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The carnivorous aquatic waterwheel plant (Aldrovanda vesiculosa L.) and the closely related terrestrial venus
flytrap (Dionaea muscipula SOL. EX J. ELLIS) both feature elaborate snap-traps, which shut after reception
of an external mechanical stimulus by prey animals. Traditionally, Aldrovanda is considered as a miniature,
aquatic Dionaea, an assumption which was already established by Charles Darwin. However, videos of snapping
traps from both species suggest completely different closure mechanisms. Indeed, the well-described snapping
mechanism in Dionaea comprises abrupt curvature inversion of the two trap lobes, while the closing movement
in Aldrovanda involves deformation of the trap midrib but not of the lobes, which do not change curvature. In
this paper, we present detailed mechanical models for these plants, which are based on the theory of thin solid
membranes and explain this difference by showing that the fast snapping of Aldrovanda is due to kinematic
amplification of the bending deformation of the midrib, while that of Dionaea unambiguously relies on the
buckling instability that affects the two lobes.
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I. INTRODUCTION

Although having no muscles, some plants and fungi are
able to perform very fast movements enabling them to achieve
essential functions. The physical mechanisms involved in
these movements differ and depend on the dimensions of
the organism, the physical environment (e.g., density of the
medium), and the characteristic movement speed that must
be achieved [1]. The fastest motions are obtained via explosive
dehiscence. For example, the sporangium discharge of the
fungus Pilobolus lasts about 10 μs, while Hura crepitans,
the sandbox tree, can fling seeds as far as 100 m away
with a discharge time of about 100 μs. These mechanisms
are exceedingly fast, but take place only once because plant
tissues are torn during the process. On the other hand, fast and
repetitive movements in plants are often due to rapid geometric
changes of specific organs associated with the buckling of a
thin membrane. For example, the millimeter-sized underwater
suction traps of carnivorous Utricularia species (bladderworts)
catch their prey in a few milliseconds, owing to the ability of the
trap door to perform more than 100 rapid buckling-unbuckling
cycles during the lifetime of the trap [2–4].

At last, the repetitive movements of larger plant organs,
which are usually substantially less rapid, rely essentially on
cell swelling and shrinking mechanisms and not on dehiscence
or buckling. Many of them are turgor dependent, which is
the cell sap pressure acting against and deforming the cell
walls. It is determined by vacuolar water content resulting
from osmotic pressure, which may reach 1 MPa. Turgor
pressure variations in so-called motor cells can actuate organ
movement, as single motor cells may undergo a 25% volume
change within 1 s and hence can effect cell stiffness in a
short time [5]. Groups of antagonistic motor cells in “hinges”
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(pulvini) lose turgor pressure upon stimulation (extensors)
or become consequentially stretched (flexors), affecting the
organ’s bending stiffness and actuating the movement (e.g.,
folding). Based on this mechanism, the centimeter-sized leaves
and leaflets of Mimosa pudica, for example, can fold in about
1 s after reception of an external stimulus.

However, it is often difficult to determine with certainty
which mechanism originally initiates and causes a rapid nastic
plant motion. For example, Dionaea muscipula is a small
perennial herb from North America. Its leaves can clearly be
divided into a lower part for photosynthesis (the petiole) and
an upper part for prey capture (the leaf lamina). The upper part,
here referred to as the trap, has a typical size in the range of
2–6 cm and consists of a pair of trapezoidal lobes held together
along a midrib. These lobes snap in about 0.1–0.7 s when one
of the three trigger hairs located at the center of each lobe is
stimulated. Although this rapid closure has been known for
more than a century (Darwin called Dionaea “one of the most
wonderful plants in the world” [6]), there is still no general
agreement concerning its mechanism. Proposed explanations
are an irreversible acid-induced wall loosening [7] or a rapid
loss of turgor pressure in motor cells [8], but it has been
pointed out that none of these cellular mechanisms can account
for the rapidity of the closure [9,10]. It was consequently
suggested that elastic deformations and buckling may play
an important role [9,11], but the need for buckling has been
recently questioned [12].

On the other hand, Aldrovanda vesiculosa is a rootless,
submerged aquatic herb with an almost worldwide distribution,
which develops whorls of seven or eight leaves per node.
Each leaf features a pair of oval lobes that are 4–7 mm
long. The lobes shut in about 100 ms upon excitation of
one of the 20 sensitive hairs located on the inner surface
of each lobe. Because of the skills required to grow it, as
well as the small size and speed of its traps, Aldrovanda
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has been much less studied than Dionaea. This is probably
the reason why, following Darwin, it has repeatedly been
described as “a miniature, aquatic Dionaea” [6]. Still, while
phylogenetic studies confirm that Dionaea and Aldrovanda
are sister species [13], previous classifications of plant and
fungal movements have classified Dionaea in the plant set of
snap-buckling dominated movements but Aldrovanda in the
set of swelling and shrinking dominated ones [1,14].

In this paper, we demonstrate that the establishment of
detailed models based on the theory of thin solid membranes, in
conjunction with high-speed camera recordings, may provide
an unambiguous characterization of the physics involved in
such movements. More precisely, we derive such models
for the two closely related carnivorous plant species, the
venus flytrap (Dionaea muscipula) and the waterwheel plant
(Aldrovanda vesiculosa), and show that these sister species
from the sundew family (Droseraceae) actually use rather
different mechanisms to achieve their startling capture speeds.

The paper is organized as follows. The general features
of the membrane model and the evolution equations are
sketched in Sec. II. We then discuss in detail the snap-trapping
mechanisms of Aldrovanda and Dionaea in Secs. III and IV,
respectively. In these sections, special attention is paid to the
description of how differences in turgor pressures are modeled,
which is one of the central and most original points of this
work. We finally conclude in Sec. V.

II. THE MEMBRANE MODEL

We developed detailed mechanical models, which enable
one to solve most of the questions raised in the Introduction.
These models rely on the fact that the thickness h of the leaves
is small compared to their width and length. h is indeed of the
order of 400 μm for Dionaea and in the range 40–70 μm for
Aldrovanda. Leaves can therefore be described as thin solid
membranes with total elastic energy Epot = Estrain + Ecurv,
where

Estrain = Eh

2(1 − ν2)

∫
S

{(1 − ν)Tr(ε2) + ν[Tr(ε)]2}dS,

(2.1)

Ecurv = Eh3

24(1 − ν2)

∫
S

{[Tr(b)]2 − 2(1 − ν)Det(b)}dS.

Estrain and Ecurv are the strain and curvature contributions
arising from in-plane and out-of-plane deformations, respec-
tively [15,16]. In this equation, E stands for the Young’s
modulus of elasticity of the leaf, ν for its Poisson ratio, b
for the difference between the strained and unstrained local
curvature tensors, ε for the two-dimensional Cauchy-Green
local strain tensor, and integration is performed over the
surface S of the leaf. For a given leaf geometry, this model
essentially contains no adjustable parameter. Indeed, the leaf
tissue is almost incompressible, which implies that ν = 1/2.
Moreover, E contributes only as a multiplicative term to
the total elastic energy of the leaf. It therefore plays no
role in the static mechanics of the plant organ. One can
consequently learn a lot by building a surface with lifelike
geometry, applying appropriate constraints to this surface and
computing the response of the leaf, either by minimizing Epot

or by integrating Langevin equations of the motion. This
proved to be an efficient strategy to unravel the buckling-

unbuckling mechanism at the origin of the ultrafast and
repetitive opening of Utricularia trapdoors [2,3]. However,
there exists one fundamental difference, in the sense that
constraints in Utricularia arise from the pressure difference
between the liquid inside and outside of the trap. In contrast,
for both Dionaea and Aldrovanda, the constraints are created
by the leaves themselves through variations of the internal
turgor pressure (see below). The major difficulty consists in
adequately modeling the resulting constraints.

Going deeper into detail, for a given mesh the strain energy
Estrain was computed according to

Estrain = Eh

2(1 − ν2)

M∑
n=1

{
(1 − ν)Tr

(
ε2

n

) + ν[Tr(εn)]2
}
δSn,

(2.2)

where δSn is the area of facet n, while the Cauchy-Green strain
tensor [17] for facet n, εn, writes

εn = 1
2

[
Fn · (

F0
n

)−1 − I
]
. (2.3)

In this equation, I denotes the 2×2 identity matrix, while
Fn and F0

n are the Gram matrices for facet n in the strained
geometry and the reference one; that is,

Fn =
((rn2 − rn1) · (rn2 − rn1) (rn2 − rn1) · (rn3 − rn1)

(rn2 − rn1) · (rn3 − rn1) (rn3 − rn1) · (rn3 − rn1)

)
,

(2.4)

where rn1, rn2, and rn3 describe the positions of the three
vertices of the facet. On the other hand, the terms containing
Tr(b) and Det(b) in Eq. (2.1) are known as the mean curvature
energy and the Gaussian curvature energy, respectively. They
can be rewritten in the more explicit form

Ecurv = Emean + EGauss,

Emean = Eh3

24(1 − ν2)

∫
S

(
c1 + c2 − c0

1 − c0
2

)2
dS, (2.5)

EGauss = − Eh3

12(1 + ν)

∫
S

[(
c1 − c0

1

)(
c2 − c0

2

)

− sin2 θ
(
c0

1 − c0
2

)
(c1 − c2)

]
dS,

where ck and c0
k (k = 1,2) are the local principal curvatures of

the strained membrane and those of the reference geometry,
respectively, and θ is the angle by which the local principal
directions of the membrane have rotated with respect to those
of the reference geometry. Emean was computed according to
Eqs. (3.8) and (3.9) of Ref. [3]. In contrast, we did not use the
approximation of Eq. (3.10) of Ref. [3] for estimating EGauss,
because this approximation was derived for nearly spherical
surfaces. We instead used

EGauss ≈ − Eh3

12(1 + ν)

∫
S

(
c1 − c0

1

)(
c2 − c0

2

)
dS, (2.6)

which is obtained from the exact formula in Eq. (2.5) by
assuming that the principal directions of curvature do not rotate
during the deformation of the surface; that is, θ = 0. The local
principal curvatures c1 and c2 were in turn computed from the
local mean curvature κ [estimated from Eq. (3.9) of Ref. [3]]
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and the Gaussian curvature G [estimated from Eq. (3.12) of
Ref. [3]] according to

c1 = κ −
√

κ2 − G,
(2.7)

c2 = κ +
√

κ2 − G.

For the Young’s modulus, we used a value E = 5 MPa,
which is typical of parenchymatous tissues [18–20].

Finally, we considered that the motion of each vertex j of a
given mesh is governed by a Langevin equation with internal
damping but without thermal noise; that is,

d2rj

dt2
= − 1

mj

∇Epot − γ
∑

k∈N1(j )

(
drj

dt
− drk

dt

)
, (2.8)

where k ∈ N1(j ) means that the sum runs over the vertices
k that are directly connected to vertex j , mj is the mass
associated with vertex j [estimated from Eq. (3.3) of Ref. [3]],
and γ is the dissipation coefficient. The damping term, which
has essentially been used for Dionaea, is different from that
in Eq. (3.13) of Ref. [3] because, for Dionaea, damping
is essentially due to the motion of water inside the leaves
and not to the friction of external water, as was assumed
for Utricularia. Practically, Langevin equations (2.8) were
integrated numerically with a leapfrog algorithm and a time
step �t = 0.1 μs.

III. THE KINEMATIC AMPLIFICATION
MECHANISM OF ALDROVANDA

Since it is substantially simpler, the snapping mechanism
of Aldrovanda will be considered first. Owing to the lack of
detailed results in the literature, we recorded several snap-
ping events of Aldrovanda traps using a high-speed camera
(Fig. 1, Movie S1 [21]). The videos indicate that the 100 ms
snapping motion is smooth and continuous (no sudden ac-
celeration). The only part of the leaf that deforms noticeably
lies close to the midrib, which bends inwards during closure,
while the curvature of the rest of the leaf remains essentially
unchanged. The videos also suggest that the midrib is pretensed
in set conditions and that the elastic energy release, which
follows trigger hairs stimulation, drives the closure of the
lobes. This assumption is consistent with the findings that
the motor tissues of Aldrovanda are located on both sides of
the midrib [14] and that turgor in these cells increases during
opening and decreases during snapping [22].

To confirm this scenario, we modeled the trap of
Aldrovanda as a thin solid membrane. We found that the overall
shape of the closed leaves can be satisfactorily reproduced by
triangulation of the parametric surface defined by
⎛
⎜⎝

x

y

z

⎞
⎟⎠=

⎛
⎜⎜⎝

sin(α)
[
R0 + L sin2(β) cos

(
π
2

α
αmax

)]
3
√

3
4 D sin(β) cos2(β) cos

(
π
2

α
αmax

)
R0 cos(α) − R0 + W sin2(β) cos(α)

√
cos

(
π
2

α
αmax

)

⎞
⎟⎟⎠,

(3.1)

where R0 = 12 mm is the radius of the circular midrib in
closed configuration, 2αmax = 20π/180 = 20 ◦ is its central
angle, W = 2.6 mm is the maximum width of the lobe (along
the z axis), D = 1.54 mm is the maximum separation between

ct = 0 ms

t = 130 ms

cMR = +83 m-1

cMR = -32 m-1

x y

z

1 mm

a

b

d

A

B

midrib
midrib

FIG. 1. (Color online) Aldrovanda vesiculosa trap in closed (A)
and open (B) configurations. The pictures on the left correspond to
the first and last frames of Movie S1 [21], while the simulations on
the right correspond to the first and last frames of Movie S2 [21].
The midrib, which is the arc of a circle connecting points a and b,
has been highlighted in red/black in the pictures showing simulation
results. cMR denotes the curvature (inverse of the radius) of this circle.

the two lobes in closed configuration, and L = 4 mm is a
shape parameter. Each point of the lobe is characterized by α ∈
[−αmax,αmax] and β ∈ [0,π/2], which define its position along
and perpendicular to the midrib, respectively [the midrib itself
is the line obtained by setting β = 0 in Eq. (3.1)]. The various
mathematical functions that appear in Eq. (3.1) were adjusted
so as to get a lifelike geometry. Equation (3.1) represents only
one lobe, the second lobe being obtained from the symmetry
(x,y,z) → (x, − y,z). The mesh we used consists of N =
2113 vertices and M = 4096 triangles. The model leaf is
approximately 4 mm long (along the x axis) and 2.6 mm
broad (along the z axis). We assumed a uniform membrane
thickness h = 50 μm, which lies between the thickness of the
two cell layers of the marginal zone and the three cell layers
of the central zone [14].

For the closed trap described by Eq. (3.1), the midrib
is an arc of a circle with curvature cMR = 1/R0 = 83 m−1

(Fig. 1). Starting from this value, cMR was regularly decreased
and the configuration with minimum elastic energy Epot was
sought for each different curvature. We observed that the two
lobes separate quite rapidly with decreasing cMR, but Epot

remains a smooth function thereof (Fig. 2, Movie S2 [21]).
Since buckling is associated with discontinuities of Epot (see
Sec. IV), the smoothness of the curve in Fig. 2 indicates that
buckling is not involved in the snapping of Aldrovanda and
that its opening and closure arise uniquely from cell swelling
and shrinking mechanisms. They probably follow essentially
the same pathway in reverse directions, although it remains
also conceivable that reopening of the lobes may in part be
due to (or may be supported by) growth movements.

We furthermore tested by integrating Langevin equations
without damping [that is, by setting γ = 0 in Eq. (2.8)] that the
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elastic relaxation time from B to A is shorter than 3 ms. This
indicates that the observed 100 ms snapping time is imposed
either by the rate of turgor variation along the midrib or by
viscous damping due to water inside or outside the lobes.

The model therefore strongly suggests that (i) snapping
in Aldrovanda does not involve buckling, so that Aldrovanda
should indeed be classed in the set of swelling and shrinking
dominated plants [1], and (ii) snapping is driven by the
midrib and its neighboring cellular structures, with the rest
of the leaf playing no active role in the motion. It moreover
points out that the unique feature that enables Aldrovanda
to shut so fast is the kinematic amplification of the bending
deformation of the midrib. The geometry of the leaf is
indeed optimized so that a minute displacement of the
midrib is sufficient to trigger a large opening of the lobes
(Fig. 2).
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FIG. 2. (Color online) Variation of Epot, Estrain, and Ecurv as a
function of the midrib curvature cMR for Aldrovanda vesiculosa (top),
and variation of the lobe aperture cd as a function of the midrib
end-to-end distance ab (bottom). A and B refer to the geometries
shown in Fig. 1.

IV. THE LOBE BUCKLING MECHANISM OF DIONAEA

Photographs and videos suggest that the snapping mecha-
nism of Dionaea works completely different (Fig. 3, Movie
S3 [21]). Indeed, the midrib does not deform during closure
while, in contrast, the lobes invert their curvature from convex
to concave [11]. Simulations performed with the membrane
model and lifelike leaf geometries confirm that, for Dionaea
geometry, it is not possible to perform opening-closing
cycles just by deforming the midrib. This observation is also
consistent with the early finding of Darwin [6], later confirmed
by several authors [23,24], that the lobes consist of two
distinct layers of cells and that the process of trap closure
is actually driven by the difference in their behavior. More
precisely, the cells at the inner surface of the lobes release a
certain amount of water and shrink upon stimulation, while
the cells at the external surface take up this water and expand
rapidly [12,25] (as written in the Introduction), resulting in
the fast snapping of the lobes. Two models that described
this mechanism in terms of bending elasticity [11,26], came
to the diverging conclusions that snapping may [11] or may
not [12,26] involve buckling of the lobes. However, both
models are rather imprecise in the sense that they either take
only average curvatures into account [11] or consider that
the lobes are spherical surfaces [26], so that it is difficult to
determine which conclusion is correct.

To solve this question, we also modeled the trap of Dionaea
as a thin solid membrane. The overall shape of the closed leaves
was reproduced by triangulation of the parametric surface
defined by
⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

sin(α)[R0 + βW cos(dα)]

2Dβ(1 − β) cos
(

π
2

α
αmax

)
R0 cos(α) − R0 + βW cos(α) cos(dα)

⎞
⎟⎟⎠ , (4.1)

where R0 = 2 cm is the radius of the circular midrib,
2αmax = 50π/180 = 50◦ is its central angle, W = 1 cm is
the maximum width of the lobe (along the z axis), D = 3 mm
is the maximum separation between the two lobes in closed
configuration, and d = 2 is a shape parameter. Each point of
the lobe is characterized by α ∈ [−αmax,αmax] and β ∈ [0,1],
which define its position along and perpendicular to the
midrib, respectively [the midrib itself is the line obtained
by setting β = 0 in Eq. (4.1)]. The various mathematical
functions that appear in Eq. (4.1) were adjusted so as to

1 cm

FIG. 3. (Color online) Photographs of a trap of Dionaea
muscipula in set conditions (left) and just after snapping (right). Note
that, after closure, lobe curvature has changed.
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FIG. 4. (Color online) Schematic diagram showing how the inner
and outer virtual meshes are obtained from the physical one for the
model of Dionaea muscipula.

get a lifelike geometry. Equation (4.1) represents only one
lobe, the second lobe being obtained from the symmetry
(x,y,z) → (x, − y,z). The mesh we used consists of N =
1073 vertices and M = 2048 triangles. The model leaf is
approximately 2 cm long (along the x axis) and 1 cm broad

(along the z axis). We assumed uniform membrane thickness
h = 400 μm.

Moreover, the fact that each lobe of Dionaea leaves consists
of two layers of cells mechanically connected to each other
was modeled by building two virtual meshes from the original
one. These virtual meshes lie on both sides of the original one
and their vertices are separated by h/2 along the normal to the
surface at the original vertex, as shown in Fig. 4. Let us assume
that vector rj = (xj ,yj ,zj ) defines the position of vertex j of
Dionaea’s mesh at a certain time t and that the outward normal
to the surface at this vertex, nj , has been computed according
to Eq. (3.14) of Ref. [3]. The meshes associated with the inner
and outer layers are obtained from

rin
j = rj − h

4
nj ,

(4.2)
rout
j = rj + h

4
nj

(see Fig. 4). Moreover, the effect of turgor pressure is most
naturally introduced in the form of a strain parameter s, which
states that the equilibrium dimensions of the outer virtual mesh
are multiplied by a factor

√
1 − s/2, and those of the inner one

by a factor
√

1 + s/2 compared to the reference configuration
of Eq. (4.1). More precisely, the Gram matrix in the reference
geometry can be written

F0,in
n =

(
1 + s

2

) ⎛
⎝

(
r0,in
n2 − r0,in

n1

) · (
r0,in
n2 − r0,in

n1

) (
r0,in
n2 − r0,in

n1

) · (
r0,in
n3 − r0,in

n1

)
(
r0,in
n2 − r0,in

n1

) · (
r0,in
n3 − r0,in

n1

) (
r0,in
n3 − r0,in

n1

) · (
r0,in
n3 − r0,in

n1

)
⎞
⎠ , (4.3)

for the inner layer and

F0,out
n =

(
1 − s

2

)
×

⎛
⎝

(
r0,out
n2 − r0,out

n1

) · (
r0,out
n2 − r0,out

n1

) (
r0,out
n2 − r0,out

n1

) · (
r0,out
n3 − r0,out

n1

)
(
r0,out
n2 − r0,out

n1

) · (
r0,out
n3 − r0,out

n1

) (
r0,out
n3 − r0,out

n1

) · (
r0,out
n3 − r0,out

n1

)
⎞
⎠ , (4.4)

FIG. 5. (Color online) Variation of Epot as a function of s (left), and geometry of model Dionaea muscipula traps at various points of the
diagram (right). Thick solid lines (E1–E3) represent energy curves, while gray dotted lines (T1 and T2) represent trajectories. Neither E1 nor
E2 were continued to lower values of s because the two lobes press against each other, which is easily accounted for in trajectory calculations
but not in energy minimization procedures.
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for the outer layer, where the equilibrium coordinates in the
right-hand sides of Eqs. (4.3) and (4.4) are obtained from
Eqs. (4.1) and (4.2). Except for this modification, the elastic
energy is computed for each mesh as described in Sec. II. The
elastic energy of the trap is finally obtained as the average
elastic energy

Epot = 1
2 [Epot(rin) + Epot(rout)] (4.5)

of membranes of thickness h centered on the inner and outer
meshes, respectively.

The strain parameter s therefore quantifies the difference
in equilibrium dimensions in the two layers caused by the
pressure difference. Coupling between strain and curvature
arises from the fact that, for positive (respectively, negative) s,
the membrane tends to bend inwards (respectively, outwards)
in order to increase (respectively, decrease) the surface of the
inner mesh and to decrease (respectively, increase) that of the
outer mesh.

Simulations performed with this model show that, in
contrast to Aldrovanda, Dionaea leaves display several equi-
librium configurations for each value of s. The variation with
s of the total elastic energy of some of these configurations is
shown as thick lines in Fig. 5. Curves E1 and E3 correspond
to concave geometries and E2 to convex ones. Turgor pressure
variations are modeled by imposing a certain rate of variation
of s and integrating Langevin equations of the motion Eq. (2.8).
Most of the time, the system follows the equilibrium curve on
which it currently stands, but it may also jump to another curve
when the current one ceases or becomes too unstable. Two such
trajectories, T1 and T2, are represented as gray dotted lines in
Fig. 5. Trajectory T2 models the actual closure of the trap
(Movie S4 [21]). It starts at point A, which represents the open
convex equilibrium configuration that is reached during the
slow setting phase. Upon stimulation of a trigger hair, water
flows from the inner to the outer trap lobe cell layer, leading to a
decrease of s. The lobes tend to bend outwards, but their convex
geometry opposes this trend, so that an increasing amount of
strain energy is stored in the leaf (Fig. 6). At point B, the lobes
suddenly buckle and dissipate the largest part of this energy
by changing their overall curvature from convex (curve E2)
to concave (curve E3). Closure is not complete at point C. It
is achieved only at point D, after an additional decrease of
s (Fig. 5). Interestingly, the closed geometry after snapping
(point D) is not identical to that before setting (point O). This
is consistent with the experimental observation that Dionaea
leaves steadily deform, owing in part to growth processes [14],
during the three or four opening-closing cycles they are capable
of before they wilt.

The time evolution of the average Gaussian curvature of
the lobes obtained with a 0.050 s−1 decrease rate for the strain
parameter s and a dissipation coefficient γ = 3 × 104 s−1

is shown in Fig. 6. Corresponding experimental curves, like
the one shown in Fig. 1 of Ref. [11], strongly depend on
the exact shape, size, and life history (number of performed
snaps) of the investigated trap, so that there is no point in
superposing experimental and calculated curves. Nonetheless,
a one to one correspondence can easily be established between
them. In particular, the buckling event leading to the ultrafast
curvature inversion of the lobes (B to C) can clearly be
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FIG. 6. (Color online) Time evolution of the elastic energy of a
Dionaea muscipula trap (top plot) and its mean Gaussian curvature
(bottom plot) along trajectory T2 for a 0.050 s−1 decrease rate for s and
a dissipation coefficient γ = 3 × 104 s−1. The value of the dissipation
coefficient was adjusted so as to lower the calculated closure speed
down to the experimental one during the buckling phase from B to
C. Points A–D refer to the geometries shown in Fig. 5.

distinguished from the comparatively slower motions that are
driven uniquely by turgor pressure variations (A to B and C

to D). The value of the dissipation coefficient was precisely
adjusted so as to lower the calculated closure speed down to
the experimental one during the buckling phase from B to C.

Our model therefore strongly suggests that the buckling
instability indeed plays a major role in the fast snapping of
Dionaea leaves.

V. CONCLUSION

In this paper, we have established reliably what are the
mechanisms involved in the fast snapping of two carnivo-
rous plant sister species, namely, kinematic amplification of
bending deformations for Aldrovanda vesiculosa and buckling
of the lobes for Dionaea muscipula. This marked difference
raises interesting questions from the evolutionary point of
view. Molecular systematic studies indeed suggest that the
snap traps of Aldrovanda and Dionaea both derived from a
common terrestrial ancestor that had sticky “flypaper” traps
[13]. One may consequently wonder why these traps are
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so different now and, in particular, whether this difference
is due to the aqueous versus terrestrial surroundings or the
size of the preys [27]. Possibly, the kinematic amplification
as described for Aldrovanda is an optimized mechanism to
obtain very fast underwater snap-trap prey capture without too
much water displacement, which otherwise would result in
prey loss. We are currently performing experiments to answer
these questions.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Lubomı́r Adamec,
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