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Quorum sensing refers to the change in the cooperative behavior of a collection of elements in response
to the change in their population size or density. This behavior can be observed in chemical and biological
systems. These elements or cells are coupled via chemicals in the surrounding environment. Here we focus on
the change of dynamical behavior, in particular from quiescent to oscillatory, as the cell population changes. For
instance, the silent behavior of the elements can become oscillatory as the system concentration or population
increases. In this work, two simple models are constructed that can produce the essential representative properties
in quorum sensing. The first is an excitable or oscillatory phase model, which is probably the simplest model
one can construct to describe quorum sensing. Using the mean-field approximation, the parameter regime for
quorum sensing behavior can be identified, and analytical results for the detailed dynamical properties, including
the phase diagrams, are obtained and verified numerically. The second model consists of FitzHugh-Nagumo
elements coupled to the signaling chemicals in the environment. Nonlinear dynamical analysis of this mean-field
model exhibits rich dynamical behaviors, such as infinite period bifurcation, supercritical Hopf, fold bifurcation,
and subcritical Hopf bifurcations as the population parameter changes for different coupling strengths. Analytical
result is obtained for the Hopf bifurcation phase boundary. Furthermore, two elements coupled via the environment
and their synchronization behavior for these two models are also investigated. For both models, it is found that
the onset of oscillations is accompanied by the synchronized dynamics of the two elements. Possible applications
and extension of these models are also discussed.
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I. INTRODUCTION

In biological systems such as D. discoideum (Dicty) [1–3],
E. coli [4], and yeast [5], the cell population density is an
important switch to turn “ON” and “OFF” the collective
behavior of the cells. For Dicty, after a period of starvation, the
cells will aggregate only when the chemical signals (cAMP)
can propagate successfully. Cohen [2] proved analytically that,
given the condition that a cell can only detect chemical signals
above a certain concentration, the chemical signal cannot be
propagated successfully if the cell population density is below
a certain critical value. Similar results have been reported in
experiments by Gingle [1]. Recently [6] it was observed that
the motion of Dicty can undergo oscillation if the population
density is high enough such that the extracellular cAMP
concentration can induce intracellular cAMP oscillations.
De Monte et al. [5] also showed that the glycolysis of
yeast can only occur when the population density is high
enough. The general phenomenon of switching to a different
dynamical behavior collectively in response to the change in
the population is referred to as quorum sensing (QS) [7]. Social
insects such as ants [8] and honey bees [9] also employ QS to
make decisions about new nest sites.

A similar QS-type phenomenon also appears in the chem-
ical diffusion-reaction system [Belousov-Zhabotinsky (BZ)
reaction]. Taylor et al. [10] showed that the dynamical behavior
of the BZ reaction in cation-exchange beads in the solution also
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depends on the number density of the beads. Different dynam-
ical behaviors can be observed at different exchange rates.
The basic mechanism of quorum sensing can be understood as
the following: The intracellular chemical signaling molecules
produced by the cells diffuse to the extracellular environment
and in turn affect other cells. There is always a net outward
diffusion of chemicals secreted by the cell if the concentration
of extracellular chemical signal and the cell population are both
low. Because of this strong outward diffusion flux, there is no
chance to sustain intracellular chemical oscillation. However,
chemical oscillations can be sustained easily for sufficiently
high cell population density. This is because even only a small
amount of chemical signal molecules diffuse from each cell can
increase the total extracellular chemical signal concentration
substantially, which in turn interact with the cells and sustain
chemical oscillations. The general model in Ref. [5] showed
that such population density dependent behavior can occur
in any collection of oscillators coupled to an extracellular
medium by diffusion, provided that this diffusion is fast
compared to the time scales of the dynamics of the amplitude
and phase. However, it has been shown in Ref. [10] that
different dynamical behaviors results when different exchange
rates were applied. This exchange rate can be interpreted as the
coupling strength between the concentrations of the signaling
molecules inside and outside of the cell.

In this work, we aim at constructing the simplest possible
model to describe the essential features of quorum sensing.
The simplest model to describe oscillations is by using a
phase model. A sufficiently simple model allows one to
perform detailed analytic studies to gain insights for the
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dynamical mechanisms in quorum sensing behavior. We
further modify the well-known FitzHugh-Nagumo model with
a population density parameter to investigate the transition
of the dynamics while increasing the population density
under different conditions (such as coupling strengths and
degradation rates). The nonlinear dynamics of these models
are analyzed and different interesting dynamical behaviors
with different coupling strengths are obtained.

II. PHASE MODEL

Quorum sensing can be described by simple phase models.
In phase models, the dynamics is described by the phase
variable φ, and quiescent and oscillatory states are represented
by the asymptotic conditions φ̇ = 0 and φ̇ > 0, respectively.
Here we adopt the Kuramoto-type phase model [11] to describe
the dynamics of a cell and couple it with the extracellular
solution.

In general the chemical signal of a cell can be oscillatory or
excitable when it is isolated (not coupled to the solution), but
when it is immersed in a large volume of buffered solution, it
is quiescent due to the severe diffusion of the chemical signal
molecules from the interior of the cell to the extracellular
solution. Increasing the cell number in the solution will retard
this diffusion and can mark the onset of chemical oscillation
of the cell as well as in the solution. The phases of the cell and
the solution are denoted, respectively, by φ and �. Quorum
sensing is modeled by the modified Kuramoto model as

φ̇i = 1 − bi sin φi + g sin(� − φi), (1)

�̇ = α
∑
N

g sin(φi − �) − J (� − �0). (2)

The intrinsic dynamics of an isolated cell is governed by
the parameter b > 0 (b < 1: oscillatory; b > 1: excitable; and
separated by an infinite-period bifurcation). g is the coupling
strength and α is the conversion parameter, related to the
volume fraction of a cell in the solution. The first term in
Eq. (2) represents the contribution to the phase of the solution
from a single cell. The dynamics of the phase in solution is
attributed from all the cells in the solution. �0 > 0 is the
constant resting state value of � of the stand-alone solution,
and J is the corresponding relaxation rate of � to �0. �0 can be
thought of as a quantity that originates from the concentration
difference between the interior of the cell and the extracellular
solution that the living cell would try to maintain due to
homeostasis.

To allow further analytic studies, here we consider the
mean-field approximation so that all the φi are replaced by
the mean phase φ; such an approximation will be exact if
all the cells are synchronized in phase. Under the mean-field
approximation, Eqs. (1) and (2) can be reduced to

φ̇ = 1 − b sin φ + g sin(� − φ), (3)

�̇ = γg sin(φ − �) − J (� − �0). (4)

In the following subsections, we present detailed nonlinear
dynamics analysis of the mean-field phase model given by
Eqs. (3) and (4) by first characterizing the parameter regimes
in which QS is relevant. Then due to the simplicity of the

mean-field system, the equation for the fixed points can be
derived analytically and determined. By examining in detail
the nullclines and phase flow in the phase portrait (given
in detail in the Appendix), the stability of the fixed points,
and hence whether the system is quiescent or oscillatory,
can be determined precisely. The full oscillatory or quiescent
phase diagrams are then obtained with the equations governing
the phase boundary derived explicitly. Finally, we consider the
case of relaxing the mean-field assumption by considering
two cells in the medium and show that the onset of oscillation
is accompanied by the synchronization of the two cells. A
similar analysis procedure is employed in the next section for
the FitzHugh-Nagumo type model for QS.

A. b − g parameter space

It is instructive to rewrite Eq. (3) as

φ̇ = 1 − R sin(φ − ψ), (5)

where

R2 = b2 + 2bg cos � + g2, (6)

ψ = tan−1

(
g sin �

b + g cos �

)
. (7)

R is a function of � and hence its value is time dependent. Note
that R � b + g and R � |b − g|. If R < 1 holds in the long
time limit, φ̇ is always positive and hence the system is oscil-
latory, e.g., when b + g < 1. Similarly, if R > 1 always holds,
the system will remain quiescent, e.g., when |b − g| < 1.
Hence from Eq. (6), one can see that � can drive the system
to oscillate when it is coupled to φ. From the above argument,
it is easy to show that the system always remains quiescent
if |b − g| > 1, and always oscillates if b + g < 1. But it
should be cautioned that an asymptotically oscillatory system
can have R vary periodically covering both the >1 and <1
regimes.

Next we further derive the condition for a single cell to
remain quiescent when it is immersed in a large volume
of extracellular solution. This is the situation that we are
interested in modeling the quorum sensing behavior. In this
infinite dilution limit, γ ∼ 0, Eq. (4) gives � ∼ �0 for t → ∞
and ψ takes a constant value. Therefore the criteria for this
single immersed cell to be quiescent is b2 + 2bg cos �0 +
g2 > 1. For a given value of �0, we shall choose values of b

and g to satisfy the above condition and refer to this regime
as the quorum sensing or QS regime. The parameter regimes
of interests is summarized in the b-g plane shown in Fig. 1.
In some scenarios, increasing γ will increase � and could
elicit oscillation of φ. The cause of this oscillatory behavior
with increasing γ can be inferred as “quorum sensing.” From
Eq. (6), oscillatory behavior is favored when R is small, i.e.,
cos � < 0 or π

2 < � < 3π/2.
In this paper, quorum sensing refers to the original quiescent

state for low values of γ , which becomes oscillatory as γ is
increased. In general, the present phase model can produce
quorum sensing for arbitrary values of �0. In this paper since
we are mostly studying cells with b ∼ 1, �0 = 2 is used in all
the numerical results.
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FIG. 1. (Color online) Parameter space in the b-g plane. The
boundary lines and curves are given by b2 + 2bg cos �0 + g2 = 1
for different values of �0. Dotted lines: |b − g| = 1 (�0 = π ).
Dot-dashed line: b + g = 1 (�0 = 0). Dashed curve: �0 = π

2 . Solid
curve: �0 = 2. The blue (shaded triangular region near the origin) and
pink (the other two shaded regions) areas mark the parameter regimes
in which the system is always oscillatory or quiescent, respectively.
The values of b and g are to be chosen in the region bound by the
black solid curve and dotted lines to ensure that the cell is quiescent
in the infinite dilution limit, and is referred to as the QS regime in
this paper.

B. Fixed points and phase space

In the two-dimensional dynamical system described by
Eqs. (3) and (4), oscillations occur when the stable fixed
point disappears. The fixed points can be solved from the

intersections of the nullclines. The nullclines φ̇ = �̇ = 0 are
given by the equations

g sin(φ − �) = 1 − b sin φ or R sin(φ − ψ) = 1, (8)

� = �0 + �g sin(φ − �), (9)

where � ≡ γ /J . The φ̇ = 0 nullcline can be solved explicitly
to give φ(�) = ψ + sin−1 1

R
. Detailed analysis of the prop-

erties of the nullcines and corresponding phase space flow
portraits are presented in the Appendix. As can be seen in
Fig. 12, the fixed points always emerge in pairs except at the
critical parameter values. From the analysis of the flow fields
in the phase portrait and the fixed points, it is clear that there is
at least one stable fixed point (hence the system is quiescent)
whenever more than one fixed point exists.

It is easy to see from Eqs. (3) and (4) that the fixed point
(φ∗,�∗) is given by

F (φ∗) ≡ 1 − b sin φ∗ + g sin[�(1 − b sin φ∗)

−φ∗ + �0] = 0, (10)

�∗ = �0 + �(1 − b sin φ∗). (11)

φ∗ can be found from the roots of Eq. (10) for different � and
g. The fixed points and their stability are shown in Fig. 2 for
different values of b and g. For a stable fixed point, the trace
and determinant of the Jacobian matrix at the fixed point must
be negative and positive, respectively.

(a) (b)

(c) (d)

FIG. 2. Fixed points φ∗, and the associated stability obtained by the method mentioned in text for (a) b = 1, g = 1.2, (b) b = 0.95, g = 1.2
(c) b = 1.02, g = 1.2, and (d) b = 1, g = 0.6. Filled symbols: stable. Open symbols: unstable.
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(a) (b)

(c) (d)

FIG. 3. (Color online) Phase diagrams from the phase model for quorum sensing. (a) Phase diagram for intrinsically oscillatory cells,
showing different dynamics for different � and g (b = 0.95). The shadow area is the quiescent region bounded by the phase boundary �c. The
vertical dashed line marks the region of interest (b2 + 2bg cos �0 + g2 > 1, right-hand side of the dashed line) in modeling quorum sensing.
The inset shows regions for larger � in which �u can be seen; it covers regions that are beyond biological interest for the present study and
are shown here just for completeness. (b) Phase diagram for intrinsically excitable cells (b = 1.01). Dashed line and the inset have the same
meaning as in (a). (c) Critical �c vs the coupling strength corresponds to the phase diagram in (a) for various values of b. (d) Critical �c vs the
coupling strength corresponds to the phase diagram in (b) for various values of b.

Since fixed points always emerge in pairs (except at the
critical parameter values) and there is at least one stable fixed

FIG. 4. (Color online) Square of the oscillation frequency as a
function of � − �c for the quorum sensing transition regime with b =
0.95 and b = 1.01 for different values of g (J = 1). The oscillation
frequency varies with the square root of � − �c implying an infinite-
period bifurcation.

point whenever more than one fixed point exists, the problem
of determining whether the system is quiescent or oscillatory
reduces to the existence or absence of real roots of F (φ∗) in
Eq. (10).

C. Phase diagrams

The phase diagram for intrinsically oscillatory cells (b < 1)
is depicted in Fig. 3(a), there is an oscillatory region for smaller
values of g and � covering the origin and the whole � axis.
For sufficiently large g, the system becomes quiescent. The
QS regime (b2 + 2bg cos �0 + g2 > 1) as discussed in Fig. 1
is shown by the right-hand side of the dashed line. In the QS
regime, the system is quiescent for low values of �, and as �

increases above some critical value �c, the system becomes
oscillatory. A new stable fixed point appears when � is further
increased beyond another threshold �u and oscillation stops
again. The phase diagram for intrinsically excitable cells
(b � 1) is depicted in Fig. 3(b); there is a finite domain for
oscillation—note that now there is a thin quiescent strip near
g � 0, which corresponds to the always quiescent regime
g < b − 1 as discussed in Fig. 1. Oscillations only occur for
intermediate values of coupling strength. This is because the
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(a) (b)

(c) (d)

FIG. 5. (Color online) Simulation result for two heterogenous cells showing synchronization as collective oscillations emerges. J = 1,
g = 1.2, b1 = 0.95, b2 = 0.99. Note that the mean angular frequencies of the two cells under isolated condition are 0.312 25 and 0.141 07,
respectively. (a) Time series of φ1(t) and φ2(t) with different initial conditions; � = 0.6. The insets show the blowup scale so that the small
phase differences can be seen. Note that in some period φ1 leads φ2 (left inset), but it is reversed at later times (right inset). (b) Difference
in the instantaneous angular velocities of two oscillatory cells in (a). The inset is a magnified scale showing that the instantaneous angular
velocity difference oscillates about zero, and the two cells have no phase-locked synchronization. (c) Average asymptotic angular velocities of
the two cells as a function of �. The angular frequencies for each of the single cells in the medium with the same g = 1.2 are also shown for
comparison. The horizontal straight lines indicate the angular frequencies (

√
1 − b2) for each of the cells under isolated conditions (not coupled

to the medium). (d) The square of the average asymptotic angular frequencies plotted as a function of � near the critical regime showing the
saddle-node (infinite-period) bifurcation behavior.

driving force from coupling in the weak coupling regime may
be too weak to elicit the oscillation, but on the other hand
oscillation will also disappear if the coupling is too strong. In
the QS regime of Fig. 3(b), an oscillatory window also exists
for �c < � < �u. In general, there is a lower and upper critical
value for � in the QS regime for the phase model, i.e., some
regime of cell population density in which oscillations occur.
However, we emphasize that we are interested mainly in the
transition from quiescence to oscillations as the number of
cells increases from a system with low cell volume fraction.

The critical �c (and also �u) can be obtained by solving
the fixed point equation F (φ∗) in Eq. (10) together with
F ′(φ∗) = 0:

b cos φ∗ = −g(1 + b�c cos φ∗) cos[φ∗ − �0

−�c(1 − b sin φ∗)]. (12)

The critical �c vs g for different values of b is shown in
Figs. 3(c) and 3(d). The dynamics of the cells changes from

quiescent to oscillation when � exceeds �c. In general, �c

increases with both g and b.
The oscillation frequency can be obtained from the numeri-

cal solution of the ordinary differential equations (ODEs) and it
is found that the frequency decreases for decreasing γ as shown
in Fig. 4 . For the quorum sensing transition from quiescence to
oscillation across �c, the oscillation frequency varies with the
square root of � − �c indicating an infinite-period bifurcation.

D. Synchronization

In the above analysis, we adopted the mean-field approx-
imation, which is based on the implicit assumption that each
cell will synchronize when they start to oscillate. Here we
shall show explicitly in the simple case of two cells that
the synchronization is accompanied by the emergence of
oscillations. Synchronization [12] is one of the most prominent
signatures of collective behavior in a cell population, and
quorum sensing is believed to be the major communication
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FIG. 6. (Color online) Parameter space in the a-G plane. QS
regime is the unshaded area.

mechanism that leads to this cooperative phenomenon. In order
to make a fair comparison for the sensitivity of quorum sensing
for systems with different number of cells, instead using the
single cell parameter α, one can define � = Nα/J similar
to the mean-field approximation case in previous sections.
Consider for simplicity only two heterogeneous cells described
by Eqs. (1) and (2) with b1 	= b2. It is easy to show that constant
phase difference synchronization is not possible when b1 is not
equal to b2. Thus we shall consider the general phase-locked
synchronization in which the phase difference obeys some
relationship and is bounded. A convenient measure to show
this type of synchronization in the present study is to compare
their average oscillation frequencies. This operational measure
is valid here since we know the two oscillators are coupled via
a shared chemical signal. The two elements are synchronized
if they have the same average oscillation frequencies, i.e.,
〈φ̇1〉 = 〈φ̇2〉 (where 〈· · ·〉 denotes the long time average after
the system passed the transient state). Direct simulation of
the systems shows that for small values of �, both cells are
quiescent, but when � is greater than some critical value,
the two cells start to be oscillatory and very soon become
synchronized with a small phase difference as shown in
Fig. 5(a) . Furthermore, the phase difference oscillates between
positive and negative values as illustrated in the insets. The
instantaneous angular velocities shown in Fig. 5(b) confirm
that the two elements synchronized very rapidly with the
angular velocity difference oscillate about zero (see inset) and

the two elements synchronized with the same mean angular
velocity. Note that the mean angular frequency of an isolated
intrinsically oscillatory cell is

√
1 − b2. Figure 5(c) shows

the asymptotic mean angular speeds of the two oscillatory
cells as a function of �, indicating a regime �c < � < �u in
which synchronized oscillations occur, similar to the results
obtained under the mean-field analysis. Furthermore, the onset
of oscillation also occurs via an infinite-period bifurcation as
verified in Fig. 5(d), which shows the oscillation frequency
∝ √

� − �c.

III. FITZHUGH-NAGUMO MODEL

Unlike phase models, oscillations in the FitzHugh-Nagumo
(FHN) model [13] dynamical system is characterized by
the emergence of a stable limit cycle in phase space. To
model quorum sensing, consider the simple FHN with fast
variable coupled to the extracellular environment variable Z;
the dynamics is given by

dx

dt
= 1

ε

(
x − x3

3
− y

)
+ G(Z − x), (13)

dy

dt
= x + a. (14)

The FHN element can be either excitable (|a| > 1) or os-
cillatory (|a| < 1). To describe chemical reactions, x can be
interpreted as the deviation of signal molecule concentration
inside the cell from some reference concentration (denoted
by XM ). These signal molecules can exchange with the
environment (denoted by Z, the deviation of extracellular
signal molecule concentration from XM ) with a coupling
G. The dynamics of signaling chemical concentration in the
environment can be described by

dZ

dt
= −J (Z + XM ) + αG(x − Z), (15)

where α is the volume fraction of a single cell to that of the
environment, and J is the degradation rate. For a population

(a) (b)

FIG. 7. (Color online) FitzHugh-Nagumo quorum sensing model, a = 0.8, ε = 0.01. (a) Critical �c above which the stable node bifurcates
to limit cycle oscillation via Hopf bifurcation, as a function of coupling strengths G for different degradation rates. The bifurcation curve is
calculated from Eq. (19). (b) Emergent frequency at the bifurcation point as a function of G for various values of J , calculated from Eq. (20).
The vertical dashed line marked G∗ = 36: Hopf bifurcation occurs for G > G∗.
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of the FHN elements in the medium, the dynamics of Z can
be rewritten as

dZ

dt
= −J (Z + XM ) + αG

∑
i

(xi − Z). (16)

If we only consider the situation that all of the cells oscillate
and synchronize in phase, mean-field approximation gives

dZ

dt
= −J (Z + XM ) + γG(x − Z), (17)

where γ is the ratio of total cell volume to the volume of
solution in the environment. XM should be sufficiently positive
so that both x + XM (the intracellular chemical concentration)
and Z + XM are always non-negative. XM = 2 is taken in
this paper, which satisfies the above requirement. Similar
to the previous section, the dynamical behavior given by

(a) (b)

(c) (d)

(e)

FIG. 8. Bifurcation diagrams for the FHN quorum sensing model
with a = 0.8,J = 0.5,XM = 2, and G∗ = 36. (a) G = 36.06: fold-
cycle and supercritical Hopf bifurcation. Note the coexistence of
large (outer) and small (inner) amplitude oscillations. (b) G = 46.55:
fold-cycle and subcritical Hopf bifurcation. The small amplitude
stable limit cycle in (a) just annihilated with its surrounding unstable
limit cycle. (c) G = 100: fold-cycle and subcritical Hopf bifurcation.
(d) G = 250: fold-cycle and subcritical Hopf bifurcation occur in a
very narrow regime of �, and the dynamics of the system is about
to change to (e). (e) G = 300: supercritical Hopf bifurcation. In the
very strong coupling regime, the unstable limit cycle in (d) shrinks to
an unstable fixed point resulting in a supercritical bifurcation.

Eqs. (13), (14), and (17) is analyzed for different coupling
strengths G, as γ is varied.

For quorum sensing, one usually encounters the situation
that there is no spontaneous oscillation when a single cell is
coupled with the solution (corresponding to infinite dilution
of cell population density, γ = 0 case) [5], but oscillation
emerges as cell density increases. For the model described by
Eqs. (14) and (17), it can be shown later that for |a| > 1 there is
no bifurcation to oscillatory state for any positive values of γ ,
therefore we here consider only the case of |a| < 1. For γ = 0
and from Eq. (13), the condition for a stable fixed point leads to
the criteria G > G∗ ≡ 1−a2

ε
. A FHN element immersed in the

solution will be oscillatory (quiescent) if G < G∗ (G > G∗).
Figure 6 show the parameter regime corresponding to the QS
regime.

A. Hopf bifurcation

The fixed point of the system (13), (14), and (17) is easily
calculated to be

xf = −a,

yf = −a + a3

3
+ εG(Zf + a),

Zf = −�Ga + XM

�G + 1
,

where � ≡ γ

J
as in the phase model. In general, the fixed

point becomes more stable as coupling strength is increased.
If �G 
 1 then Zf ≈ −a. If �G � 1 then Zf ≈ −XM . The
Jacobian at the fixed point and the corresponding characteristic
equation for the eigenvalues at the fixed point can be easily
computed to give

λ3 + Aλ2 + Bλ + C = 0, where

A ≡ J (1 + �G) + G − G∗,
(18)

B ≡ 1

ε
+ J [G − G∗(1 + �G)],

C ≡ J

ε
(1 + �G).

FIG. 9. (Color online) Phase diagram for the FHN quorum
sensing model. Upper curve is the Hopf bifurcation (HB) boundary
from Eq. (19). Lower symbol curve denotes the limit points (LP)
obtained numerically from XPPAUT, where global bifurcations occur.
Vertical dashed line marks the value of G∗.
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Note that since C > 0 always holds, there is always a real and
negative root for the eigenvalue Furthermore, if all the three
eigenvalues are real, the other two roots must be of the same
sign. Therefore it will be impossible for the stable node to
lose its stability to become a saddle node since it would occur
when the other two roots are zero, which is not allowed since
C > 0. Hence there is one negative real eigenvalue and two
complex eigenvalues (with nonzero imaginary parts), and the
stable node loses its stability via Hopf bifurcation. The Hopf
bifurcation condition or the phase boundary for the stability
of the fixed point can be calculated from the condition that
the real parts of the complex eigenvalues become zero. Simple
calculation leads to the Hopf bifurcation condition of AB = C,
i.e., the critical �c satisfies the following algebraic equation:

{1 + εJ [G − G∗(1 + �cG)]}[J (1 + �cG) + G − G∗]

= J (1 + �cG) (19)

and �c can be obtained as a function of G and other parameters.
The emergent oscillation frequency at the bifurcation point as
a function of G can also be calculated to give

ωc =
√

B(�c) =
√

1

ε
+ J [G − G∗(1 + �cG)]. (20)

Note that at G = G∗, �c = 0, and ωc = √
1/ε. Furthermore, it

is easy to see from Eq. (19) that there is no positive solution for
�c for G∗ < 0 (|a| > 1), and hence we only consider the case
of |a| < 1. The Hopf bifurcation phase boundary calculated
from Eq. (19) is shown in Fig. 7. �c shows a peak as a function
of G, and decreases with the degradation rate J . The magnitude
of the oscillation frequency is characterized by the emergent
angular frequency ωc, whose variation with G for various J is
shown in Fig. 7. ωc decreases monotonically with G and J .

B. Global bifurcation

However, the above analysis near the fixed point can only
detect local bifurcations, for possible global bifurcation we
employed XPPAUT [14] for numerical detection. Figure 8
shows that global bifurcation to oscillations indeed occurs in
some parameter regimes. The bifurcation structure is surpris-
ingly complicated for this model. It turns more complicated
as the value of G decreases from a large value, say 300, when
a simple supercritical Hopf bifurcation occurs [see Fig. 8(e)].
As G decreases, the Hopf bifurcation first becomes subcritical
while the oscillations turn more relaxation type [see Figs. 8(c)
and 8(d)]. At a G value slightly larger but close to G∗ [see
Figs. 8(a) and 8(b)], the Hopf bifurcation turns supercritical
again giving rise to a branch of small amplitude periodic

(a) (b)

(c) (d)

FIG. 10. (Color online) Simulation result for two heterogenous FHN cells showing synchronization as collective oscillations emerge via
Hopf bifurcation. a1 = 0.5, a2 = 0.8, J = 0.5, and G = 300. (a) The coupled system undergoes a Hopf bifurcation at some critical �c. (b) Time
series of the two cells showing in-phase synchronized oscillations. � = 0.04. (c) Oscillation frequencies of the two cells showing synchronized
oscillations as oscillations emerged. (d) The square of the oscillation amplitudes of the two cells as a function of γ , verifying a supercritical
Hopf bifurcation. The vertical dashed line marks � = �c.
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solutions that coexist with the branch of large amplitude ones.
This occurs at a cusp bifurcation for some critical value of �.

The phase diagram summarizing the quiescent or oscil-
latory behavior is shown in Fig. 9. For G > G∗, the region
below the boundary of the limit point curve (low �) is always
quiescent whereas the region above the Hopf bifurcation (HB)
curve (high �) is always oscillatory. Note that the limit point
(LP) curve ends at some large coupling value. The region
bounded by the HB and LP curves is the coexistence in which
quiescent or oscillatory dynamics are both possible depending
on the initial conditions of the system.

C. Synchronization

In the quorum sensing model, the cells in the medium are
coupled indirectly with each other via their coupling with
the environment. This indirect intercell coupling can lead to
synchronized dynamics and affect the quorum sensing sensi-
tivity. In this case, the dynamics is governed by Eq. (16). Here
we consider the simple case of two FHN cells coupled with
the environment and examine the synchronization behavior as
the cells become oscillatory. Again similar to the case of the
phase model in the previous section, one defines � = Nα/J in
order to compare a system with different number of cells. For

simplicity we take G = 300 so that a single cell will undergo
Hopf bifurcation and become oscillatory (see Fig. 9). For low
values of �, both cells are quiescent and become oscillatory
when � > �c [see Fig. 10(a)] . Furthermore, both cells become
synchronized as oscillations emerge [see Fig. 10(b)]. The
two cells appear to be in-phase synchronized. The oscillation
frequencies as a function of � for each single cell in the
medium and the synchronized frequency when both are in
the medium are shown in Fig. 10(c). The cells oscillate
faster with �, and furthermore when both cells are in the
medium, they synchronize and oscillate with a “compromised
frequency.” Notice that the �c for each single FHN element
in the medium are 0.018 759 8 (a1 = 0.5) and 0.042 493
(a2 = 0.8), respectively. When both of them are placed in the
environment and coupled via the medium, oscillations emerge
at an in-between �c � 0.0258 [see Fig. 10(d)]. Figure 10(d)
shows that the oscillation amplitude ∝ √

� − �c verifying a
supercritical Hopf bifurcation.

For completeness, we also examine the onset of oscillations
and synchronization of two cells via global bifurcation with
G = 100. Figure 11(a) shows that as � increases, fold or
subcritical bifurcation occurs for the two cells simultaneously.
The onset of oscillations of the two cells is accompanied by
in-phase synchronization. Figure 11(b) shows the oscillation

(a) (b)

(c) (d)

FIG. 11. (Color online) Simulation result for two heterogenous FHN cells showing synchronization as collective oscillations emerge via
global bifurcation. a1 = 0.5, a2 = 0.8, J = 0.5, and G = 100. (a) The coupled system undergoes a global bifurcation at some critical �c.
(b) Oscillation frequencies of the two cells showing synchronized oscillations as oscillations emerge. (c) Magnification of (b) in the small
� regime showing the nonmonotonic behavior in oscillation frequencies as a function of �. (d) Magnification of (b) in the larger � regime
showing the frequency enhancement effect.
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frequencies of the cells as compared with the oscillation of
each single cell in the medium. The frequencies of the two
cells coincide as oscillation emerges for � > �c. Figure 11(c)
is a blowup for small � showing the nonmonotonic variation
of the synchronized frequencies with �. Note that for small
values of �, the two cells are synchronized with a compromised
frequency lying between the frequencies of each single cell in
the medium. However, for larger values of � [see Fig. 11(d)],
the two cells oscillate with a faster synchronized frequency,
exhibiting the ”frequency enhancement” effect [15].

IV. DISCUSSION

Two simple models aimed at describing some basic features
of the switch in dynamical behavior in response to the change
in population as observed in quorum sensing scenarios are
proposed. The dynamics is investigated both by analytic
means and also by numerical integrations, and the change
in dynamics is understood in terms of bifurcations using
nonlinear dynamic analysis. Mean-field theory is employed in
most of our analysis. There are two major assumptions in this
approximation: (i) all cells are assumed to oscillate in phase,
and (ii) diffusion of the signaling chemicals in solution is so
fast that one can regard its concentration to be uniform. The
first assumption is justified by our study of two cells immersed
in solution and practically in-phase synchronized oscillations
are observed. The second assumption of the spatially uniform
concentration can be realized experimentally by external
stirring. However, for unstirred systems, diffusion of the
signaling chemicals in solution would play an important role in
governing the quorum sensing behavior [16]. Our model can be
easily generalized to include the diffusion dynamics together
with the spatial temporal description of the cells and signaling
molecule concentration. The general question of the quorum
sensing onset and phase-locked synchronized oscillations of
an ensemble of elements indirectly coupled via the chemical
signaling concentration is a very interesting and rich problem.
Indeed our preliminary study on the spatiotemporal dynamics
of this system reveals that the oscillatory wave can be excited
in the system that could serve as a prototype model for the
study of intercellular signaling dynamics.

Furthermore, the idea of quorum sensing can be gener-
alized and applied to investigate a mixture of excitable and
nonexcitable cells to understand the emergence of spontaneous
synchronized oscillation as the relative populations of the
cells are changed. For example, mixed cultures of neurons
and glial cells can be studied and the effects of interaction
between neurons and glial cells [17] on the dynamical behavior
might be interpreted in terms of quorum sensing in the broad
sense. Also some interesting physiological phenomena in
cardiac myocytes and fibroblasts mixture [15,18], such as the
dependence of conduction velocity and variability of beating
rate on the percentage of fibroblasts [19], can be studied and
modeled by the FHN-type QS model in terms of myocyte-
fibroblast coupling, which is closely related to experiments. In
particular, different ratios of fibroblast occupation to myocytes
will induce different beating frequencies and the associated
variabilities [20] can be modeled by a two-dimensional
coupled network FHN-type QS system.

(a) (b)

(c) (d)

(e)

FIG. 12. (Color online) Nullclines and flow in the φ-� phase
plane for various parameter regimes corresponding to Fig. 1. �̇ = 0
nullclines are green and φ̇ = 0 nullclines are red. (a) b + g < 1: there
is no φ̇ = 0 nullcline since it can never be satisfied and the system
always remains oscillatory; b = 0.95, g = 0.02. (b) b > g + 1: φ̇ = 0
nullclines are vertical nonintersecting curves; b = 1.5, g = 0.2.
(c) b < g − 1: φ̇ = 0 nullclines are diagonal nonintersecting curves;
b = 0.95, g = 2.0. The b + g > 1 and b2 + 2bg cos �0 + g2 < 1
regime: b = 1.02, g = 0.2. φ̇ = 0 nullclines are closed loops, for
(d) � = 10 (oscillatory), and (e) � = 20 (quiescent).
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APPENDIX: NULLCLINES, PHASE PORTRAITS
OF THE QS PHASE MODEL

The nullclines for the system is shown in Fig. 12 showing
that the φ̇ = 0 nullcline is periodic in both φ and � directions
while the �̇ = 0 nullcline is periodic only in the φ direction.
The �̇ = 0 nullcline is a periodic wavy curve that runs
horizontally in the φ direction. Larger values of � will result in
more wavy and tilted crests. Different values �0 merely shift
the � nullcline up and down. Note that in the b + g < 1 region
[Fig. 12(a)], φ̇ = 0 can never be satisfied and its nullclines
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(a) (b)

(c) (d)

FIG. 13. (Color online) Nullclines and flow in the φ-� phase plane for the b2 + 2bg cos �0 + g2 > 1 regime. �̇ = 0 nullclines are green
and φ̇ = 0 nullclines are red closed loops. b = 1.02, g = 1.2 for (a) � = 0.05, (b) � = 1, (c) � = 3, and (d) � = 6.

disappear and hence the systems remain always oscillatory.
The topology of the φ̇ = 0 nullclines are qualitatively different
in different parameter regimes in the b-g plane as depicted in
Fig. 1. It can be shown [21] that the φ̇ = 0 nullcline is a closed
loop in the unshaded region (including the QS regime) with the
center of each loop fixed periodically in the phase plane and the
loop size controlled by the values of b and g. The loop deforms
and becomes two nonintersecting curves in the |b − g| > 1
regions [see Figs. 12(b) and 12(c)], and the nullcline disappears
in the b + g < 1 regime. In the regime bounded by b + g > 1
and b2 + 2bg cos �0 + g2 < 1, the nullclines do not intersect
resulting in oscillatory behavior for low � [Fig. 12(d)], but
as � increases to larger values, the �̇ = 0 nullcline becomes
strongly wavy, intersecting the φ̇ = 0 loops, and the system
becomes quiescent [Fig. 12(e)].

Figure 12 shows the nullclines and the flow fields in the
phase plane corresponding to different parameter regimes in
Fig. 1. It is also worth noticing that φ̇ > 0 outside the loop
and φ̇ < 0 inside the loop. Using arguments involving flow
fields in the phase plane, one can show that whenever there

are intersections of the two nullclines there is always only one
stable fixed point and the rest are saddles. This can also be
verified from the flow fields of the phase portraits in Fig. 12.
When there is no intersection of the nullclines, φ increases
for all time with trajectories staying close to the � nullcline
characterizing the oscillatory behavior.

The nullclines and phase portraits for the QS parameter
regime are shown in Fig. 13. For low values of � [Fig. 13(a)],
the �̇ = 0 nullcline is only slightly wavy and intersects each
φ̇ = 0 loop at two points resulting in a quiescent state. As
� increases above some critical �c [Fig. 13(b)], the �̇ = 0
nullcline becomes so wavy and the crests are so tilted that it no
longer intersects with the loops, giving rise to an oscillatory
state. Further increasing � to another threshold �u makes
a huge wavy curve in �̇ = 0 resulting in new intersections
with another periodic loop, thus making the system re-enter
quiescence [Fig. 13(c)]. In some scenarios, as depicted in
Fig. 13(d), the φ̇ = 0 loop intersects the �̇ = 0 nullcline at
four locations, but only one (leftmost) fixed point is stable; the
other three fixed points are saddles.
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