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Exciton transfer dynamics and quantumness of energy transfer in
the Fenna-Matthews-Olson complex
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We present numerically exact results for the quantum coherent energy transfer in the Fenna-Matthews-Olson
molecular aggregate under realistic physiological conditions, including vibrational fluctuations of the protein
and the pigments for an experimentally determined fluctuation spectrum. We find coherence times shorter than
observed experimentally. Furthermore, we determine the energy transfer current and quantify its “quantumness”
as the distance of the density matrix to the classical pointer states for the energy current operator. Most importantly,
we find that the energy transfer happens through a “Schrödinger-cat-like” superposition of energy current pointer
states.
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I. INTRODUCTION

Recent experiments on the ultrafast exciton dynamics in
photosynthetic biomolecules have brought a long-standing
question again into the scientific focus whether nontrivial
quantum coherence effects exist in natural biological systems
under physiological conditions and, if so, whether they have
any functional significance. Photosynthesis [1] starts with the
harvest of a photon by a pigment and the formation of an
exciton, followed by its transfer to the reaction center, where
charge separation via primary electron transfer is initiated.
The transfer of excitations has traditionally been regarded as
an incoherent hopping between molecular sites [2].

Recently, Engel et al. [3,4] have reported long-lasting
beating signals in time-resolved optical two-dimensional (2D)
spectra of the Fenna-Matthews-Olson (FMO) [5,6] complex,
which have been interpreted as evidence for quantum coherent
energy transfer via delocalized exciton states. It transfers the
excitonic energy from the chlorosome to the reaction center
and consists of three identical subunits, each with seven
bacteriochlorophyll molecular sites (the existence of an eighth
site is presently under investigation). Quantum coherence
times of more than 660 fs at 77 K [3] and about 300 fs at
physiological temperatures [4] have been reported.

Together with recent experiments [7] on marine cryptophyte
algae, these reports have boosted ongoing research to answer
the question how quantum coherence can prevail over such
long times in a strongly fluctuating physiological environment
of strong vibronic protein modes and the surrounding polar
solvent. Theoretical modeling of the real-time dynamics is
notoriously complicated due to the large cluster size and strong
non-Markovian fluctuations. It relies on simple models [8] of
few chromophore sites which interact by dipolar couplings and
which are exposed to fluctuations of the solvent and the protein
[1,2]. A calculation of the 2D optical spectrum assuming
weak coupling to the environment does not reproduce the
experimental data [9]. It also became clear that standard
Redfield-type approaches fail even for dimers [10,11].

In connection with molecular exciton transfer, extensions
beyond perturbative approaches, such as the stochastic Liou-
ville equation [8], extended Lindblad approaches [12], or small
polaron approaches [13], have been formulated. Two recent

approaches have included parts of the standard FMO model.
A second-order cumulant time-nonlocal quantum master equa-
tion found coherence times [14] as observed experimentally for
the FMO complex. However, they employed an Ohmic bath in
which the relaxation time is not uniquely fixed by experiments
and strong vibrational protein modes are excluded. On the
other hand, a variant of a time-dependent density-matrix
renormalization group scheme [15] has been applied to a dimer
in a realistic FMO environment [16]. The solution of the full
state-of-the-art FMO model with seven localized sites and
a physical environmental spectrum [16] including a strongly
localized Huang-Rhys mode [2] is still missing. In particular,
it has not been clarified whether a strong vibronic mode still
allows for the observed quantum coherence times.

In this paper we close this gap and present numerically
exact results for the full FMO model with seven sites and the
spectral density of Ref. [16], determined from optical spectra
[17]. Upon adopting the iterative real-time quasiadiabatic
propagator path-integral (QUAPI) [18,19] scheme, we find
coherence times shorter than observed experimentally. For
comparison we recalculate also the dynamics employing the
same Ohmic fluctuation spectrum as Ishizaki and Fleming
[14]. To quantify quantum effects for energy transfer, we
calculate the energy current associated with the transfer dy-
namics and its “quantumness.” It has been argued that quantum
entanglement could be created in a single excitation subspace
during the energy transfer [20], but this form of entanglement
cannot be used to violate a Bell inequality [21] and its role for
the transfer efficiency is therefore unclear. Wilde et al. [22]
used the Leggett-Garg inequality to discuss whether quantum
effects are relevant but they applied a phenomenological
Lindblad approach. Here we use a recently developed measure
of quantumness based on the Hilbert-Schmidt distance of the
density matrix to the convex hull of classical states [23], taken
as the “pointer states” [24] of the energy-current operator.
We show that energy transfer starts with large current out of
the initial site and then small currents flow between all seven
sites. All currents show substantial quantumness. Interestingly
enough, this implies that the energy transfer happens through
a largely coherent “Schrödinger-cat-like” superposition of
pointer states of the energy current operator.
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In the next section we shortly recapitulate the Hamiltonian
and the fluctuation spectrum of the site energies for the Fenna-
Matthews-Olson complex. Then we determine the population
dynamics within the single excitation subspace. In the fourth
section we calculate the energy currents between any two sites
in the FMO complex and then introduce a measure for the
quantumness of these currents. Finally we conclude with a
short summary of our results.

II. FMO MODEL

The FMO complex is a trimer consisting of identical,
weakly interacting monomers [16], each containing seven
bacteriochlorophyll a (BChla) molecular sites which transfer
excitons. The pigments are embedded in a large protein
complex. Each of them can be reduced to its two lowest
electronic levels, and their excited states are electronically
coupled along the complex. Recombination is negligibly
slow (∼nanoseconds) compared to exciton transfer times
(∼picoseconds). Thus, the excitation dynamics is reliably
described within the one-exciton subspace. The coupling of
the seven excited levels gives rise to the Hamiltonian

HFMO =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

240 −87.7 5.5 −5.9 6.7 −13.7 −9.9
315 30.8 8.2 0.7 11.8 4.3

0 −53.5 −2.2 −9.6 6.0
130 −70.7 −17.0 −63.3

285 81.1 −1.3
435 39.7

245

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1)

in units of cm−1 in site representation [16] for an FMO
monomer of C. tepidum. We define the lowest site energy
of pigment 3 as reference.

The vibrations of the BChla, the embedding protein,
and the surrounding polar solvent are too complex for a
pure microscopic description and are thus treated within the
framework of open quantum systems. They induce thermal
fluctuations described by harmonic modes [2] and lead to the
total Hamiltonian [16]

H = HFMO +
7∑

j=1

|j 〉〈j |
∑

κ

ν(j )
κ qj,κ

+
7∑

j=1

1

2

∑
κ

(
p2

j,κ + ω2
j,κq

2
j,κ

)
(2)

with momenta pj,κ , displacement qj,κ , frequency ωj,κ , and
coupling ν

(j )
κ of the environmental vibrations at site j . We

assume that fluctuations at different sites are identical but
spatially uncorrelated [25].

The key quantity which determines the FMO coherence
properties is the environmental spectral density G(ω) =∑

j,κ (|ν(j )
κ |2/2ωj,κ )δ(ω − ωj,κ ). The most detailed identifi-

cation of the bath properties to date has been achieved by
Adolphs and Renger [16]. They used an advanced theory of
optical spectra, a genetic algorithm, and excitonic couplings
from electrostatic calculations modeling the dielectric protein
environment to derive the currently most detailed spectral

0 200 400 600
ω [cm

-1
]

0

10

20

30

G
(ω

) 
[c

m
-1

]

AR ( γ=0.01cm
-1

)

AR ( γ=1cm
-1

)

AR ( γ=5cm
-1

)

AR ( γ=29cm
-1

)
Ishizaki et al.

FIG. 1. (Color online) Bath spectral densities of the FMO
complex of C. tepidum: The most realistic form as determined up
to the present [16,17] is given by Eq. (3) [AR, red (top four) lines].
The bottom (blue) dash-dot-dashed line shows the Drude form GD(ω)
used in Ref. [14].

density

GAR(ω) = ω2S0g0(ω) + ω2SHδ(ω − ωH ). (3)

Here, S0 = 0.5, SH = 0.22, ωH = 180 cm−1, and

g0(ω) = 6.105 × 10−5 × ω3

ω4
1

e
−√

ω
ω1

+ 3.8156 × 10−5 × ω3

ω4
2

e
−√

ω
ω2

with ω1 = 0.575 cm−1 and ω2 = 2 cm−1. It includes a broad
continuous part [see top four (red) lines in Fig. 1] which for
ω → 0 behaves as super-Ohmic, GAR(ω) ∼ ω5, and which
describes the protein vibrations with the Huang-Rhys factor
S0. It was determined from temperature-dependent absorption
spectra [17]. In addition, a vibrational mode of the individual
pigments with the Huang-Rhys factor SH is included. We have
added a broadening to the unphysical δ peak, which is justified
since the protein is embedded in water as a polar solvent
which gives rise to an additional weak Ohmic damping of the
protein vibrations. We fix its width to γp = 29 cm−1 which
was found for the lowest energy peak of protein vibrations in
the LH2 complex [26].

In order to recover known results for the transfer dynamics
of excitations in the FMO complex embedded in an Ohmic
bath [14], we additionally consider the spectral density used
in Ref. [14] given by

GD(ω) = 2λωωc

π
(
ω2

c + ω2
) (4)

with a Debye cutoff at frequency ωc [see bottom (blue) dash-
dot-dashed line in Fig. 1]. It includes the reorganization energy
λ = 35 cm−1 and the environmental time scale ω−1

c = 50 fs.

III. POPULATION DYNAMICS IN THE FMO

To understand whether the vibrational fluctuations of the
protein and the pigments allow for the observed coherence
times, we apply the numerically exact QUAPI scheme to
simulate the real-time exciton dynamics in the FMO complex
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FIG. 2. (Color online) Time-dependent occupation probabilities
of all seven FMO sites for T = 300 and 77 K with ρ11(0) = 1 and
ρ6(0) = 1 for the measured FMO spectrum Eq. (3) [16].

for the realistic bath spectral density (3). QUAPI is well
established [18,19] and allows us to treat nearly arbitrary
spectral functions at finite temperatures. We extended recently
the original scheme to treat multiple environments, i.e.,
separate environments for each chromophore site [27].

We calculate the time-dependent populations of the FMO
pigment sites for the spectral density of Eq. (3). We choose
T = 300 K (physiological temperature) and T = 77 K (typical
experimental temperature). Both the pigments BChl 1 and
BChl 6 are oriented toward the baseplate protein and are thus
believed to be initially excited (entrance sites) [28]. Thus, we
consider two cases, i.e., ρ11(0) = 1 and ρ66(0) = 1. We focus
on the transient coherence effects and thus do not include an
additional sink at the exit site BChl 3. In Fig. 2, we show
the time-dependent pigment occupation probabilities ρjj (t).
Identical simulations using smaller widths, i.e., γp = 5 cm−1

and γp = 1 cm−1, for the vibrational mode yield identical
results for the populations (not shown). For ρ66(0) = 1 at room
temperature, coherent oscillations are completely suppressed
and at 77 K they last up to about 250 fs. For ρ11(0) = 1,
coherence is supported longer due to the strong electronic
coupling between sites 1 and 2. At room temperature, it
survives for up to about 200 fs and for 77 K up to 500 fs at
most. Thus, coherence times are shorter than experimentally
observed. We emphasize that coherence features are a transient
property and, hence, not only the low-frequency bath modes
but also the discrete vibrational modes are relevant (100 fs
corresponds to ∼333 cm−1).

We additionally calculate the time-dependent populations
of the FMO pigment sites for T = 300 K (physiological tem-
perature) and T = 77 K (typical experimental temperature) for
the FMO with the bath spectrum GD(ω) [see Eq. (4)]. As above
we consider two choices of initial conditions, i.e., ρ11(0) = 1
and ρ66(0) = 1, and focus on the transient coherence effects
and thus do not include an additional sink at the exit site BChl 3.

Figure 3 shows the occupation probabilities of all seven
sites at T = 300 K versus time. For both initial conditions,
coherent oscillations of the populations of the initial site and its
neighboring site [j = 2 for ρ11(0) = 1 and j = 5 for ρ66(0) =
1] occur due to the strong electronic couplings. They last up
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FIG. 3. (Color online) Time-dependent occupations of the seven
FMO sites for T = 300 K and T = 77 K with ρ11(0) = 1 and ρ66(0) =
1 for the Ohmic spectrum GD(ω).

to ∼350 fs. At T = 77 K, as shown in Figs. 3(b) and 3(d), the
oscillations persist up to ∼700 fs. Our results coincide with
those of Ref. [14]. Tiny deviations at short times arise since
the full FMO trimer is considered in Ref. [14]. The coherence
times, however, are not affected.

IV. QUANTUMNESS OF ENERGY TRANSFER
THROUGH FMO

Next, we discuss whether energy transfer dynamics is a
quantum coherent process. Classical coupled dipoles can show
oscillatory energy currents identical to quantum mechanical
dipole-coupled systems provided that the interaction between
the dipoles is weak enough to be treated via linear response
[29]. In FMO [see Eq. (1)], however, off-diagonal couplings
are on the same order of magnitude as site energy differences.
We use a physically well motivated measure of quantumness
which can be found by first identifying the most classical pure
states in the problem. In quantum optics, for instance, coherent
states are considered “(most) classical” due to their minimal
uncertainty and their stability under the free evolution of the
electromagnetic field [30]. Next, one identifies the set of all
classical states with the convex hull (i.e., all mixtures) of the
pure classical states, as mixing cannot increase quantumness.
This leads in quantum optics and for spin systems to the well-
established notion that classical states are those with a well-
defined positive P function [23,31–33]. Finally, one defines
“quantumness” as the distances to the closest classical states.

For FMO we are interested in the “quantumness” of the
energy current since energy transfer constitutes the main
function of the FMO complex. A measurement of the energy
current would yield that for any measurement result the state
of the system would collapse onto a pointer state. In general,
pointer states are the states einselected by the interaction with
its environment [24], being here the hypothetical measurement
apparatus for measuring energy current. Pointer states are the
most classical states in that they arise via decoherence and are
those that persist when a quantum system interacts strongly and
for a long time with its environment. In our case of a projective
von Neumann measurement, they are the eigenstates of the
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quantum mechanical operator corresponding to the energy
current measurement.

A. Energy currents in FMO

An energy current operator can be derived for a general
multisite Hamiltonian [34]. The expression for an energy
current operator j(x) can be obtained from a continuity
equation

Ḣ (x) + ∇ · j(x) = 0, (5)

where H (x) is the local energy density. This is a well-
established procedure introduced by Hardy [34] and which was
largely adopted by a large number of subsequent papers (see,
e.g., Refs. [35–39]). There is some freedom in the definition
of local energy density, but for a Hamiltonian of the form H =∑

i Ti + (1/2)
∑

i �=k Vik , where Ti and Vi are kinetic energy
and interaction energy (of possibly a large number of particles)
in region i, and Vik is the interaction between the particles
in regions i and those in region k, a natural decomposition
is given by H = ∑

i hi , hi = Ti + (1/2)
∑

k �=i Vik ≡ viH (xi),
where vi is a volume of region i.

For the FMO complex, precise information about the the
single-excitation sector of the macromolecule with sites i ∈
{1, . . . ,N} is known (N = 7). The Hamiltonian H = HFMO is
given in tight-binding approximation as

H =
N∑
i,k

hik|i〉〈k|, (6)

where |i〉 is a state with the excitation localized on site i [see
Eq. (1)]. The natural decomposition of that Hamiltonian in
terms of local excitations is

H =
N∑

i=1

hi with hi = 1

2

N∑
k=1

(hik|i〉〈k| + H.c.) . (7)

In order to deduce an energy-current operator from this
Hamiltonian, consider first a linear chain in one dimension,
where j has only one component, denoted by j , with values
ji on sites i, taken as equidistant with lattice constant a. The
discretized form of Eq. (5) reads

∂

∂t

hi

a
= j l

i − j r
i

a
, (8)

where j
l,r
i denote the energy flux in the positive x direction

on the left of site i and on the right of site i. It is convenient
to think of j l

i (j r
i ) as being evaluated halfway between sites

i − 1 and i (between sites i and i + 1), respectively. Current
j l
i arises from the balance of the currents si−1→i from site

i − 1 to site i and si→i−1 from site i to site i − 1. The latter
two currents are always defined positive and in the direction
indicated by the indices, whereas ji can be positive or negative,
depending on which current component dominates. Inserting
these expressions into Eq. (8), we find

∂

∂t
hi =

∑
k=i±1

(sk→i − si→k). (9)

This equation is valid for the one-dimensional tight-binding
model with only nearest neighbor couplings. It has the natural

interpretation that the change of energy density at a given
site is given by the difference between the sum of incoming
energy currents and the sum of outgoing energy currents. As
such, the expression generalizes in straightforward fashion to
a general tight-binding model on a graph, where each site can
be connected to an arbitrary number of other sites. Each link
can support an energy current, and one has thus

∂

∂t
hi =

∑
k �=i

(sk→i − si→k). (10)

The left-hand side of Eq. (10) is easily calculated by using
Heisenberg’s equation of motion,

∂

∂t
hi = i

h̄
[H,hi]. (11)

A short calculation leads to
∂

∂t
hi = i

2h̄

∑
k �=i

∑
l

(hkihil|k〉〈l| − hikhkl|i〉〈l| − H.c.). (12)

Comparing this expression with Eq. (9), we identify the
directed energy current

si→k = i

2h̄

∑
l

(hikhkl|i〉〈l| − H.c.) . (13)

The (positive or negative) energy current attributed to link
i − k on the graph is jik = si→k − sk→i . The dimension of all
these energy currents is energy/time. A corresponding classical
energy current phase space function can be derived in classical
mechanics, if a corresponding classical Hamilton function
can be established, in a completely analogous way by using
Hamilton’s equation of motion to derive a continuity equation
for energy transport.

We have calculated all energy currents 〈jik(t)〉 = tr[jikρ(t)]
for all sites i and k. The currents out of the entrance site toward
its strongest coupled neighbor [j12 for ρ11(0) = 1 and j56 for
ρ66(0) = 1] have by far the largest amplitude. All currents
show initial oscillations which are more pronounced at 77 K
than at 300 K (see Figs. 4 and 5) on time scales comparable
to coherent oscillations discussed above. The currents out of
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FIG. 4. (Color online) Selected average energy currents jik (top)
and corresponding quantumness Qik (bottom) for FMO spectral
density of Eq. (3) and T = 300 K. Notice the rescaling of the currents
for better visibility.
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FIG. 5. (Color online) Same as Fig. 4, but at T = 77 K.

the entrance site toward its strongest coupled neighbor [j12

for ρ11(0) = 1 and j56 for ρ66(0) = 1] have by far the largest
amplitude. After this initial phase, energy currents between
all sites are small but finite (as exemplary shown by j13 and
j36) and persist up to 1000 fs. Energy transfer, thus, starts by
quantum coherent population exchange mainly between sites
1 and 2 (or sites 6 and 5, respectively) and some transfer to
other sites. After this initial phase, in which a preliminary
redistribution of energy takes place, small currents between
all sites will slowly bring the system into thermal equilibrium
and result in an according population and energy distribution.

B. Classical states of energy transport

It has long been appreciated that the most classical states
corresponding to a given quantum mechanical observable are
the so-called pointer states. These states are “einselected”
by the decoherence process due to the interaction of an
environment with the system. In the case of a measurement,
the environment is given by the measurement instrument, and
the pointer states are in this case simply the eigenstates of
the operator representing the quantum mechanical observable
[24,40]. It is in the eigenbasis of these pointer states that
the density matrix becomes diagonal due to the decay of the
off-diagonal matrix elements. The remaining diagonal matrix
elements correspond to the probabilities of finding one of the
possible outcomes of the measurement.

As eigenstates of a Hermitian operator, pointer states are
pure states. The most general classical states can be obtained by
classically mixing the pointer states; i.e., one chooses pointer
states randomly with a certain probability. As this is a purely
classical procedure, it cannot increase the “quantumness” of
the system. This definition of “classicality” is well established
in quantum optics and leads to a criterion of classicality based
on a well-defined positive-definite P function [41,42]. It was
recently extended to spin systems [23,31].

C. Quantumness

Thus, if one wants to decide whether the energy current
between two different sites in FMO has to be considered
“quantum,” one has to (i) find the pointer states of the
corresponding energy current operator and (ii) check whether
the state of the system ρ(t) can be written as a convex

combination of these pointer states. A more quantitative
statement is possible by measuring the distance of ρ(t) to the
convex set of classical states [23,31,43], i.e., here the convex
hull of the pointer states. The pointer states are the eigenvectors
|vl

ik〉 of jik . They define the relevant pure classical states for the
energy transfer along link i-k. Their classical mixtures form
the convex set of all classical states for the energy current
on link i-k. Any distance measure in Hilbert space is in
principle suitable, and we use the Hilbert-Schmidt distance
for simplicity, leading to our definition of quantumness of the
current jik ,

Qik(ρ) = min
{pi |pi�0,

∑
i pi=1}

∥∥∥∥∥ρ −
∑

l

pl

∣∣vl
ik

〉〈
vl

ik

∣∣
∥∥∥∥∥ (14)

with ‖A‖ = (trAA†)1/2. Note that this measure of “quan-
tumness” is completely analogous to and on the same level
of abstraction as the measure of entanglement based on the
distance of a state to the convex set of separable states (see
p. 363 in Ref. [44]), but it has the advantage of being
meaningful even in the single-excitation sector, and without
artificially separating the system into two subsystems.

A finite value of Qik means that the state cannot be written
as a convex sum of pointer states of the energy current
operator jik; i.e., there are coherences left in ρ(t) written in the
pointer basis. This means, essentially, that the system is in a
Schrödinger-cat-like state of different energy-current pointer
states at a given time t .

By definition, Q(ρ) � 0, and Q(ρ) = 0 if ρ is classical. An
upper bound is given by Q(ρ) � Qmax ≡

√
trρ2 − 1/d , where

d is the dimension of the Hilbert space [23] (Qmax � 0.925 for
pure states and d = 7). We have calculated the quantumness
Qik(t) for all energy currents 〈jik(t)〉. As discussed above, the
currents out of the entrance site toward its strongest coupled
neighbor [j12 for ρ11(0) = 1 and j56 for ρ66(0) = 1] have
by far the largest amplitude and all currents show initial
oscillations which are more pronounced at 77 K than at
300 K (see Figs. 4 and 5) on time scales comparable to
coherent oscillations discussed above. These oscillations go
hand-in-hand with substantial quantumness: Q12 and Q13 are
initially of the order of Q � 0.6–0.8, but drop within ∼100
fs to Q � 0.2–0.4, with the exception of the case ρ11(0) = 1,
T = 77 K, where Q13 drops slowly over 1000 fs, much more
slowly than the oscillations of the energy current, and the rapid
decay of coherences in the site basis not withstanding. After
this initial phase, energy currents between all sites are small
but finite (as exemplary shown by j13 and j36) and persist up to
1000 fs and, noteworthy, a substantial amount of quantumness
of the order Q � 0.2–0.4 still persists at 1000 fs as well. In
the last graph (ρ66(0) = 1, T = 77 K), the quantumness even
rises again after the initial drop.

This implies that the superposition of the pointer states
of the energy current operator remains largely coherent even
after population dynamics does not show coherence anymore.
Nature has apparently engineered the environment of the FMO
complex in such a way that it is rather inefficient in decohering
superpositions of energy currents. Thus, even though the actual
currents, which bring the system into thermal equilibrium, are
rather small (after the initial oscillatory phase), they turn out
to have a finite quantumness. This is further illustrated by

041926-5



P. NALBACH, D. BRAUN, AND M. THORWART PHYSICAL REVIEW E 84, 041926 (2011)

comparing with the quantumness of the thermal equilibrium
state ρT = exp(−HFMO/kBT ) at T = 77 K and T = 300 K,
which is of the orders 0.01 and 0.002, respectively. Altogether,
our data quantitatively show the nonclassical nature of the
energy transfer in FMO and provide a clear physical picture of
the quantumness: energy transport in FMO happens largely
through a coherent Schrödinger-cat-like superposition of
pointer states of the energy current operator.

V. CONCLUSION

To summarize, we have obtained numerically exact results
for the real-time exciton dynamics of the FMO complex in
the presence of realistic environmental vibronic fluctuations.
We have used the most accurate form of the spectral density

realized in nature. It includes vibronic effects via a strongly
localized Huang-Rhys mode. The resulting coherence times
of the populations are shorter than observed experimentally.
The energy transfer dynamics is also intrinsically quantum
mechanical on the time scales of several hundred femtosec-
onds. This has been shown by calculating the quantumness as
the distance to the convex hull of pointer states of the energy
current. The energy transport in FMO is to a large extent
through a coherent Schrödinger-cat-like superposition of the
pointer states.
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