number of the double-stranded helix, released by a loop denaturation, is absorbed by supercoils. We find
that as in the case of linear DNA, the order of the transition is determined by the loop exponent c. However the
first-order transition displayed by the PS model for c > 2 in linear DNA is replaced by a continuous transition with
arbitrarily high order as c approaches 2, while the second-order transition found in the linear case in the regime
1 < c � 2 disappears. In addition, our analysis reveals that melting under fixed linking number is a condensation
transition, where the condensate is a macroscopic loop which appears above the critical temperature.
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I. INTRODUCTION

Thermal denaturation of DNA is a process by which
the two strands of the molecule unbind upon heating. A
good understanding of the underlying physics is relevant to
certain biological systems (e.g., thermophilic organisms [1,2])
as well as synthetic technologies [3] such as polymerase
chain reaction (PCR) [4,5] and DNA microarrays [6]. The
unbinding transition takes place at a specific temperature,
coined melting or denaturation temperature, which can be
defined experimentally as the temperature at which the fraction
of unbound base pairs reaches, say, half of its maximal value.
For a relatively homogenous DNA chain composed largely of
A-T (or G-C) pairs, melting takes place through a very sharp
increase in the fraction of broken bases, suggesting a first-order
phase transition in an idealized homogeneous system. This
phase transition has been investigated by means of various
theoretical approaches developed in recent decades [7–18].

A prototypical model employed in theoretical studies of
this phenomenon is the Poland-Scheraga (PS) model [9] in
which a microscopic configuration of the DNA molecule is
described by an alternating succession of bound segments
(dsDNA) and denaturated loops (ssDNA). As the temperature
is increased the total length of the bound segments decreases,
eventually vanishing at the melting transition. The transition
is a result of the competition between the enthalpy associated
with the hydrogen bonding of the matching bases, and
the entropy of loops. The loop entropy has the asymptotic
form ∼sl/ lc for large loop size l, where s is a geometric,
nonuniversal constant and c is a universal exponent. The
original PS model makes the simplifying assumption that the
binding energy is the same for all base pairs, in which case the
nature of the transition depends only on the parameter c [9].
For c � 1 no transition takes place and the two strands are
bound at all temperatures. For 1 < c � 2 the model exhibits a
second-order melting transition where the average loop length
increases and becomes macroscopic of order L as the critical
point is approached from below. For c > 2 the transition is first
order and the average loop length remains O(1) for T � Tc.
For T > Tc a macroscopic loop, formed abruptly at Tc, is
present. In d = 3 dimensions and with exclusion interaction

properly taken into account, one obtains c ≈ 2.12 [11,19,20]
and the transition is predicted to be first order. The PS model
was later extended to address the sequence dependence of the
melting transition in heteropolymeric DNAs [21].

The DNA molecule is helical, and therefore denaturation
entails unwinding of the two strands around one another. The
PS model ignores this fact, as the elastic strain can be relaxed
by the rotation of the chain ends. However there are cases
where the helicity cannot be ignored. For example, bacteria
have circular DNAs (plasmids) whose linking number (the
number of times one strand winds around the other) is a
topological invariant. Similarly, certain single-molecule exper-
iments require the chain ends to be rotationally constrained. In
such cases, unwinding of a loop is possible only if some extra
linking number can be absorbed by the rest of the molecule.

Previous studies that model denaturation of circular DNA
proposed two mechanisms by which bound DNA segments
may host extra linking number released by opening a loop: (a)
increasing the twist(the excess stacking angle integrated along
the center line) [22,23]; or (b) increasing the writhe(which is a
function of the center-line configuration itself), for example by
forming a supercoil [24–26]. The AFM images of thermally
denatured DNA circles adsorbed on a mica surface suggest that
supercoils do form in conjunction with denaturation loops [27].
Numerical studies similarly point at the writhe as the dominant
mechanism for absorbing the extra linking number in long
DNA circles [26].

In this paper we study in detail the case of supercoils. In an
earlier work this model was studied at temperatures below the
melting point [24], by means of a grand-canonical treatment
where the expectation value of the linking number is fixed.
Here we generalize this approach and further consider the high-
temperature denatured phase in order to study the nature of the
melting transition. The validity of our results is then verified
by a direct calculation within a canonical formalism where the
linking number is strictly conserved. This approach allows us
to point out an inconsistency in the assumed analogy with the
PS model in Ref. [24]. Finally, we find the following phase
diagram: For c � 2 the model exhibits no phase transition and
a steady increase of loop fraction with temperature. For c > 2
a continuous transition of order

⌈
c−1
c−2

⌉
takes place, where �q�
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is the upper integer value of q. The order of the transition tends
to infinity as c → 2.

The paper is arranged as follows: In Sec. II, we present the
model. In Sec. III, the denaturation transition is first established
in the grand-canonical ensemble, where we introduce a regu-
larization scheme used earlier in [19]. This procedure allows
us to draw an analogy between the high-temperature phase and
a Bose-Einstein condensate where a critical fluid (microscopic
loops) coexists with a condensate (a single macroscopic loop).
In Sec. IV, we reinvestigate the model within the canonical
formalism: While we observe a general agreement between
the two ensembles, we also point out a difference between the
corresponding condensates that suggests the inequivalence of
the two ensembles for finite systems in the present context.
Finally, in Sec. V we present some concluding remarks and
discuss possible future directions.

II. MODEL DEFINITION

Following [24] we extend the PS model to include super-
coiled DNA segments. Thus, a microscopic configuration is
composed of an alternating arrangement of three types of
segments:

(1) A bound segment, in which base pairs are intact but
no supercoiling takes place. Following the PS model, we
neglect the entropic contribution of such a segment, so that
its Boltzmann weight is solely determined by the binding
energy Eb < 0 and the segment length l as e−βlEb ≡ ωl , where
β = 1/kBT .

(2) A loop, in which pairing is sacrificed in favor of entropy
as the persistence length of ssDNA is roughly 10 times shorter
than that of dsDNA. The associated Boltzmann weight of a
loop of l base pairs is purely entropic and asymptotically
given as �(l) = Asl

lc
, where s is a geometrical factor and

A is a constant coined the “cooperativity parameter” [9].
The (universal) loop exponent c ≈ 2.12 is determined by
the dimensionality of the embedding space (=3) and the
connective topology of the polymer system [11,28].

(3) A supercoil, in which two halves of a dsDNA segment
wind around each other (see Fig. 1). The corresponding
Boltzmann weight is given by e−lβEs ≡ νl , where Es (0 >

Es > Eb) is the energy gain of a base pair in a supercoiled
segment. Our model reduces to the PS model when ν = 0.

It is assumed that supercoils occur within bound regions
only and hence a loop is always terminated by two bound
segments (of type 1 above). A typical configuration of part of
a circular DNA molecule is shown in Fig. 1 where lli denotes
the length of the ith loop, while lbi,j and lsi,j stand for the lengths
of the j th bound segment and the j th supercoil following the
ith loop, respectively. The Boltzmann weight corresponding
to the configuration in Fig. 1 is

�
(
lli−1

) × ωlbi−1,0 × �
(
lli
) × ωlbi,0 × νlsi,0

× ωlbi,1 × νlsi,1 × ωlbi,2 × �
(
lli+1

)
.

Let Lb,Ls , and Ll be the total length of bound, supercoil,
and loop segments, respectively. The length of the DNA is
given by Lb + Ls + Ll = L. The conservation of the linking
number is imposed by the additional condition that an increase
in the total loop length Ll (reducing the linking number) is

FIG. 1. A typical configuration of a portion of the circular DNA
model used in this study.

compensated by a proportional increase in the total supercoil
length Ls (recovering the linking number), and vice versa.
Given the ground state Lb = L, Ls = Ll = 0, this yields the
constraint Ls = αLl . α is the proportionality constant and
for simplicity we assume here α = 1, though the result is
qualitatively the same for other values [25]. In this model,
as in the PS case, it is more convenient to work within
a grand-canonical ensemble, where the above constraint is
relaxed to the equality of corresponding ensemble averages;
i.e., 〈Ls〉 = 〈Ll〉.

III. GRAND-CANONICAL TREATMENT

For completeness we first outline the derivation in [24] for
this case. To account for the two constraints above, the grand
partition sum is constructed as a function of two fugacities z

and μ as

Q(z,μ) =
∑

Lb,Ls ,Ll

Z(Lb,Ll − Ls)z
LμLl−Ls , (1)

where Z(Lb,Ll − Ls) is the canonical partition sum. Note that
for μ = 1, Eq. (1) is the grand-canonical partition function of
the Poland-Scheraga model extended to include all possible
supercoil segment insertions. While this partition sum is
different from that of the original PS model, it qualitatively
yields the same phase diagram [24].

The values of z and μ are set by the conditions

L = ∂ log Q

∂ log z
(= Lb + Ls + Ll), (2)

0 = ∂ log Q

∂ log μ
(= Ll − Ls). (3)

Assuming that there is at least one bounded base pair, the grand
partition sum can be written as

Q(z,μ) = Ṽ (z,μ) + Ṽ (z,μ)U (zμ)Ṽ (z,μ) + · · · (4)

= Ṽ (z,μ)

1 − Ṽ (z,μ)U (zμ)
, (5)

with

Ṽ (z,μ) = V (z)

1 − V (z)W (z/μ)
, (6)

V (z) =
∞∑

n=1

(ωz)n = ωz

1 − ωz
, (7)

W (z/μ) =
∞∑

n=1

(
ν

z

μ

)n

= νz

μ − νz
, (8)
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U (zμ) =
∞∑

n=1

A
(szμ)n

nc
= A�c(szμ). (9)

The functions U,V , and W represent the grand partition sums
for loops, bound segments, and supercoils, respectively. The
polylog function �c(q) is given by

�c(q) =
∞∑

n=1

qn

nc
. (10)

It is an analytic function everywhere except for a branch cut
at q ∈ [1,∞) [29]. It satisfies the relation

d

dq
�c(q) = 1

q
�c−1(q). (11)

By inserting Eqs. (6)–(9) into (5), Q(z,μ) can be written as

Q(z,μ) =
[(

1

ωz
− 1

)
− νz

μ − νz
− A�c(szμ)

]−1

. (12)

From this explicit form the constraints given by Eqs. (2) and
(3) are readily transformed into(

1

ωz
− 1

)
− νz

μ − νz
= A�c(szμ), (13)

νz

(μ − νz)2
= A

μ
�c−1(szμ), (14)

where z and μ from here on refer to the corresponding values
in the thermodynamic limit (L → ∞) which is assumed in the
derivation of Eq. (13). Denoting by mb, ms , and ml the average
density of base pairs in bound segments, supercoils, and loops,
respectively, one finds that

mb = − ∂ log z

∂ log ω
, (15)

ms = − ∂ log z

∂ log ν
, (16)

ml = −∂ log z

∂ log s
. (17)

It is more convenient to work with the transformed variables
x = szμ and y = νz/μ. Physically (x/s) is the fugacity
associated with a unit increase in the total loop length, and
(y/ν) is the similar fugacity of supercoils. Under this change
of variables Eqs. (13) and (14) become

√
sν

ω
√

xy
− 1

1 − y
= A�c(x), (18)

y

(1 − y)2
= A�c−1(x). (19)

Considering y as a function of x through Eq. (19), let

G(x) ≡
√

xy

s

[
A�c(x) + 1

1 − y

]
, (20)

so that Eq. (18) can be written as

G(x) = ν1/2ω−1 = eβ(Eb− 1
2 Es) ≡ H (T ). (21)

Note that y and G(x) are increasing functions of x in the
physically relevant regime 0 � x � 1. The lower bound x =

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

 

 

T=∞

T=3.91

T=1.25

G(x), c=1.5
G(x), c=2.5

FIG. 2. A plot of G(x), as defined in (20), as function of x.
The solid line corresponds to c = 1.5 while the dashed line to
c = 2.5. The horizontal lines corresponds to different temperatures.
The arrows point to the solutions of Eq. (18) which is equivalent to
the thermodynamic limit. While for c = 1.5 there exists a solution for
all temperatures, for c = 2.5 there is a solution only up to some finite
temperature, in this case ν1/2

c ω−1
c ≈ 0.25. The parameters which were

used in this plot are Eb = −3, Es = −2, s = 5, and A = 0.1.

0 is achieved at zero temperature since limT →0 H (T ) = 0,
while the upper bound is unity since �c(x) is a divergent sum
for x > 1. The presence of a thermodynamic phase transition
then depends on whether x(Tc) = 1 is achieved for some finite
temperature Tc. Two regimes emerge as shown in Fig. 2:

(i) c � 2: limx→1 �c−1(x) = ∞, therefore Eqs.(18) and
(19) have a solution in the interval 0 � x < 1 at all tempera-
tures;

(ii) c > 2: note that �α(1) = ∑
n 1/nα = ζα is the Rie-

mann zeta function [30]. Then, as x → 1, the right-hand side of
Eqs. (18) and (19) remain finite since ∞ > ζc−1 > ζc > 1. For
suitable values of A and s [which guarantee G(1) < 1], there
exists a temperature Tc such that x(T � Tc) = 1. The resulting
nonanalyticity at Tc translates into the singular behavior of
other quantities like the density mb which underlies the melting
transition. Tc is given by

G (1) = ν1/2
c ω−1

c = e(1/kBTc)(Eb− 1
2 Es). (22)

Below Tc, the system is fully defined by Eqs. (18) and (19).
Above Tc one has

x = szμ = 1, (23)

and an additional equation is necessary to impose the two
constraints above. To this end, we follow Ref. [19] and
introduce a cutoff M on the maximal loop size. In this reduced
ensemble the partition function is analytic; thus Eqs. (13)
and (14) are valid at all temperatures. The limit M → ∞
reveals precisely how these equations are modified above Tc,
as discussed below.
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A. Regularizing the grand-canonical ensemble

Introducing an upper cutoff M on the allowed loop size, the
loop partition sum U (zμ) is replaced by

UM (zμ) = A

M∑
n=1

(szμ)n

nc
≡ A�M

c (szμ),

where �M
c (q) is the “loop-truncated” polylog function, while

the relation d
dq

�M
c (sq) = 1

q
�M

c−1(sq) still holds. The grand-
canonical partition sum is then

QM (z,μ) = Ṽ (z,μ)

1 − Ṽ (z,μ)UM (zμ)
,

and Eqs. (2) and (3) for the constraints can be written as(
1

ωz
− 1

)
− νz

μ − νz
= A�M

c (szμ), (24)

νz

(μ − νz)2
= A

μ
�M

c−1(szμ). (25)

These equations hold for all T , since �M
c (x) is an analytic

function. Our goal now is to analyze these equations in the
limit M → ∞ for temperatures above Tc. In this approach one
should, in fact, consider the grand-canonical ensemble with
a finite but large average length of the DNA molecule 〈L〉.
One should then consider the limit M,〈L〉 → ∞ with M ∼
O(〈L〉). While considering finite 〈L〉, Eq. (24) is no longer
exact but has O(〈L〉−1) correction. However, this correction
does not modify the analysis presented below as it vanishes
in the limit M ∼ 〈L〉 → ∞. We therefore take 〈L〉 = ∞ and
then M → ∞.

Let T M
c be the temperature at which szμ = 1 in this loop-

truncated model, so that for T > T M
c we have szμ = 1 +

ε(M,T ) with ε > 0. Clearly, as M → ∞, T M
c → Tc and ε →

0 so that szμ = 1 for all T > Tc. Then, for a given temperature
T > supM

(
T M

c

)
we have

1

ωz
− μ

μ − νz
= A

[
�M

c (1) + b(ε)
]
, (26)

νz

(μ − νz)2 = A

μ

[
�M

c−1(1) + a(ε)
]
, (27)

where

szμ = 1 + ε, (28)

and where a(ε) and b(ε) are cutoff-dependent corrections
at least one of which is nonzero (otherwise the system is
overdetermined). We continue by assuming that Mε → ∞ as
M → ∞, and checking that this assumption is self-consistent.
With this assumption the leading behavior of a(ε) and b(ε) is
found as

a(ε) =
M∑

n=1

(1 + ε)n − 1

nc−1
≈

∫ M

dx
eεx − 1

xc−1

∼ eεM

Mc−1

[
1

ε
+ O

(
1

M

)]
, (29)

and

b(ε) =
M∑

n=1

(1 + ε)n − 1

nc
∼ a(ε)/M. (30)

Therefore, the only cutoff-independent choice is a(0) = a0 and
b(0) = 0 for some constant a0. Moreover, the asymptotic form
of ε as a function of M follows from Eq. (29) as

ε(M,T ) = (c − 2)
log M

M
+ O

(
log log M

M

)
, (31)

demonstrating the self-consistency of the assumption above
(see also [31]). We conclude that while for T < Tc Eqs. (13)
and (14) hold, above Tc they are replaced by

1

ωz
− μ

μ − νz
= Aζc, (32)

νz

(μ − νz)2
= A

μ
(ζc−1 + a0), (33)

szμ = 1, (34)

from which we can extract a0

a0 = ν

As (μ − νz)2 − ζc−1. (35)

It measures the density of base pairs that reside within a
macroscopic loop—or condensate—that appears above Tc. In
the next section we discuss the order of the phase transition,
where we take into account the condensate correction which
was omitted in Ref. [24]

B. Order of the transition

We show below that the above phase transition is continuous
and then investigate the nature of the singularity at Tc.
Consider the fraction of base pairs in bound segments, i.e.,
mb = −∂log(z)/∂log(ω). Defining

P ≡ Q−1(z,μ; ω) = 1

ωz
− μ

μ − νz
− A�c(szμ), (36)

and noting that P (z,μ; ω) = 0 for the poles of the partition
function, the smallest of which yields the thermodynamic limit,
we find

0 = dP

dω
= ∂P

∂ω
+ ∂P

∂z

∂z

∂ω
+ ∂P

∂μ

∂μ

∂ω
. (37)

Rearranging and using Eq. (15),

mb = ω

z

∂P/∂ω

∂P/∂z + (∂P/∂μ) (∂μ/∂z)
. (38)

Evaluating the derivatives, making use of Eqs. (13), (14),
(23), and (36), we find that both below and above the critical
temperature mb is given by

mb =
[

1 + 2ωνμz2

(μ − νz)2

]−1

, (39)

≡
[

1 + 2ωy
√

xy√
sν(1 − y)2

]−1

. (40)

Below Tc this can be obtained by noting that Eq. (14) implies
∂P
∂μ

= 0. Equation (36) can then be used to calculate ∂P
∂ω

and
∂P
∂z

and finally Eq. (14) is used again to eliminate the polylog
function. Above Tc Eq. (14) does not hold and is replaced
by szμ = 1. Equation (39) is then obtained by evaluating the
partial derivatives appearing in Eq. (38). Equation (39) implies
that the order parameter mb is continuous across the transition
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since z and μ are continuous functions of the temperature.
Thus the transition is continuous.

For a detailed analysis of the singularity it is convenient to
express mb in terms of the x,y variables. Let δx, δy, and δmb

denote the deviation of x, y, and mb, respectively, from their
values at Tc due to a slight change in temperature t = T − Tc.
First we explore the relations among t , δx, and δy. Above the
transition x = 1 and hence δx = 0. Thus �c(x) in Eq. (18)
becomes ζc. As a result y has a power series expansion above
Tc where to leading order δy ∝ t . Hence for t > 0, δmb = f (t)
where f is analytic near t = 0. Below the transition one has
to make use of the expansion of the polylog function

�c−1(1 − δx) = ζc−1 + ζc−2δx + · · ·+ �(c − 2)δxc−2 + · · · ,

(41)
where �(c − 2) is the Gamma function and the last term is
the leading singular term in the expansion. We proceed by
separately considering two regimes of the parameter c.

(1) For 2 < c < 3, the expansion (41) becomes �c−1(1 −
δx) ≈ ζc−1 + �(c − 2)δxc−2 and therefore Eq. (19) yields

δy ∼ δxc−2, (42)

which implies δx � δy. Thus in the vicinity of the transition
temperature Eqs. (18) and (40) yield δmb ≈ f (t) + α̃δx where
f (t) is the same function as above the transition, and α̃ is a
constant. Using (42) and noting that δy ∝ t one finally obtains
δmb = f (t) + αt

1
c−2 where α is a constant. Since f (t) is

analytic function, the
⌈

1
c−2

⌉
derivative of mb is discontinuous

and the transition is of order
⌈

c−1
c−2

⌉
.

(2) For c � 3, the expansion of the polylog function is
�c−1(1 − δx) ≈ ζc−1 + ζc−2δx. Hence Eq. (19) yields δy ∝
δx, which together with (18) implies δx ∝ δy ∝ t . Thus
δmb ≈ f (t) + γ t where γ is a constant. This implies that the
first derivative of δmb is discontinuous, and the transition is of
second order.

In summary, the transition is characterized by the singular
behavior of δmb below:

δmb =
{
f (t) t > 0,

f (t) + αtη t > 0,
(43)

with

η =
{

1
c−2 2 < c < 3,

1 c � 3,
(44)

where f (t) can be expressed as a power series in t for t > 0.
Since ml = ms = (1 − mb)/2, a similar singular behavior is
exhibited by these variables. Hence the denaturation transition
of a circular DNA is second order for c � 3, third order for
2.5 � c < 3, forth order for 7

3 � c < 2.5, etc., approaching
infinite order as c → 2. No phase transition takes place for
c � 2. In contrast, a DNA without helicity (as described by
the original PS model) melts through a first-order transition
for c > 2 and a second-order transition for 1 < c � 2.

C. High-temperature phase

The high-temperature phase of the PS model is composed of
an all-encompassing macroscopic loop created at Tc through
a jump in the loop fraction to its maximum value ml = 1.
Here, we not only have a smoother transition but also a

qualitatively different denatured phase. For example, the loop
fraction reaches its maximum value (ml = 1/2 within the
present model) only as T → ∞ and it continuously increases
across and above Tc. At this point, one is tempted to ask what
has changed qualitatively across the transition. In this section,
we show that a macroscopic loop is again the distinguishing
feature. However, instead of being an all-or-none phenomenon,
the dominance of the macro-loop among the denatured base
pairs grows steadily from Tc on. Below we analyze the loop
length distribution, pM (l), demonstrating that in addition to the
power-law behavior on microscopic scale, it exhibits a peak at
lengths of order M whose integrated weight is of order 1/M .
This peak represents the macroscopic loop which opens up
above Tc. Note that the probability distribution functions for
bound and supercoiled segment lengths are still exponential in
the length n, since the corresponding Boltzmann weights are
(ωz)n and yn, respectively.

The loop size distribution in the “loop-truncated” model is
given by

pM (l) = 1

�M
c (szμ)

(szμ)l

lc
�(M − l), (45)

where �(x) is the Heaviside function. Differentiating with
respect to l and noting that szμ = eε we find that this
distribution exhibits a minimum at

l∗ = c

ε
= c

c − 2

M

log M
, (46)

where Eq. (31) has been used. The large l distribution is
peaked at l = M with pM (M) ≈ ζ−1

c eεM/Mc ∼ M−2. Thus
the integrated weight of the peak is O(1/M) up to logarithmic
corrections. Since as discussed above M ∼ O(L), one expects
O(1) number of macroscopic loops to open up above Tc. In fact
one can argue that entropy favors a single macroscopic loop
[31]. To see this one can compare the probability of a state with
only one macroscopic loop with that of configurations with two
macroscopic loops: Assuming that there are lcon ∼ M base
pairs within the condensed phase, the weight of configurations
with single loop is

�1 (lcon) ≈ LlpM (lcon) ∼ O
(
L1−c

)
(szμ)lcon .

The weight of configurations with two macroscopic loops is

�2 (lcon) ≈
(

Ll

2

) ∑
n∼M

pM (n) pM (lcon − n)

∼ O
(
L3−2c

)
(szμ)lcon .

As c > 2, it follows that configurations with a single macro-
scopic loop dominates the ensemble in the limit M ∼ L → ∞.

The condensation phenomenon observed in this model is
reminiscent of condensation in Bose-Einstein gas and the zero-
range process (ZRP) when the density of particles is above a
critical value [31,32]. Figure 3 shows the loop size distribution
for finite M and T > Tc. A power-law decay with the exponent
c for l � M and a peak for l � M which is the precursor
of the δ function representing the macroscopic loop are
evident.
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FIG. 3. The loop size distribution p(l) in the canonical (solid
line) and the regularized grand-canonical (dashed line) ensembles.
For small values of l the critical phase can be identified [where p(l) ∼
l−c]. For l ∼ L the canonical curve shows the “bump” around l ≈ ξ

(see text) while the grand-canonical curve behaves in a somewhat
different manner. The parameters which were used for this plot are
c = 3.5, L = 400, M = 200, Eb = −3, Es = −2, s = 5, A = 0.1,
and T = 3 (Tc = 1.167).

IV. CANONICAL TREATMENT

In order to justify the regularization procedure applied in
the grand-canonical ensemble we study the model within the
canonical ensemble, namely with fixed L and Ll − Ls = 0.
In addition this approach allows us to study the properties
of the condensate and to further illuminate the mathematical
structure underlying the phase transition. The canonical
partition function can be obtained from the grand sum in Eq. (1)
by means of Cauchy integration:

Z(L,Ll − Ls) = 1

(2πi)2

∮
C(μ)

dμ

∮
C(z)

dz
Q (z,μ)

zL+1μLl−Ls+1
,

(47)
where C(μ) and C(z) are circular, counterclockwise oriented
contours which are centered at the origin and enclose no
singularity of Q(z,μ) (Fig. 4). Enforcing the linking number
constraint, Ll = Ls , and using Eq. (12) yield

Z(L,0) = 1

(2πi)2

∮
dμ

∮
dz I (z,μ), (48)

I (z,μ) =
[

1
ωz

− 1 − νz
μ−νz

− A�c(szμ)
]−1

zL+1μ
. (49)

For |μ| sufficiently small so that |szμ| < 1, let z0 be the
nontrivial pole of I (z,μ) in the z plane, given by Eq. (13).
Then, by Cauchy’s integral theorem, the integration contour
C(z) can be replaced by C(z)

p + C
(z)
bc shown in Fig. 4. Due to the

factor z−L in (49) the dominant contribution comes from C(z)
p

and we obtain

Z(L,0) ∼ 1

2πi

∮
C(μ)

dμ

μ
z0(μ)−L−1. (50)

We now evaluate the integral separately below and above
the critical point. Below the transition, the integrand in Eq. (50)
has a saddle point given by dz0

dμ
|μ0 = 0 and |μ0| < 1/s|z0|. The

FIG. 4. The integration procedure used for the canonical partition
function: (a) In the z plane, the contour C(z) which encircles the origin
can be replaced by C(z)

p around the pole at z0 and C
(z)
bc which wraps

the branch cut (thick line) and closes at infinity; (b) in the μ plane,
the contour C(μ) can be deformed to pass through a saddle point μ0

when it exits. Otherwise the dominant contribution comes from the
vicinity of the branch point (see text).

partition function can now be evaluated by first deforming C(μ)

into the contour C
(μ)
s which passes through this saddle point

(Fig. 4) and then approximating the integral by the contribution
from the vicinity of μ0; i.e.,

Z(L,0) ∼ e−L log z0(μ0). (51)

After differentiating Eq. (13) with respect to μ and setting
dz0
dμ

= 0 we find Eq. (14) as the saddle-point condition. These
two equations fix z0 and μ0 and describe the system for T < Tc,
as was found earlier in the grand-canonical framework. Note
that the free energy is obtained from z0 through Eq. (51).

Above the critical temperature, this procedure is not
applicable, as the solution of dz0

dμ
= 0 for μ0 now lies on the

branch cut. However, it is found that Eq. (51) holds, with z0

and μ0 given now by Eqs. (13) and (23) rather than (13) and
(14) as obtained within the grand canonical ensemble. This can
be shown by evaluating the integral in Eq. (50) along another
contour C

(μ)
bc shown in Fig. 4 on which |sz0μ| � 1. After a

change of variables e−u = sz0μ, Eq. (50) transforms to

Z(L,0) ∼
∮

du

2πi
α(u) e−L log z0(u), (52)

where α(u) = −1
z0

(1 + d log z0

du
) is a nonextensive correction to

the free energy that can be neglected. The main contribution
along the contour C

(μ)
bc is from the neighborhood of the branch

cut where |u| � 1 with Re[u] positive and as small as desired.
We therefore express log z0(u) in terms of the small parameter
u by using the implicit equation (13) and the nonanalytic
expansion of �c(1 − u) given by Eq. (41), to obtain

log z0(u) ≈
�c−1�∑
n=0

bnu
n + bcu

c−1 + · · · ,

where bn are temperature dependent coefficients with b0 =
log z0(0) and bn = 1

n!
dn log z0

dun |u=0. The coefficient of the linear
term b1 vanishes at Tc. This follows directly from Eqs. (13),
(14), and (23). It changes sign from b1 > 0 below the
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transition, where sz0μ0 < 1, to b1 < 0 above it. Let g(u) be the
nonlinear part of the expansion g(u) ≈ ∑�c−1�

n=2 bnu
n + bcu

c−1.
Note that for c < 3, g(u) = bcu

c−1. One therefore has

Z(L,0) ∼ e−L log z0(0)
∮

du

2πi
e−L[b1u+g(u)] . (53)

As u is approximately imaginary in the region of interest,
the integrand is oscillatory, yielding vanishing contribution
at large L except in the small region where Im[u] � O

(
1
L

)
.

As a result one may expand the integrand in Eq. (53) as
e−L[b1u+g(u)] ≈ e−b1Lu [1 − Lg(u)]. Moreover, the integration
contour can be replaced by the right vertical tangent of C

(μ)
bc in

Fig. 4. Combining these observations we get

Z(L,0) ∼ e−L log z0(0)
∫ i∞

−i∞
du e−b1Lu [1 − Lg(u)] . (54)

The analytic terms of the integrand do not contribute, since
the integration yields a delta function δ (b1L) or its derivatives
[32]. Therefore, the partition function is determined solely by
the leading nonanalytic term in g(u) as

Z(L,0) ∼ e−L log z0(0)bcL

∫ i∞

−i∞
du e−b1Luuc−1

= e−L log z0(0) b̃

bc
1L

c−1
, (55)

where b̃ ≡ bc
sin(πc)

π
�(c) [32]. The free energy density is, of

course, continuous across Tc and above the critical temperature
it is determined by Eqs. (13) and (23), as in the grand-canonical
treatment.

A. High-temperature phase

In this subsection we consider the loop size distribution p(l)
at temperatures above Tc. As in the grand-canonical ensemble,
a condensate phase composed of a macroscopic loop is found,
although the details of the peak in p(l) corresponding to this
phase are different. The analysis follows the analysis carried

out for the condensation transition in the zero-range process
[32]. Here we just outline the main results.

Within the canonical ensemble the loop size distribution is
given by

p(l) = A
sl

lc

Z(L − l, − l)

Z(L,0)
, (56)

where Z(L − l, − l) is given by

Z(L − l, − l) = 1

(2πi)2

∮
C(μ)

dμ

∮
C(z)

dz
Q (z,μ)

zL+1−lμ1−l

≈ s−l

2πi

∮
C(μ)

dμ (sz0μ)l e−L log z0(μ)

≈ s−l

2πi

∮
C

(μ)
bc

du e−L[log z0(u)+φu],

with φ = l/L and e−u = sz0μ. Expanding for small u yields

p(l) ≈ A

lc

I (l/L)

I (0)
, (57)

I (φ) ≡ 1

2πi

∫ i∞

−i∞
du e−L[(b1+φ)u+g(u)]. (58)

For T > Tc, the function I (φ) develops a peak at φ � −b1 ≡
ξ . This is demonstrated separately for 2 < c < 3 and c > 3.

(a) For 2 < c < 3, the leading-order term in g(u) is the
nonanalytic term uc−1 and I (φ) can be written in the form

I (φ) = L−1/(c−1)Vc

[
L

c−2
c−1 (φ − ξ )

]
. (59)

The asymptotic behavior of the scaling function Vc[q] are
given by

Vc[q] �
{

a|q|−c q → −∞,

c1q
(3−c)/2(c−2)e−c2q

(c−1)/(c−2)
q → ∞,

(60)

where the constants a, c1, and c2 are given in Eqs. (81)–(83)
of [32]. Equations (57)–(60) together with Eq. (55) yield after
some algebra [32]

p(l) ∼

⎧⎪⎨
⎪⎩

l−c

(ξ−l/L)c ξL − l � O
(
L

1
c−1

)
,

l−c

( l
L
−ξ)

c−3
2(c−2)

exp
[
−c2

(
l
L

− ξ
) c−1

c−2

]
l − ξL � O

(
L

1
c−1

)
.

In the intermediate regime where |l − ξL| � L
1

c−1 , p(l) has
the form

p(l) ∼ L−c/(c−1)Vc

[
l − Lξ

L1/(c−1)

]
. (61)

Therefore p(l) has a peak centered around l � ξL with a
power-law decay on the right and a stretched exponential decay
on the left. Integrating p(l) as given by (61) around l ≈ ξL

yields an order 1/L contribution implying the existence of a
macroscopic loop.

(b) For c > 3 the resulting behavior is summarized in
Eqs. (100) and (101) of [32] and read

I (φ) �
{ a

(ξ−φ)cLc−1 ξ − φ ∼ O(1),
1√

4π |b2|L exp
[
L

(φ−ξ )2

4b2

] |ξ − φ| � O
(
L−1/3

)
.

Note that b2 < 0. Hence p(l) is of the form

p(l) ∼
{

l−c

(ξ−l/L)c ξL − l ∼ O(L),
(l/L)−c

L
√

L
exp

[ (l−ξL)2

4b2L

] |ξL − l| � O
(
L2/3

)
.

Therefore in this case the condensate bump has a Gaussian
form with weight O(1/L), as in the case 2 < c < 3.
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We conclude that the loop size distribution p(l) is a
power law (reminiscent of the critical phase) for O(1) loops,
superposed with a bump centered around ξL = |b1|L as shown
in Fig. 3. The precise form of this condensate peak differs from
the one found in the grand-canonical analysis, although both
ensembles yield the same phase diagram in the large L limit.
This result is very similar to what is found in the context of
ZRP; however it is not exactly the same. Within the ZRP,
above the critical density any further increase in the density is
absorbed by the condensate. Here, on the other hand, the total
length of the loops in the critical phase changes with temper-
ature above Tc. In particular, it is finite at Tc and approaches
zero at T → ∞. Since the loop size distribution in the critical
phase is fixed above the critical temperature, it implies that the
number of loops in the critical phase varies with T .

V. CONCLUSIONS

We analyzed the denaturation transition of circular DNA
chains, assuming that opening denatured loops induces for-
mation of supercoils. As in the case of noncircular DNA
the thermodynamic behavior of the model is found to be
determined by the loop entropy parameter c. We find that
for c � 2 the model exhibits no transition while for c > 2 the
transition is continuous, of order

⌈
c−1
c−2

⌉
. Thus for c � 3 the

transition is second order, while for 2 < c < 3 (which includes
the physical value of c ≈ 2.12) it is of higher order reaching
∞ order as c → 2.

In addition, the nature of the denaturated phase is rather dif-
ferent from that of the noncircular DNA. Here a macroscopic
loop (condensate) is formed above Tc whose length increases
continuously as the temperature is increased. This is different

from the denaturated phase in the noncircular case, where
the two strands are fully separated at all temperatures above
Tc. This is reminiscent of Bose-Einstein condensation and to
similar real-space condensation encountered in models such as
the ZRP [31,32]. Furthermore, the difference observed in the
condensate peaks of canonical and grand-canonical ensembles
(for finite L) has the same mathematical structure as in
the ZRP.

A different mechanism for absorbing the extra linking
number produced by opening of loops in circular DNA
has been considered previously [22,23]. In this mechanism
the extra linking number is compensated by overtwist of
remaining bound segments of the molecule at the cost of
an elastic energy. This mechanism also yields smoothening
of the denaturation transition as obtained in the present
paper. It would be of interest to consider the denaturation
transition in the case where both overtwist and supercoils are
present.

Finally, our results apply to a homogeneous polymer
where there is a single binding energy. It is well known that
introducing disorder also smoothens the first-order transition
in the PS model [33]. The influence of sequence inhomogeneity
on the present melting transition which is already smoothened
by topological constraints is an open question.
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