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Model-based control of cardiac alternans in Purkinje fibers
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This paper describes a systematic approach to suppressing cardiac alternans in simulated Purkinje fibers using
localized current injections. We investigate the controllability and observability of the periodically paced Noble
model for different locations of the recording and control electrodes. In particular, we show that the loss of
controllability causes the failure of the control approach introduced by Echebarria and Karma [Chaos 12, 923
(2002)] for longer fiber lengths. Furthermore, we explain how the optimal locations for the recording and control
electrodes and the timing of the feedback current can be selected, accounting for both linear and nonlinear effects,
effectively doubling the length of fibers that can be controlled with previous methods.
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I. INTRODUCTION

When excitable cardiac tissue is electrically paced at a
sufficiently high rate, the duration of excitation (or action
potential duration, APD) can alternate from beat to beat [1,2]
despite a fixed stimulation period. This rhythm, known as
electrical alternans or 2:2, has been identified [3–5] as an
early stage in a sequence of increasingly complex instabilities
leading to the lethal type of arrhythmia known as ventricular
fibrillation (VF) [6]. Hence, suppression of alternans can be
considered as a way of preventing VF.

To date, the vast majority of feedback control approaches
aimed to suppress alternans in cardiac tissue by adjusting the
timing of the electrical pacing stimuli based on the difference
between the two most recent APDs. This approach, which
we refer to here as the pacing interval adjustment (PIA)
method, is a particular implementation of the empiric time-
delay autosynchronization control of Pyragas [7]. The earliest
experimental attempt to implement PIA in cardiac tissue is
due to Hall and Gauthier, who managed to suppress alternans
in small (well below 1 cm) patches of frog heart muscle
tissue [8]. While PIA control has the benefit that no model
of the dynamics is required, it also has limitations: Alternans
are suppressed only in a small (∼1 cm) neighborhood of the
pacing electrode.

Since that pioneering study most of the research on
feedback control of alternans has concentrated on a specific
type of cardiac tissue, Purkinje fiber, which conducts the
electrical excitation from the atria to the ventricles. The relative
simplicity of this, effectively one-dimensional, excitable tissue
makes it an ideal candidate for both experimental and theoreti-
cal studies. The first theoretical investigation of PIA in Purkinje
fibers is due to Echebarria and Karma [9], who used numerical
simulations of the Noble model to show that alternans can
be suppressed in fibers no longer than ∼1 cm. This theoretic
prediction was verified experimentally by Christini et al. [10].
Studies of other models of cardiac dynamics also find a limit on
the fiber length that can be controlled by a single electrode [11].

Echebarria and Karma should also be credited with uncov-
ering some of the dynamical mechanisms which limit the size
of tissue that can be successfully controlled. Their theoretical

analysis, based on the amplitude equation formalism, showed
that PIA feedback affects only the excitation mode with the
lowest spatial frequency, which is destabilized first when
the alternans appear. Higher-frequency modes cannot be
suppressed and, as those become unstable for longer fibers and
shorter pacing intervals, the tissue develops alternans even in
the presence of feedback.

The main contribution of the present paper is to extend this
analysis by placing the control problem, which heretofore was
primarily based on an empirical approach, on a solid theoretical
foundation. This foundation will allow us to understand not
only why the PIA control fails, but also how the feedback
control should be designed and implemented to avoid this size
limitation. In particular, using model-based control, it will
address a number of experimentally critical issues: (i) How
many electrodes are needed to control a tissue of a given size?
(ii) Where should these electrodes be located relative to the
pacing electrode? (iii) If impulsive feedback is used, what is
the optimal timing? (iv) How should the feedback strength be
computed (instead of being determined empirically, which is
the case for PIA)?

We will start by describing the mathematical model in
Sec. II. Section III is devoted to a numerical investigation
of the dynamical regimes produced by the model with and
without PIA. A stability analysis of the model is performed
in Sec. IV, followed by the description of the proposed
model-based-control approach in Sec. V. Finally, our results
and conclusions are presented in Sec. VI.

II. MODEL EQUATIONS

In our paper we chose to use the Noble model of ionic
dynamics [12], which describes the evolution of three gating
variables a, b, c, and the transmembrane voltage V . Using a
nondimensionalized variable

u = V − Voff

Vsc
, (1)

where V is expressed in mV, Voff = −84 mV, and Vsc =
124 mV (chosen so that u takes values mostly in the range
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[0,1]), the Noble model for a single cell can be written in a
compact vector form

ż = F (z), (2)

where z = [u,a,b,c]†. All parameter values are chosen as in
Ref. [9].

While it can be argued that the Noble model is not the
most accurate model of a Purkinje cell, since it lacks many
features of more complex cell models, currently, to the best
of our knowledge, there are no other mathematical models of
Purkinje cells or fibers that produce alternans. For example,
the more complicated updated version of this model (the 1985
Di Francesco-Noble), which includes more detailed calcium
dynamics, fails to produces alternans [13]. Even the two
most recently developed Purkinje models [14,15] do not show
alternans. The Noble model not only captures the essential
dynamics, it also provides an opportunity for direct comparison
of our results with previous studies [9]. Furthermore, it should
be pointed out that our approach, the main results, and
conclusion are very general and by no means limited to a
particular ionic model. Moreover, the whole approach can be
easily generalized to two- or three-dimensional tissue (e.g.,
atria and ventricles).

A paced Purkinje fiber is modeled by a system of partial
differential equations, which generalizes the single-cell model
(2),

∂tz = D∂2
x z + F (z) − ûj, (3)

where D = Deûû† describes electric coupling between cells
and û = [1,0,0,0]†. The value of the diffusion constant De

was chosen as in Ref. [9]. Vanishing-electric-current boundary
conditions are imposed at both ends of the fiber ∂xu|x=0,L = 0.

The last term in Eq. (3) represents the current density
injected by one or more electrodes for pacing and/or control.
For instance, the pacing current Ip(t) applied by a single
electrode can be described by

j (x,t) = Ip(t)g(x − xp), (4)

where g(x − xp) describes the polarization profile produced
by an electrode placed at location x = xp. In this study we
choose g(x) as a normalized Gaussian of width σ = 0.1 cm
and xp = 0.25 cm. The pacing current consists of a periodic
sequence of square pulses Ip(t) = I 0

p(t mod T ), where

I 0
p(t) =

{
I0, 0 < t < �Tp,

0, �Tp < t < T,
(5)

T is a constant pacing period, and the pulse duration �Tp was
chosen equal to 5 ms following Ref. [9]. The beginning of
the nth pulse is then given by tn = nT . Each pacing stimulus
produces a traveling wave of action potential that propagates
from the pacing electrode toward both ends of the fiber.

The dynamics of the paced fiber can be conveniently
represented in terms of the action potential duration (APD) at
a given location x defined as the time that lapses between the
instant u surpasses a threshold value uth during depolarization
and the instant it falls below that value during repolarization
(Fig. 1). The APD at a particular position x for a particular
pacing stimulus n will be indicated as APDn(x) here. When a
fiber is paced over a long-time interval, it is observed that after
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FIG. 1. Transmembrane potential u(x,t) at x = 1 cm for a fiber
of length L = 5 cm: (a) normal rhythm at T = 270 ms, (b) alternans
at T = 250 ms.

a transient period during which the dynamics depends on the
initial conditions, APDn(x) approaches an asymptotic regime.
When T is bigger than some critical value Tc, APDn(x) is
constant from beat to beat, APDn(x) = APD(x) [Fig. 1(a)].
This is the normal (or 1:1) rhythm. When T is less than
Tc, APDn(x) alternates between long and short from beat to
beat [Fig. 1(b)]. In particular, for the Noble model, while
APDn+1(x) �= APDn(x) for most x values, APDn+2(x) =
APDn(x) for all x. This second regime is known as the state
of alternans (or 2:2 rhythm).

The onset of the state of alternans when the pacing rate
is increased is a well-established result demonstrated by both
experiments and simulations [2–4,16–19]. Alternans could be
concordant, if the difference APDn+1(x) − APDn(x) has the
same sign for all x or discordant if it does not.

The current given by Eq. (4) can be injected experimentally
in cardiac tissue by a microelectrode, and while it is easier
to excite tissue to prolong an action potential, it is also
possible to deexcite tissue, thereby advancing repolarization
by prematurely decreasing an action potential through current
application, as has been shown in Purkinje fibers by Nakaya
et al. [20].

III. NON-MODEL-BASED CONTROL

Echebarria and Karma [9] achieved success in suppressing
alternans in the Noble model for small-size fibers by adjusting
the pacing interval

tn+1 − tn = T + �T n, (6)

based on the difference between the two most recent APD
values recorded by the pacing electrode

�T n = γ

2
[APDn(xp) − APDn−1(xp)], (7)
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where γ is an empirically chosen constant. Throughout this
paper we will refer to this control approach as pacing interval
adjustment (PIA).

The results reported in Ref. [9] set the benchmark against
which the control procedures for the open fiber that we
propose in this paper are measured. As a validation for our
numerical algorithms, we reproduced the results of Echebarria
and Karma. We explored the performance of PIA for different
pacing intervals using the protocol from Ref. [9]: For a given
length, starting from a period of T = 280 ms where alternans
are absent, we decreased the pacing interval in steps of 5 ms
and applied 200 stimuli for each value of T . This procedure
was repeated for fibers of different lengths. We note that while
in Ref. [9] the pacing electrode is located at the left end of the
fiber (xp = 0), we used xp = 0.25 cm. The location xp = 0
was avoided on the assumption that for some experimental
settings it might be difficult to achieve proper electrical contact
between the end of the fiber and the electrode. As we show
below, this difference in xp does not introduce any significant
discrepancy between our results and those of Ref. [9].

In the uncontrolled case, which corresponds to setting
γ = 0 in Eq. (7), presented in the top panel of Fig. 2, the
onset of alternans occurs at roughly the same pacing period
(265 ms < Tc < 270 ms) regardless of the length of the fiber.
Once the normal rhythm is destabilized for T < Tc, we find the
same dynamical regimes as in Ref. [9], but the regions in the
(L,T ) parameter space where those regimes can be found differ
between the two studies. This is especially noticeable for the
conduction block regime, which occurs at faster pacing rates,
for which the pacing current fails to produce a traveling action
potential; in our study it occurs at a longer pacing interval
(∼220 ms) compared with Ref. [9] (180–195 ms). This may
be a consequence of insufficiently accurate time discretization
employed in the earlier study: Echebarria and Karma used
the time step �t = 0.05 ms in the numerical integration of the
evolution equation, while the present study used a smaller time
step �t = 0.01 ms. However, the discrepancy could also be
due to the bistability present at some parameter values, with
one of two stable states selected by initial conditions.

In both studies, PIA is able to suppress alternans (solid
circles) for either short fibers or (in general) low pacing rates.
Similar to Ref. [9], we find (bottom panel of Fig. 2) that for
longer fibers and higher pacing rates the alternations of the
APD are greatly reduced at the pacing location but not away
from it. A state develops in which the amplitude of APD
oscillations increases with the distance from the pacing site
(referred to as the “first harmonic standing wave”). A further
increase of the pacing rate or fiber length produces traveling
discordant alternans. At even faster pacing rates and greater
fiber lengths conduction block is observed. The two studies are
in reasonable agreement regarding the success of PIA control:
Normal rhythm can be maintained for all pacing rates, only
in fibers somewhat shorter than 1 cm. The remainder of this
paper is devoted to explaining why this limitation arises and
investigates how it can be circumvented.

IV. LINEAR STABILITY ANALYSIS

The analysis presented in this paper is based on an
approach similar to that of Refs. [21] and [22]. As in those
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FIG. 2. Dynamical regimes of the paced fiber in the absence of
control (γ = 0, top) and with PIA control (γ = 1/2, bottom): normal
rhythm (solid circles), concordant alternans (open circles), discor-
dant stationary alternans (diamonds), first harmonic standing wave
(squares), traveling discordant alternans (triangles), and conduction
block (crosses). Levels of gray were added to aid visualization.

studies, we linearize the evolution equation (3) about the time-
periodic solution representing normal rhythm and perform a
Galerkin projection of the resulting (linear) equation onto the
eigenfunctions of the evolution operator. In those previous
studies the rotational or translational symmetry of the system
afforded a significant simplification: Normal rhythm could
be represented as a rotating or translating steady state by
an appropriate change of reference frame. No such reference
frame transformation is possible for the open fiber, so one is
forced to perform a linear stability (or Floquet) analysis of a
time-dependent solution.

The model (3) and (4) possesses a time-periodic solution
z0(x,t), corresponding to normal rhythm with the period T

determined by that of the pacing current. Let G(z; T ,0) denote
the time evolution operator

z(x,T ) = G[z(x,0); T ,0]. (8)

Since z0(x,0) is a periodic orbit, it is a fixed point of G(z; T ,0),

z0 = G[z0; T ,0]. (9)

We solved (9) using a matrix-free Newton-Krylov method
[23] (see Appendix A1 for details) combined with generalized
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minimal residual method (GMRES). The latter is implemented
by the MATLAB (Mathworks, Inc.) routine gmres.

In order to determine the stability of normal rhythm we
consider the dynamics of small perturbations δz = z − z0,
governed by the linearization of (3)

∂t δz = JN (t)δz − ûjc, (10)

where JN (t) = D∂2
x + JF (t) with JF (t) ≡ DF/Dz|z0(x,t)—

the Jacobian of F (z) evaluated along the periodic orbit z0(x,t).
The current density j = jp + jc now includes both the pacing
current jp defined by (4) and the feedback current jc, to be
computed later.

Considerable simplification can be achieved by introducing
a stroboscopic section t ′n = τ + nT , with n = 1,2, . . . and 0 �
τ < T , which reduces the time-dependent problem (10) to a
map:

δz(x,t ′n+1) = U (τ + T ,τ )δz(x,t ′n)

−
∫ T

0
U (τ + T ,τ + t)ûjn

c (x,t) dt, (11)

where U (tf ,ti) is the linear time evolution operator of (10) in
the absence of control (jc = 0) and jn

c (x,t) = jc(x,t ′n + t), for
t ∈ [0,T ]. In deriving (11) we used the fact that due to the time
periodicity of JN (t), U (tf ,ti) is also time periodic with period
T ,

U (tf + T ,ti + T ) = U (tf ,ti). (12)

Note that in introducing the stroboscopic section we
allowed the freedom to change its temporal phase relative
to the pacing stimulus, which corresponds to τ = 0. This will
later allow us to investigate how the dynamics responds to
current injections applied not only at different positions along
the fiber, but also with different time delays relative to the
pacing stimulus.

In the absence of control the stroboscopic map (11) takes a
very simple form

δz(x,t ′n+1) = U (τ + T ,τ )δz(x,t ′n). (13)

The stability of z0 is determined by the eigenvalues λi of this
map:

U (τ + T ,τ )ei(x,τ ) = λiei(x,τ ), (14)

where ei are the corresponding eigenfunctions. Here we
assume the eigenvalues to be ordered such that |λ1| � |λ2| �
· · ·. It can be shown that λi are independent of τ and that the
(right) eigenfunctions of U (τ + T ,τ ) for arbitrary τ can be
computed as

ei(x,τ ) = U (τ,0)ei(x,0) (15)

using the eigenfunctions for τ = 0 (see Appendix B1).
The spectrum of U (T ,0) was found using the implicitly

restarted Arnoldi iteration method [24], implemented by the
MATLAB routine eigs. For the sake of efficiency, this method
was also applied in its matrix-free form using a routine that
calculates the matrix-vector product, in this case U (T ,0)δz,
instead of the explicit matrix representation of U (T ,0) (see
Appendix A2 for details). The number of unstable eigenvalues
(|λi | > 1) found for a grid of pairs (L,T ) is shown in Fig. 3.
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FIG. 3. Stability diagram, showing the number of unstable modes
for normal rhythm. White indicates the region in parameter space
where normal rhythm is stable. Alternans can be successfully
suppressed using PIA control only in the light gray region. Model-
based control is successful everywhere in the gray-shaded regions.
Feedback is computed using the complete system state in the dark
gray region or using local voltage recordings in the medium and light
gray regions. All control methods we investigated fail in the black
region.

We find that, for the range of L values considered, the normal
rhythm z0 becomes unstable at T < Tc and alternans develops,
which is consistent with the results presented in Fig. 2.

For the range of parameters considered in this paper we
found that all eigenvalues of λi are negative real numbers.
Hence the normal rhythm becomes unstable when an eigen-
value λi crosses the unit circle, leading to a period-doubling
bifurcation. This is consistent with the fact that the state of
alternans is a periodic orbit with a period that is twice that of
the pacing current T .

By comparing Fig. 3 with Fig. 2 we find that PIA control
succeeds when there is only one unstable mode and fails
otherwise. This observation is consistent with the conclusion
of Ref. [9] that PIA control can only suppress the mode with
the lowest spatial frequency, which happens to be the most
unstable one here due to the contribution of the diffusion term
∂2
x δz in (10).

Figure 4 shows the variation of the APD, δAn(x), which
corresponds to the three unstable eigenmodes for L = 2.5 cm
and T = 220 ms. The leading mode corresponds to concordant
alternans, while the two subleading modes correspond to
discordant alternans with one and two nodes, respectively.
While the number of nodes is correctly predicted by the
analysis in Ref. [9], the precise spatial structure of disturbances
is substantially different from the Fourier modes

δAn(x) ∼ 1 + αn cos
π (n − 1)x

L
, (16)

with αn = const, predicted by the amplitude equation formal-
ism, highlighting its limitations in describing the dynamics far
from onset of the instability.
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FIG. 4. The perturbation of the APD δAn(x) which corresponds
to (a) e1, (b) e2, and (c) e3. The solid and dashed lines correspond to
odd and even n, respectively.

V. MODEL-BASED CONTROL

The goal of control is to suppress the transition to alternans
by applying feedback, extending the linear stability of the
normal rhythm to shorter T . A more convenient description of
the dynamics in the presence of feedback can be obtained
by projecting (11) onto the basis {ei}. This requires the
eigenfunctions fi of the adjoint evolution operator

U †(τ + T ,τ )fi(x,τ ) = λ∗
i fi(x,τ ). (17)

The adjoint (or left) eigenfunctions fi(x,0) can be computed
using the matrix-free approach described previously, where
the action of the operator U †(T ,0) is computed by time-
discretizing U (T ,0) and evaluating the adjoint of the resulting
composition of operators (see Appendix A3 for details). The
relationship

fi(x,τ ) = (λ∗
i )−1 U †(T ,τ )fi(x,0) (18)

can then be used to compute the left eigenfunctions for
0 < τ < T (see Appendix B2).

When properly normalized, the left and right eigenfunctions
satisfy the orthogonality condition

〈fi(x,τ ),ei(x,τ )〉 ≡
∫ L

0
f∗
i (x,τ ) · ej (x,τ )dx = δij , (19)

where 〈·,·〉 denotes the inner product. Therefore, we can
expand the perturbation as

δz(x,t ′n) =
∞∑
i=1

ξn
i ei(x,τ ), (20)

where

ξn
i = 〈fi(x,τ ),δz(x,t ′n)〉. (21)

Substituting (20) into (11) and applying the operation 〈fj ,·〉 to
each side of the resulting equation we obtain

ξn+1
i = λiξ

n
i −

〈
fi(x,τ ),

∫ T

0
U (τ + T ,τ + t)ûjn

c (x,t)dt

〉
.

(22)

The choice of the current density jn
c depends on the number

and placement of electrodes used to apply feedback. While
experimentally it is possible to pace from the recording sites,
in the present paper we will assume there is a single control
electrode to enable direct comparison with the PIA approach
of Ref. [9], in which case

jn
c (x,t) = I n

c (t)g(x − xc), (23)

where I n
c (t) is the control current applied during the nth pacing

interval and xc is the position of the control electrode. For
instance, if we split the interval [t ′n,t

′
n+1] into l subintervals

of duration δT = T/l, following Ref. [22], and assume the
current to be constant, I n

c (t) = I nk on the kth subinterval, (22)
reduces to

ξn+1
i = λiξ

n
i −

l∑
k=1

BikI
nk, (24)

where

Bik =
〈
fi(x,τ ),

∫ kδT

(k−1)δT
U (τ + T ,τ + t)ûg(x − xc)dt

〉
. (25)

Galerkin truncation involves discarding strongly stable modes
(|λi | � 1) in order to obtain a low-dimensional map describing
the evolution of the unstable and weakly stable modes

ξn+1 = Aξn − BIn, (26)

where ξn = [ξn
1 ,ξn

2 , . . . ,ξn
m]†, A is a diagonal matrix with

elements Aii = λi , and In = [I n1,I n2, . . . ,I nl]†.
A variety of standard control-theoretic methods can be

invoked to compute the feedback current In as a function
of the perturbation ξn using (26). At the same time, control
can be greatly optimized by allowing the feedback current to
remain a continuous function of time, which corresponds to
choosing a sufficiently large l and imposing no restrictions
on I nk . However, in this paper we will limit our attention to
the simplest implementation, where only impulsive feedback
is considered, I nk = I n1δk1, in which case the control current
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consists of a brief pulse of duration δT � T , so that (25)
reduces to

Bi1 ≈ 〈 fi(x,τ ), U (τ + T ,τ )δT ûg(x − xc) 〉
= λiδT 〈 fi(x,τ ), ûg(x − xc) 〉
≈ λiδT f u

i (xc,τ ), (27)

where the superscript u denotes the first (voltage) component
of fi . In the last step we used the fact that σ � L. Defining the
total charge Qn = I n1δT injected by the electrode during this
brief interval, we find that the stroboscopic map (24) takes the
form

ξn+1
i ≈ λiξ

n
i − λi f

u
i (xc,τ ) Qn. (28)

In the limit �T n � �Tp � T , which corresponds to small
deviations from normal rhythm, PIA control can be cast in a
very similar form:

ξn+1
i ≈λiξ

n
i −λi

(
f u

i (xp,�Tp)−f u
i (xp,0)

) Qp

�Tp

�T n, (29)

where Qp is the charge delivered by one pacing impulse of
duration �Tp and �T n was defined in Eq. (7).

A. Controllability

Equations (28) and (29) allow an interesting and important
interpretation. When f u

i (xc,τ ) ≈ 0 for some unstable mode i,
the feedback has no (or very little) effect on the dynamics
of that mode (the mode becomes uncontrollable) and the
instability cannot be suppressed, regardless of how the current
is chosen. On the other hand, the larger |f u

i (xc,τ )| is, the
smaller the feedback current can be. The structure of the
adjoint eigenfunctions, therefore, determines where the control
electrode(s) should be placed and how the timing of the
control impulse should be chosen. A similar conclusion was
made for spiral waves in a two-dimensional tissue model
in Ref. [21].

Using the same electrode for both pacing and control is
not only convenient from the experimental perspective, this
choice also provides near optimal controllability regardless of
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modes for L = 1 cm and T = 210 ms. The star indicates the location
of the pacing electrode. The gray scale shows the magnitude of the
indicated eigenfunctions.
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FIG. 6. Controllability |f u
i (x,τ )| of the four leading (unstable)

modes for L = 3 cm and T = 185 ms. From left to right, i = 1,2,3,4,
respectively.

the fiber length. As Figs. 5 and 6 illustrate, |f u
i (xp,τ )| reaches

near-maximal values for all unstable modes for both short
(L = 1 cm) and long (L = 3 cm) fibers, such that all unstable
modes can be made controllable by an appropriate choice of
τ . Therefore, in the remainder of this paper we set xc = xp.

Experimental considerations do not impose any constraints
on the timing of feedback, while controllability requires that
the control impulse be delivered much later than the pacing
impulse. We discovered that the optimal interval 0.3T � τ �
0.6T , where |f u

i (xp,τ )| takes nearly maximal values for all
unstable modes (hence requiring the smallest control current),
is essentially independent of L, as illustrated by a comparison
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FIG. 7. f u
i (xp,τ ) for (a) L = 1 cm and (b) L = 2 cm. In both

cases T = 210 ms. Only i values for unstable modes are shown:
i = 1 (solid line), i = 2 (dashed line), i = 3 (dotted-dashed line).
The gray shade indicates the range 0 < τ < �Tp .
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FIG. 8. Controllability and observability of the unstable modes
and normal rhythm voltage for L = 2 cm, T = 220 ms, xc = xp =
0.25 cm, and xo = 1.8 cm.

of Figs. 5 and 6. Furthermore, as Fig. 8 shows for a 2-cm-
long fiber, the optimal timing corresponds to the end of the
plateau phase of the action potential. In contrast, for single
cells modeled using the canine ventricular myocite model, the
optimal time for feedback was determined to be at the early
plateau phase [25].

For PIA, feedback timing does not fall into the optimal
range. On the contrary, for every i, |f u

i (xp,τ )| has a deep
minimum in the range 0 < τ < �Tp, as Fig. 7 shows. As
the right-hand side of (29) shows, when feedback is imposed
by shifting the timing of the pacing impulse, the magnitude
of the difference �f u

i ≡ f u
i (xp,�Tp) − f u

i (xp,0) determines
controllability instead of |f u

i (xp,τ )|. As Table I shows,
|�f u

i | is of order unity only for i = 1 (the leading mode
is controllable). All subleading modes are, at best, weakly
controllable, indicating that PIA control has virtually no effect
on their dynamics and hence is expected to fail. This is in
perfect agreement with Ref. [9], which showed that feedback
only affects the dynamics of the leading mode.

Model-based control provides a viable alternative to PIA
in the region of the (L,T ) parameter space characterized by
multiple unstable modes. Once xc and τ have been selected, we
can define a vector with components B ′

i = λi f
u
i (xc,τ ), which

recasts the system (28) in the compact form

ξn+1 = Aξn − B ′Qn. (30)

Now the impulsive feedback Qn stabilizing normal rhythm
can be computed using any standard control-theoretic method.
Here we use discrete-time linear-quadratic regulator control

TABLE I. The values of |�f u
i | = |f u

i (xp,�Tp) − f u
i (xp,0)| for

(a) L = 1 cm and (b) L = 2 cm. The bold font corresponds to unstable
modes. In both cases T = 210 ms.

i 1 2 3 4

|�f u
i |(a) 0.4080 0.0780 0.0054 0.0926

|�f u
i |(b) 0.7909 0.0082 0.1086 0.0716

[26] (implemented via the MATLAB routine dlqr) which yields
the feedback law

Qn = −Kξn, (31)

with feedback gain K making the matrix A + B ′K , and hence
the evolution described by the map (30), stable.

B. Observability

In experiment, the mode amplitudes ξn
i in Eq. (31) will not

be directly accessible. Moreover, despite the advent of optical
techniques relying on voltage- or calcium-sensitive dies which
can yield spatiotemporal information about more than one state
variable, transmembrane voltage recordings from one or more
electrodes remain the only practical and reliable way to get
information about the system state. One, therefore, has to rely
on localized voltage measurements for control purposes, just
as most previous studies have done.

Fortunately, state reconstruction is also a standard problem
in control theory. The idea is to simulate a numerical model
of the experimental system in real time and compare the
measurements obtained from experiment with predictions of
the model, adjusting the model variables for any discrepancy
in the outputs. Such a model is known in control theory as an
observer or estimator [26]. Similar to the PIA implementation
in Ref. [9], we will use a single electrode to record the
voltage, but will use one measurement per pacing interval in
contrast with PIA, which requires continuous measurement
of u to determine the APD. This is done to simplify the
discussion. Radically more accurate results can be obtained
from continuous-time measurements of the voltage.

The output produced by an electrode of finite spatial extent
and centered at xo can be modeled by writing the recorded
voltage as

vn =
∫

g(x − xo)u(x,t ′n)dx. (32)

We will also assume that the voltage in the normal rhythm

v0 =
∫

g(x − xo)u0(x,τ )dx (33)

is unknown and needs to be determined. In principle, τ can
be chosen independently for observation and control; in this
paper we choose τ to be the same, again for simplicity. The
performance of the control scheme can be improved by lifting
this restriction.

From the definition of δz and (20) we have

vn = v0 +
∞∑
i=1

Ciξ
n
i , (34)

where Ci = 〈ei(τ ),ûg(x − xo)〉 ≈ eu
i (xo,τ ). Truncating (34)

to m leading modes and rewriting it in matrix form yields
a relationship between the measurements (outputs) and the
mode amplitudes retained in the Galerkin truncation (26),

vn = v0 + Cξn, (35)

where C = [C1, . . . ,Cm].
Once again, (34) allows an important interpretation.

Whenever Ci ≈ eu
i (xo,τ ) = 0, the measured voltage becomes
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FIG. 9. Observability |eu
i (x,τ )| of the four leading modes for L =

3 cm and T = 185 ms. From left to right, i = 1,2,3,4, respectively.

independent of the mode amplitude ξn
i (mode i becomes unob-

servable). This means that ξn
i cannot be determined regardless

of the procedure used to extract it. If the unobservable mode is
unstable, we cannot expect the feedback to suppress it either,
so that observability of unstable modes imposes additional
restrictions on the timing τ of voltage recordings and the
position xo of the recording electrode. From the observability
standpoint, the optimal choice of τ corresponds to the range
where |eu

i (xp,τ )| are near maximal values at least for all
unstable modes (and preferably for all the modes included
in the Galerkin truncation).

Unlike the case of controllability, this optimal range is fiber-
length dependent: We find 0.5T � τ � 0.9T for L = 1 cm
(see Fig. 5), but 0.8T � τ � 1.2T for L = 2 cm (see Fig. 8).
On the other hand, the optimal spatial location for the recording
electrode, regardless of fiber length, is found to be near the far
end of the fiber, 0.9L � xo � L. Interestingly, for longer fibers
(see, e.g., Fig. 9 for L = 3 cm), the leading mode gradually
loses observability at the far end of the fiber, but remains
observable at xo = xp. This means that voltage recordings
from two electrodes are required for complete observability:
the pacing electrode and a recording electrode at the far end
of the fiber.

With a proper choice of xo and τ to satisfy the observability
conditions, we can follow the standard procedure [27] to
reconstruct the mode amplitudes ξn

i from a series of voltage
recordings vn,vn−1, . . .. In the linear approximation, the actual
dynamics of the mode amplitudes is given by (30) or, written
in a slightly different form,(

ξn+1

v0

)
=

(
A 0
0 1

)(
ξn

v0

)
+

(
B ′
0

)
Qn. (36)

Let us construct a corrected model for the estimates ζ n =
[ζ n

1 , . . . ,ζ n
m]† and wn of ξn and v0, respectively:(
ζ n+1

wn+1

)
=

(
A 0
0 1

)(
ζ n

wn

)
+

(
B ′
0

)
Qn

+H

[
vn − (C 1)

(
ζ n

wn

)]
, (37)

where the additional terms on the right-hand side represent
corrections to the mode amplitudes due to differences in the
output of the model and the experimental system. Subtracting

(36) from (37) and using (35) we arrive at the equation for the
differences δξn = ζ n − ξn and δwn = wn − v0:(

δζ n+1

δwn+1

)
=

[(
A 0
0 1

)
− H (C 1)

] (
δζ n

δwn

)
. (38)

It is easy to ensure that δξn → 0 and δwn → 0, so that ζ n →
ξn and wn → v0, for n → ∞ by a proper choice of the observer
gain H which makes the matrix on the right-hand side of (38)
stable. Just as the feedback gain K , we also computed H using
dlqr.

The convergence of the estimator (37) crucially depends on
a proper choice of the initial estimate ζ 1 and w1. We found
that, for the pacing protocol used here (see Sec. III), the leading
mode is initially dominant, |ξ 1

1 | � |ξ 1
i |, i = 2,3, . . . ,m. Based

on this observation, we set ζ 1
i = 0, i = 2,3, . . . ,m. To avoid

exciting the subleading modes before the initial estimates of
ζ 1

1 and w1 have been obtained, we did not apply feedback
during the first pacing interval. Hence, from (34) and (28) with
Q1 = 0, we find that w1 and ζ 1

1 should satisfy the following
system of equations:

v1 = w1 + C1ζ
1
1 , (39a)

v2 = w1 + λ1C1ζ
1
1 . (39b)

Replacing the controller (31) with

Qn = −Kζ n, (40)

and combining (40) with the observer (37) yields a single-input
single-output (SISO) control procedure (known as a compen-
sator) that could easily be applied in an experimental setting.
Below we illustrate its performance using the full nonlinear
model of the fiber represented by the partial differential
equation (3). In particular, we investigate the effects of mode
truncation and the placement of the recording electrode.

VI. RESULTS AND CONCLUSIONS

In order to directly compare the performance of the
compensator with PIA control we used the same electrode
for pacing and feedback and followed the protocol introduced
in Ref. [9]. As we discussed in Sec. III, PIA fails to maintain
normal rhythm whenever a second unstable mode appears.
The failure of PIA control is illustrated in Fig. 10(a), which
shows the evolution of the two unstable modes for L = 1 cm.
Although initially quite small, the amplitude of the subleading
mode grows exponentially with the rate close to λ2, as expected
due to its weak controllability. The leading mode, on the
other hand, is controllable and hence is initially suppressed
by feedback. However, its dynamics is slaved to that of the
growing subleading mode through the nonlinear terms in the
ionic model. Once the amplitude of the subleading mode
becomes sufficiently large, the leading mode also starts to
grow as feedback is overpowered by mode coupling.

In contrast, the compensator succeeds even when additional
unstable modes appear, as Fig. 3 shows. For instance, for
L = 1 cm, controllability and observability conditions can
be satisfied by placing the recording electrode in the optimal
location xo = 0.9 cm and choosing τ = 0.54T . In this case
truncation to m = 2 modes is sufficient to suppress alternans
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FIG. 10. Mode amplitudes ξn
1 (thin line) and ξn

2 (thick line) under
(a) PIA and (b) model-based control for L = 1 cm and T = 205 ms. In
both cases the initial condition is the normal rhythm for T = 210 ms
and control is turned on at n = 1.

for any T , including the values where PIA control fails, as
illustrated by Fig. 10(b). On the other hand, if the pacing
electrode is also used for observation, xo = xc = 0.25 cm,
the compensator performance deteriorates significantly when
the same two-mode truncation is used. Predictably, it is the
observer part which starts to fail in the latter case. As a quick
comparison of Figs. 11(a) and 11(b) shows, for xo = 0.25 cm
the estimates of the mode amplitudes differ significantly from
the actual values, while for xo = 0.9 cm the estimates remain
fairly accurate.

The fundamental problem here is the decreased observabil-
ity of both unstable modes at xo = 0.25 cm (see Fig. 5), which
requires the use of a large observer gain H . The latter, in
turn, reduces the region of validity of the linear approximation
(37). The protocol used here produces initial perturbations
that, in fact, are not small to begin with. The initial condition
zi (normal rhythm at T = 210 ms) deviates quite significantly
from the target state z0 (normal rhythm at T = 205 ms). As
Fig. 8 shows, the voltage u(xp,t) changes from its minimal,
to its maximal, value in ∼5 ms following the pacing impulse,
placing the perturbation in the nonlinear regime.

The nonlinear origin of the observer failure can be con-
firmed by decreasing the initial deviation from the target state.
For instance, reducing zi − z0 by a factor of 10 considerably
improves the accuracy of the estimates, as Fig. 11(d) illustrates.
A partial solution to the problem of weak observability is

provided by increasing the truncation order of the compensator
to include a number of weakly stable modes, in addition to
the unstable ones. This has an effect of expanding the region
of validity of the linear approximation (37). For instance,
truncation to m = 4 modes produces radically more accurate
estimates of the mode amplitudes [shown in Fig. 11(c)] for the
same initial disturbance as in Figs. 11(a) and 11(b), restoring
the efficiency of the compensator. However, for L � 1.5 cm
the compensator fails for any truncation order, if the same
electrode is used for pacing, control, and recording.

Although the range of parameters for which alternans can
be suppressed is extended significantly by replacing PIA with
compensator control described here, even further improvement
is possible with some modifications. While the maxima of
|f u

i (xc,τ )| are achieved for the same value of τ regardless
of the fiber length (this optimum is determined by the local
cell dynamics), the maxima of |eu

i (xo,τ )| shift linearly with
the fiber length (information propagates away from the pacing
and control site with the speed determined by the conduction
velocity). For fibers longer than ∼1 cm, controllability and
observability may not be both satisfied for the same value of τ .
For instance, for L = 2 cm, |eu

i (xo,τ )| are maximal for τ ≈ T

when |f u
i (xp,τ )| are near their minima (see Fig. 8), so that τ

has to be chosen differently for the controller and the observer.
To illustrate an improvement possible with a more accurate

state reconstruction procedure, we note that if the system state
is known, ζ n = ξn, (40) reduces to (31) and model-based con-
trol can suppress alternans for up to L ≈ 2 cm (see Fig. 3). For
even longer fibers the approach based on impulsive feedback
fails and continuous-time voltage measurement and current
feedback are required to suppress alternans. Both are straight-
forward to implement. For instance, continuous-time feedback
can be computed using the model (26) as opposed to (30).
Substantial improvements can also be made by changing the
protocol to reduce the pacing interval more gradually, instead
of making large 5-ms steps, thereby significantly mitigating
the nonlinear effects. All of these changes are straightforward
to implement, but have not been explored in this paper, whose
main focus is on the issues of observability and controllability.

Finally, we should point out that feedback via electric
current is not the only way to suppress alternans. It can be
argued, especially given the importance of calcium cycling
in the emergence of alternans, that control may be more
effective when feedback is applied to one of the gating
variables (i.e., a, b, or c here) [28]. This can significantly alter
both the controllability and the observability properties of the
dynamics, potentially increasing the size of the tissue which
can be controlled using spatially localized feedback. At the
moment, however, it is unclear whether, or how, such feedback
can be implemented in practice, so feedback via direct injection
of electric current remains the only practically viable choice.

In summary, we have shown that, following a systematic
model-based approach, it is possible to design a control
procedure that overcomes the limitations of the PIA approach,
yet is still simple to implement experimentally. The model-
based analysis also allows one to determine how the electrodes
should be arranged along the fiber, regardless of the method
used to determine the feedback current. Specifically, to achieve
controllability, the control electrodes should be placed at the
spatial locations where the unstable adjoint eigenfunctions
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FIG. 11. Mode amplitudes ξn
1 (thin black line), ξn

2 (thick black line), ξn
3 (thin gray line), ξn

4 (thick gray line) and their estimates ζ n
1 (filled

circles), ζ n
2 (open circles), ζ n

3 (filled triangles), ζ n
4 (open triangles) during compensator control for L = 1 cm, T = 205 ms. (a) xo = 0.9 cm

and m = 2; (b) xo = 0.25 cm and m = 2; (c) xo = 0.25 cm and m = 4; (d) same as (b), but with smaller initial disturbance.

fi(xp,τ ) are close to their maxima. This requirement can be
satisfied, for instance, by collocating the pacing and control
electrodes. Similarly, to achieve observability, the recording
electrodes should be placed where the unstable eigenfunctions
ei(xo,τ ) are near their maxima. For fibers shorter than ∼2 cm
this can be achieved by placing one recording electrode near
the end of the fiber opposite the pacing site. For fibers longer
than 2 cm an additional recording electrode is needed to satisfy
the observability condition; it can be collocated with the pacing
electrode. Both controllability and observability also depend
on timing. For instance, PIA control breaks down because, for
the particular choice of the feedback timing, subleading modes
are rendered uncontrollable. Finally, it should be mentioned
that the analysis presented here is applicable to other excitable
systems and, in particular, other types of cardiac tissue (e.g.,
atrial and ventricular muscle), paving the way for clinical
applications.
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APPENDIX A: NUMERICAL METHODS

The evolution equation (3) has been solved numerically
using the explicit Euler method and finite-difference dis-
cretization with �x = 0.01 cm and �t = 0.01 ms. Additional

details on computing the eigenfunctions and time-periodic
solutions are provided below.

1. Calculation of the normal rhythm
by a Newton-Krylov method

We start by writing (9) as

G[z0] − z0 = 0. (A1)

The problem of finding the root z0 defined by (A1) can be
solved by Newton’s method. In order to find a correction δzn

to an estimate zn of z0, we approximate the left-hand side of
(A1) by its Taylor series expansion up to first order in δzn,

0 = G[zn + δzn] − zn − δzn

≈ G[zn] + JG|zn
δzn − rn − δzn, (A2)

where JG is the Jacobian of G evaluated at zn,

JG|zn
δz = lim

ε→0

G[zn + εδz] − G[zn]

ε
. (A3)

Rearranging terms in (A2), we obtain

(JG|zn
− I )δzn = zn − G[zn], (A4)

where I is the identity operator. (A4) is a linear equation
with the function δzn as the unknown. In order to solve (A4),
we discretized it by the method of finite differences on the
same (uniform) grid used for the numerical integration of (3),
xi = (i − 1)�x, i = 1, . . . ,N with N = L/�x + 1. Hence,
the state vector z with four elements, each of which is a function
of x, z(x) = [u(x),a(x),b(x),c(x)], becomes a vector of 4N
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elements, r = [r1, . . . ,r4N ],

[r1, . . . ,rN ] = [u(x1), . . . ,u(xN )],

[rN+1, . . . ,r2N ] = [a(x1), . . . ,a(xN )],
(A5)

[r2N+1, . . . ,r3N ] = [b(x1), . . . ,b(xN )],

[r3N+1, . . . ,r4N ] = [c(x1), . . . ,c(xN )].

After discretization, (A4) becomes a 4N × 4N linear system
of algebraic equations

(JG̃|rn
− Ĩ )δrn = rn − G̃[rn], (A6)

where δrn is the discretized version of δzn, G̃ is the discretized
version of G, JG̃|zn

is the Jacobian of G̃, and Ĩ is a unit matrix.
The result of the operation G̃[r] is calculated as the state
arrived at by numerically advancing the spatial discretization
of (3) from t = 0 to t = T , with z as the initial condition.

We solved (A6) by generalized minimal residual method
(GMRES) implemented by the Matlab function gmres. In
using GMRES we have two alternatives: providing the explicit
matrix representation of JG̃|rn

or calculating the matrix-vector
product JG̃|rn

δrn directly (matrix-free form). For efficiency,
we used the matrix-free form based on the finite-difference
approximation

JG̃

∣∣
rn

δrn ≈ G̃[rn + εδrn] − G̃[rn]

ε
, (A7)

where ε was chosen so that ε‖δrn‖1/‖rn‖1 = 10−6, where
‖r‖1 = maxi |ri |.

Provided a sufficiently good initial guess r1 is made,
the recurrence relation rn+1 = rn + δrn, with δrn given by
Eq. (A6), converges toward r0 (the discretized version of
z0). The use of Newton’s method, together with the matrix-
free form of a Krylov-space linear solver such as GMRES,
constitutes what is known as a matrix-free Newton-Krylov
method [23].

2. Calculation of the right eigenfunctions of U(T,0)

We approximated U (T ,0) by its discretization Ũ (T ,0). The
eigenvalues λi and the (right) eigenfunctions ei(0) (we omitted
the x dependence to simplify notation) of Ũ (T ,0) were found
using the implicitly restarted Arnoldi iteration method [29],
implemented by the MATLAB routine eigs. For the sake of
efficiency, this method was also applied in its matrix-free
form using a routine that calculates the matrix-vector product
Ũ (T ,0)δr, instead of the explicit matrix representation of
Ũ (T ,0). By inverting the order of the linearization of the
dynamics and the integration over one period, it follows
immediately that U (T ,0) is the same as the Jacobian JG defined
by Eq. (A3), evaluated at z0. This identity gives the procedure
for the calculation of the matrix-vector product

Ũ (T ,0)δr ≈ G̃[r0 + εδr] − G̃[r0]

ε
, (A8)

with ε chosen as in (A7).

A. Calculation of the left eigenfunctions of U(T,0)

The left eigenfunctions fi(0) were computed as the right
eigenfunctions of U †(T ,0) also using the MATLAB routine

eigs in its matrix-free form. We computed the matrix-vector
product corresponding to U †(T ,0)δz as follows. If Eq. (10),
in the absence of control, is integrated in time using explicit
Euler method, we obtain

U (T ,0) ≈
M−1∏
i=0

[1 + �tJN (ti)] , (A9)

where ti = i�t and M = T/�t . Taking the adjoint of both
sides of (A9) and multiplying by δz yields

U †(T ,0)δz ≈
0∏

i=M−1

[1 + �tJ
†
N (ti)]δz. (A10)

For a uniform mesh, the discretization of J
†
N (ti) is simply the

transpose conjugate of the discretization of JN (ti).

APPENDIX B: LEFT AND RIGHT EIGENFUNCTIONS
ON THE POINCARÉ SECTION

Here we derive the expressions for the left and right
eigenfunctions of the evolution operator U (τ + T ,τ ) which
defines the stroboscopic map (13) with 0 < τ < T .

1. Right eigenfunctions

Taking the special case τ = 0 of (14) and omitting the x

dependence to simplify notation yields

U (T ,0) ei(0) = λi ei(0). (B1)

Multiplying both sides of (B1) by U (τ + T ,T ) we obtain

U (τ + T ,0) ei(0) = λi U (τ + T ,T ) ei(0), (B2)

where we have used the property

U (tf ,ti) = U (tf ,t ′) U (t ′,ti) (B3)

of the evolution operator with t ′ = T . Applying this property
to the left-hand side of (B2) with t ′ = τ and using (12) on the
right-hand side, we obtain

U (τ + T ,τ ) U (τ,0) ei(0) = λi U (τ,0) ei(0). (B4)

Comparing (B4) with (14) yields (15).

2. Left eigenfunctions

From (B3) it follows that

U †(tf ,ti) = U †(t ′,ti) U †(tf ,t ′). (B5)

Using (B5), the operator on the left-hand side of

U †(T ,0) fi(0) = λ∗
i fi(0) (B6)

can be written as

U †(T ,0) = U †(τ,0) U †(T ,τ ). (B7)

Multiplying (B6) by U †(T ,τ ) and using (B7) we get

U †(T ,τ ) U †(τ,0) U †(T ,τ ) fi(0) = λ∗
i U †(T ,τ ) fi(0). (B8)

041927-11
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Using (B5) and (12), the first two factors on the left-hand side
of (B8) can be written as

U †(T ,τ ) U †(τ,0) = U †(τ + T ,τ ), (B9)

hence (B8) reduces to

U †(τ + T ,τ ) U †(T ,τ ) fi(0) = λ∗
i U

†(T ,τ ) fi(0). (B10)

Comparing (B10) with (17) yields

fi(τ ) = αiU
†(T ,τ ) fi(0), (B11)

where αi is a constant. From (B11) for τ = 0 it follows that
αi = (λ∗

i )−1, which proves (18).
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