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Questing for an optimal, universal viral agent for oncolytic virotherapy
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One of the most promising strategies to treat cancer is attacking it with viruses designed to exploit specific
altered pathways. Here, the effects of oncolytic virotherapy on tumors having compact, papillary, and disconnected
morphologies are investigated through computer simulations of a multiscale model coupling macroscopic
reaction-diffusion equations for the nutrients with microscopic stochastic rules for the actions of individual
cells and viruses. The interaction among viruses and tumor cells involves cell infection, intracellular virus
replication, and the release of new viruses in the tissue after cell lysis. The evolution over time of both the viral
load and cancer cell population, as well as the probabilities for tumor eradication, were evaluated for a range
of multiplicities of infection, viral entries, and burst sizes. It was found that in immunosuppressed hosts, the
antitumor efficacy of a virus is primarily determined by its entry efficiency, its replicative capacity within the
tumor, and its ability to spread over the tissue. However, the optimal traits for oncolytic viruses depend critically
on the tumor growth dynamics and do not necessarily include rapid replication, cytolysis, or spreading, currently
assumed as necessary conditions for a successful therapeutic outcome. Our findings have potential implications
on the design of new vectors for the viral therapy of cancer.
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I. INTRODUCTION

Despite the progress that has been made in the imaging,
diagnosis, treatment, and understanding of cancer, the survival
rates of patients with metastatic or recurrent neoplasias as
well as patients with tumors at unresectable locations are
still poor, and new therapeutic strategies are needed [1].
Furthermore, occult, dormant micrometastases raise new
challenges concerning their reactivation and evolution into
clinically manifested disease, particularly after primary tumor
resection [2].

Oncolytic virotherapy is a promising anticancer strategy
because it can provide locoregional control or even eradication
of tumors without cross-resistance with standard therapies.
Oncolytic viruses are able to selectively infect and kill tumor
cells by exploiting the same cellular defects that promote
tumor growth [3]. To date, several different viruses are
known to be selectively oncolytic [4]. An archetype is the
adenovirus commonly used in gene therapy and oncolytic
therapy experiments [5,6]. Some studies indicate that the
virus effectiveness strongly depends on the specific cancer
cell line [1]. Therefore, one can hypothesize that for each
tumor there must exist an oncolytic virus that maximizes the
therapeutic success.

Several mathematical models have been proposed to study
virotherapy [7–10]. They have emerged as valuable tools to
provide a quantitative understanding of the major mechanisms
that affect anticancer treatments based on viruses and to select
parameter ranges that enhance therapeutic success. These
models are particularly valuable because, in the face of the
nonlinearities and complexity involved in cancer progression
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and its interaction with oncolytic viruses, intuitive reasoning
alone may be insufficient. The current paradigm is that the
viral life cycle should lead to rapid replication, cytolysis, and
spread [11]. Nonetheless, the limitations and validity of this
appealing, intuitive, and seemingly logical paradigm remain
unclear. Indeed, at least one mathematical result [8] indicates
that viruses able to destroy tumor cells very quickly do not
necessarily lead to a more effective control of tumor growth.
More precisely, it was shown that successful virotherapy of
compact tumors requires both highly spreading viruses and
an optimal range of viral cytotoxity, i.e., neither too short nor
a very long time for the lysis of cancer cells. However, this
result was derived assuming that the viruses are a continuous
field with dynamics described by a reaction-diffusion equation.
Furthermore, the changes in the stationary local concentrations
of viruses due to their entry at cell infections were neglected,
and the viral-burst size used, equal to the initial viral load,
was orders of magnitude greater than those of the larger ones
observed for real oncolytic viruses.

In the present paper, a multiscale model based on the
approach proposed by Ferreira et al. [12] was modified to
take explicitly into account the individual, discrete nature
of the oncolytic viruses and was applied to evaluate the
efficacy of virotherapy against compact, papillary, and diffuse
(disconnected) solid tumors. Considering viruses as discrete
agents provides a more realistic description of virus entry and
replication, key processes involved in oncolytic virotherapy.
Our main goal is to provide useful insights concerning how to
match the oncolytic virus and the tumor type in order to get
the best outcome for a therapy.

II. MODEL

Figure 1 illustrates the multiple agents and processes
involved in the model at distinct time and length scales. The
tissue is modelled by a square lattice fed through a single
capillary vessel at its top. Four different cell types (normal
and dead cells and uninfected and infected tumor cells) and
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FIG. 1. (Color online) Schematic illustration of the mathematical approach. The model considers normal cells, tumor cells, and oncolytic
viruses. Uninfected cancer cells can replicate by mitosis, die due to starvation (lack of nutrients), move, or become infected, a quiescent state
in which the cellular machinery is slaved to promote viruses replication. Cell actions are stochastically governed by the probabilities Pdiv, Pdel,
Pmov, and Pinf , dependent on the nutrient and virus concentrations per cancer cell. Infected cancer cells die by lysis with the probability Plysis.
After mitosis, the new tumor cells can either pile up (loss of contact inhibition) at the site of parent cells or randomly invade a normal or necrotic
nearest-neighbor cell, if any exists. Nutrients are modelled as continuous concentrations which evolve in space (tissue) and time according to
reaction-diffusion equations. Essentially, nutrients diffuse from the capillary vessel through the tissue and are taken up by normal and tumor
cells at distinct rates. Free viruses perform Brownian motions (lattice diffusion) and are cleared at a rate γv . The source of new viruses is
infected cancer cells, which release v0 new viruses after undergoing lysis. The virus clearance rate represents the simplest way to introduce
viral loss, due mainly to the innate and adaptive immune response mediated by antibodies, CD8 T cells, interferons, and other cytokines or to
inherent viral instability.

an oncolytic virus are considered. These individual agents are
described by their populations σn, σd , σc, and σv , respectively,
at every site x. In contrast to the normal and dead cells, one
or more uninfected or infected cancer cells can pile up at a
given site, reflecting the fact that the division of tumor cells is
not constrained by contact inhibition. In turn, since the viruses
are very small particles in comparison with cells, there is no
constraint on their population.

The nutrients, diffusing from the capillary vessel through-
out the tissue, are divided into two groups: those that limits cell
replication but are not demanded for cell survival (j = 1) and
those essential to maintain the basic cell functions and whose
deprivation can induce death (j = 2). Both nutrient types
are described by continuous fields φj (�x,t), which evolve in
space and time according to the simplest (linear with constant
coefficients) dimensionless reaction-diffusion equations:

∂φj

∂t
= ∇2φj − α2φjσn − λjα

2φjσc. (1)

The factors λj take into account distinct nutrient uptake rates
for normal and cancer cells. The parameter α sets up a
characteristic length scale for nutrient diffusion in the normal
tissue (see Ref. [13] for the complete variable transformations
leading to this dimensionless equation). Equation (1) obeys a
periodic boundary condition along the direction parallel to the
capillary and a Neumann boundary condition at the border of
the tissue. At the capillary vessel, the nutrient concentrations
are φj = 1 (continuous and fixed supply).

Each uninfected cancer cell, randomly selected with equal
probability, can carry out one of the following four actions.

A. Mitotic replication

Mitotic replication has a probability

Pdiv = 1 − exp

[
−

(
φ1

θdivσc

)2]
, (2)

an increasing function of the concentration per cancer cell of
the nutrients φ1 controlled by the parameter θdiv. A daughter
cell randomly occupies one of its normal or necrotic nearest-
neighbor sites, if any exists, or piles up at its mother site. In
the simulations, we observed at most three or four cancer cells
at the same site simultaneously.

B. Death

Death has a probability

Pdel = exp

[
−

(
φ2

θdelσc

)2]
, (3)

a Gaussian distribution whose variance depends on the model
parameter θdel and that increases with the scarcity of nutrients
φ2 essential to sustain the cell metabolism.

C. Migration

Migration has a probability

Pmov = 1 − exp

[
−σc

(
φ2

θmov

)2]
, (4)

which increases with the local population of cancer cells and
the nutrient concentration per cell. The model parameter θmov

controls the shape of this sigmoid. A probability increasing
with the nutrient concentration is justified by the necessity
of nutrients for cell motility and, in addition, by the degra-
dation of the extracellular matrix near the tumor surface that
releases several chemicals that promote cell migration and
proliferation. This hypothesis is consistent with experimental
data in multicellular tumor spheroids [14] and was previously
used in other mathematical models [15,16]. The migrating cell
moves to one of its nearest-neighbor sites chosen at random,
interchanging its position with a normal or necrotic cell if
any exists. If the interchanged normal or necrotic cell moves
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to a site still occupied by other cancer cells, it is eliminated.
These rules for cancer growth are similar to those used by
Scalerandi et al. [17] in a deterministic model with collective
cell actions controlled by threshold (step) functions of the
nutrient concentration per cancer cell.

D. Infection

Infection has a probability

Pinf = 1 − exp

[
−

(
σv

σcθinf

)2]
, (5)

an increasing function of the local viral load per cell,
controlled by the parameter θinf . The model assumes perfect
viral selectivity for cancer cells, and thereby the infection of
normal cells by oncolytic viruses is neglected. The number of
viruses nv that infect a given cell is selected from a Poisson
distribution

P (nv) = knv e−k

nv!
, (6)

where k is the typical viral entry. This Poisson law has been
observed in cell cultures as a function of the multiplicity
of infection (m), defined as the ratio of the total viral load
injected in the system and the number of target cells [18]. The
model assumes that an infected cancer cell does not divide
nor migrate because its slaved cellular machinery is focused
on virus replication. It is also assumed that infected cancer
cells sustain their metabolism until lysis and die only by lysis.
Death by lysis occurs with a probability

Plysis = 1 − exp

(
−Tinf

Tl

)
, (7)

where Tinf is the time elapsed since the cell infection and Tl is
the characteristic time for cell lysis. The lysis of each infected
cancer cell releases

v0 = bs

nv

A + nv

(8)

free viruses into the extracellular medium. Here, the maximum
virus burst size bs and A are model parameters. At the time of
lysis, the new free viruses remain at the site of the lysed cell.
They diffuse independently through the tissue by performing
lattice random walks comprising q steps and are cleared at
a rate γv at each time step. The clearance rate γv embodies

the complex innate and adaptive immune responses to a virus.
Such response involves the synthesis of antiviral cytokines, the
activation and/or selection of immune cells, and the production
of antiviral antibodies [19].

The tumor starts to grow from a single cancer cell, and the
therapy begins when the tumor attains N0 cells. It consists of
a single direct intratumoral administration in which N0 × m

viruses are uniformly spread over the entire tumor. This
approach corresponds to the experimental protocols used
in severe combined immunodeficient (SCID) mice [20] and
in vitro assays [21,22]. Indeed, in most in vivo vi-
rotherapy experiments, the viruses are injected directly
into a subcutaneous, avascular tumor developed in the
mice.

More details concerning the procedures used for model
simulations are provided in Appendixes A and B.

III. RESULTS

We are interested in the effects of virotherapy on compact,
papillary, and disconnected tumors and the general morpholo-
gies observed in solid malignant neoplasias. Typical patterns
corresponding to such morphologies were simulated using the
multiscale model for the growth of avascular tumors studied in
Ref. [13]. They are shown in Fig. 2, and the model parameters
used are listed in Table I.

Typical progress curves for cancer cells and free viruses
in a simulated virotherapy of a diffuse tumor are shown in
Fig. 3. Similar time evolutions are also observed for solid
and papillary neoplastic morphologies (see Appendix C). Two
regimes are observed; either the cancer cell population keeps
growing after the virus administration, or both cancer cells
and oncolytic viruses are eradicated. In the former regime
in which the virotherapy fails, the viruses can be either
eradicated or coexist with the tumor cells. Such coexistence
can exhibit oscillations in cancer cells and virus populations
due to successive rounds of infection unable to eliminate
the tumor. As previously reported [8], it is worthwhile to
emphasize that any of these behaviors can randomly emerge
as the response of a given tumor to the virotherapy. Hence, it
becomes imperative to determine for each tumor morphology
the most probable prognosis after treatment as well as the
chances for the occurrence of the other tumor responses as
functions of the virotherapeutic parameters.

FIG. 2. Simulated morphologies for avascular tumor growth. (a) Solid or compact tumors grow exponentially fast under weak competition
for nutrients and reduced cell motility. (b) Diffuse or disconnected tumors are characterized by a moderate level of nutrient competition and
a high cell motility. (c) Papillary patterns emerge under strong nutrient competition and low cell motility, resulting in very slow growth. The
parameters used are listed in Table I. All tumor patterns shown have 104 cells. The capillary is at the bottom of the frames.
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TABLE I. Parameter values used in the simulations.

Tumor morphology Parameter Values Description

θdiv 0.3 (fixed) Controls the probability of cancer cell division
λ2 10 (fixed) Controls the competition for NE nutrients

Compact θdel 0.03 Controls the probability of cancer cell death
or
solid θmov 5 Controls the probability of cancer cell migration

λ1 25 Controls the competition for E nutrients
α 0.02 Dimensionless nutrient uptake rate for normal cells

Papillary θdel 0.01
or θmov 5
ramified λ1 200

α 0.06
Disconnected θdel 0.01
or θmov 0.001
diffuse λ1 50

α 0.06

Viral traits Parameter Values Description
θinf 0.01 (fixed) Determines the chance of virus infection (infectivity)
γv 0.01 (fixed) Virus clearance rate in the tissue
A 0.5 (fixed) Controls the number of viruses released after cell lysis
m 1,1.5,5 Initial viral load (MOI) administered.
k 1,1.5,5 Number of viruses entering a cell at infection
bs 10,50,100 Maximum number of viruses released after cell lysis
q 1,4,9,16,25 Number of random steps performed by a virus per MCS
Tl 2,4,8,16,32 Characteristic time for cell lysis

Abbreviations: NE and E, nonessential and essential for DNA replication and mitosis, respectively; MOI, multiplicity of infection; MCS,
Monte Carlo or simulation time step.

Figure 4 shows the probabilities for the eradication of
a papillary tumor. As one can see, a single intratumoral
administration of an aggressive virus (θinf = 0.01) with m =
1.0 and viral entry k = 1.0, a low clearance rate γv = 0.03,
and N0 = 10 000 can eradicate the tumor. Even viruses with
low replicative potential, associated with small burst sizes
(bs = 10, for instance), have almost 100% efficacy if they
spread very slowly (q � 4) throughout the papillary tumor.
As shown in Fig. 4(a), the antitumor efficacy of low-diffusive
viruses depends very weakly on Tl , the characteristic time
spent by the virus to induce the lysis of infected cancer
cells. Furthermore, the antitumor efficacy decreases rapidly

with the increase of the virus diffusivity, almost vanishing
for q � 9. In contrast, for a highly replicative virus (burst
size bs = 100), the tumor eradication is almost always certain.
The exceptions are for highly cytolytic (Tl � 10) and diffusive
(q � 20) viruses. Indeed, as shown in Fig. 4(b), the probability
of therapeutic success goes to zero if the oncolytic virus
spreads very quickly in the tissue and quickly kills cancer
cells.

Bearing in mind the current paradigm (fastest viral replica-
tion, cytolysis, and spreading), the correlations revealed here
among therapeutic outcomes and the traits of the antitumor
vectors demonstrate a counterintuitive scenario. Indeed, a

FIG. 3. (Color online) Temporal evolution of uninfected cancer cells (solid black line) and free-virus populations (dashed blue line) in a
diffuse tumor. A single intratumoral virus load was administered when the tumor had N0 = 5000 cells. Notice that three different behaviors
were obtained using exactly the same fixed set of parameters and initial conditions (m = 1, bs = 100, k = 1, q = 25, and Tl = 16). These
different behaviors emerge from stochasticity. The parameters used are listed in Table I.
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FIG. 4. (Color online) Papillary tumor eradication probability for
distinct virus diffusivities q and time for lysis Tl . Two viral-burst
sizes (a) bs = 10 and (b) bs = 100 are shown. The values γv = 0.03,
θinf = 0.01, m = k = 1, and N0 = 104 are fixed. The probabilities
were evaluated from 50 independent samples.

low viral diffusivity, independent of the cytolytic period Tl

and replicative capacity bs , is sufficient because papillary
malignant neoplasias grow slowly. Nonetheless, one can
argue that viruses exhibiting low diffusion rates in tissues
will hardly reach the tumor if intravenously or systemically
administered. Hence, this trait should be clinically avoided
unless delivery barriers have been overcome through some
“prodiffusive” strategy. As an alternative, our results indicate
that quickly spreading viruses combining high replication po-
tentials and slow cytolysis can successfully eliminate papillary
tumors.

The aforementioned results should be compared with those
obtained for a compact tumor in order to determine if the most
effective virus against papillary tumors is equally efficient
in the treatment of compact tumors. Compact morphologies
are generated in our model when competition for nutrients
is weak, and consequently, the tumor grows quickly. The
same oncolytic virus and treatment protocol successfully used
for papillary tumors (γv = 0.03, θinf = 0.01, m = 1, k = 1,
and N0 = 10 000) fails for compact tumors. They are not
eradicated for any Tl and q values studied even for a large
burst size (bs = 100). Therefore, very efficient viruses against
papillary tumors can be ineffective to eradicate compact
tumors. While the number of cancer cells increases, the viruses
either become extinct, if q = 1, or coexist with the growing
tumor, if q > 1. In the coexistence regime, the tumor grows
continuously but at a slower rate.

Given that solid tumors grow faster than ramified ones, it
seems intuitive to assume that more diffusive viruses might
be more effective against the neoplastic mass. However,
the success probabilities remain null when only the viral
diffusivity is increased up to values as large as q = 900.
One alternative for a successful therapy is to reinforce the
viral load initially administered. Nonetheless, even at larger
m (m = 5, for instance) the therapy still completely fails if
the viral entry k = 1 is maintained. The value k = 1 implies
that on average only one virus invades a cell at each infection
event.

A remaining strategy to control compact tumor growth is
to enhance the viral entry. As one can see in Fig. 5(a), a large
viral entry (k = 5) has a dramatic effect on the therapeutic
success. Indeed, the virotherapy only fails, even using m = 1,
for very low viral diffusivities (q � 2) and large lytic periods
(Tl � 15). Furthermore, significant success is achieved by

FIG. 5. Solid tumor eradication probability as a function of the
parameters q and Tl . (a) m = 1 and viral entry k = 5 and (b) m = k =
1.5. The viral-burst size is bs = 100, and the values γv = 0.03, θinf =
0.01, and N0 = 5000 are fixed. The probabilities were evaluated from
50 independent samples for each pair (q, Tl).

reducing k while, on balance, increasing the m used. This
is shown in Fig. 5(b) in which k = 1.5 and m = 1.5. In this
case, a successful therapy demands an oncolytic virus with an
appropriate diffusivity and lytic cycle. An adequate diffusion
(3 � q � 16) allows viral spreading throughout the compact
tumor at a rate similar to or greater than that of the growing
neoplasia. However fixed the viral diffusivity, the time Tl must
lie within a certain range, such as, for instance, 7 � Tl � 32
for q = 15. Indeed, a very rapid cytolysis promptly forms
“voids” containing the majority of the newly released viruses,
which impair the generation of new infection waves. In turn,
a very long Tl generates successive waves of infection at
a low frequency unable to destroy the tumor. These results
are consistent with those reported in Ref. [8], supporting the
robustness of both models.

Finally, the response of diffuse tumors to virotherapy was
investigated. In our model, disconnected patterns emerge for
highly motile cells that uptake nutrients at moderate rates. Con-
sidering an oncolytic virotherapy based on a viral agent with
high replicative capacity, the probability for the eradication of
a diffuse tumor is shown in Fig. 6. As one can see, the success
probability also vanishes for highly diffusive viruses and

FIG. 6. Diffuse tumor eradication probability as a function of
the parameters q and Tl . The viral-burst size bs = 100 is used. The
values γv = 0.03, θinf = 0.01, m = 1, k = 1, and N0 = 10 000 are
fixed.
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increases significantly for viruses spreading slowly. Optimal
oncolytic viruses to treat diffuse tumors should combine
high replicative rates and intermediate diffusivity. If the virus
has a slower rate of spreading, then a short time to induce
the lysis of infected cancer cells is necessary in order to
maximize the therapeutic success. At greater viral spreading
(8 � q � 16), the success probability exhibits a reentrant
behavior characterized by an initial decrease, followed by an
increase of the therapeutic success as the cytolytic period Tl

increases.

IV. DISCUSSION

In this work we investigated the oncolytic virotherapeutic
outcomes for solid (compact, papillary, and diffuse) tumors
using numerical simulations. We focused our study on vectors
with high infectivities and small clearance rates, corresponding
to a severe suppression of the host immune response. Fur-
thermore, since in the present framework the discrete nature
of the oncolytic virus allows a more realistic modeling of
the viral infection and replication processes, the central roles
of viral-burst size bs , virus entry k, and initial m for the
therapeutic success are highlighted.

Figure 3 illustrates our typical results. After a single
intratumoral virus administration, these tumors can either be
completely eradicated or will keep growing with time despite
a transient remission, as per results previously obtained for
compact tumors [8]. Furthermore, the latter behavior can be
either a monotonic or an oscillating growth. It is worthwhile to
note that such oscillations were observed in human myeloma
xenografts induced in mice treated with the measles virus
(MV) [23], in an ovarian cancer xenograft model [24], and
in a mathematical approach used by Dingli et al. for modeling
a MV virotherapy [25]. The therapeutic outcome depends on
both viral characteristics and tumor dynamics. Therefore, for
fixed viral infectivity θinf and persistence within the tissue
determined by γv , the key parameters that control treatment
success are the virus entry k, viral diffusivity q, characteristic
lytic time Tl , and tumor growth rates.

Concerning the virotherapy of solid tumors, two main
results deserve special attention. First, in the case of low virus
entry (k = 1), successful therapeutic outcomes were observed
only at large, but realistic, initial m values and viral-burst sizes.
It must be mentioned that the viral-burst size used in Ref. [8],
equal to the initial viral load, was one order of magnitude
greater than those of the larger viral-burst sizes observed for
real oncolytic viruses. In turn, the large initial m required by
successful virotherapies in our present simulations with k = 1
raises the question of the clinical risks involved. Viral doses
ranging from about 107 pfu (plaque-forming unit) (m ≈ 0.08)
to 109 pfu (m ≈ 8) were used in experimental tests [26]. Also, it
is known that the oncolytic adenovirus dl1520 (or ONYX-015)
is well tolerated at the higher practical, administered doses
(2 × 1012–2 × 1013 particles) [6]. However, at very high viral
titer (about 1 × 1014 particles per kg), this virus caused
the death of a gene therapy patient with ornithine-cystosine
transferase deficiency [27]. Hence, the use of reduced viral
doses is pursued in clinical applications, particularly in order
to allow for systemic administration.

Successful outcomes could be accomplished by raising
the viral entry k (see Fig. 5). Indeed, k represents the
average number of viruses entering a cancer cell at infection.
Thus, large values of k result in the high production of
new viruses (v0 ∼ bs , the viral-burst size) that are released
after cell lysis. This local enhancement of the free-virus
load increases, in turn, the probability of further cancer-
cell infection. The consequence of such a positive feedback
cycle is that the initial viral load is sufficient to trigger a
powerful first wave of infection whose successive rounds
end in destroying the tumor. Moreover, as shown in Fig.
5(b), a relatively slight and simultaneous increase of both
the virus entry and m can be enough to guarantee a suc-
cessful oncolytic treatment of compact tumors with safe viral
doses.

Second, considering that large viral loads involve risks
and that an elevated virus entry may represent a significant
technical barrier, treatments based on intermediate m and k

values become of special interest. In this range (m ∼ 1 and 1 �
k < 2), the key factors determining the therapeutic success
are viral diffusivity and cytolytic period. The probability of
tumor eradication vanishes for viruses that diffuse very quickly
even at large m. Indeed, a very rapid spreading disperses
the viruses outside the growing tumor where they cannot
trigger new waves of infection. In turn, since the growth of
compact tumors is faster, an effective oncolytic virus must not
diffuse more slowly than the tumor spreading. At intermediate
values of k and m, in addition to being able to spread at
a rate similar to that of the growing tumor, the virus must
induce the lysis of infected cancer cells neither too slowly nor
too quickly. If the time Tl for cytolysis is very short, voids
containing the majority of the newly released viruses rapidly
form throughout the tumor. These viruses cannot trigger new
infection waves, and cancer cells at the border of some voids
escape. In turn, if Tl is very long, the successive waves of
infection are generated at a low frequency, too separated in
time to destroy the tumor. These findings are consistent with
the predictions in Fig. 5 of Ref. [8] which suggests that the ideal
oncolytic virus should have neither a very short nor a long lytic
cycle.

Summarizing, a successful virotherapy of compact tumors
demands the simultaneous optimization of several factors:
the use of oncolytic viruses with high replicative capacities
(burst sizes), adequate diffusivities (rapid but not too rapid
spreading), and lytic cycle (neither too short nor too long)
as well as a large initial viral entry. The importance of the
initial m, strongly emphasized by Demers et al. [28] and Myers
et al. [23], is much less than that associated with the virus entry.
In those experiments, huge variations in the initial viral load,
from 104 to 1010 viral particles, were performed. Such values
correspond to an m value ranging from around 0.5 to about
500. As one can intuitively expect, our simulations evidence
that a huge m eradicates the tumor independent of other
factors (viral traits and tumor growth dynamics). However, for
virotherapies based on low virus entries and m there is, with
a fixed viral diffusivity, an optimal range for its lytic-cycle
period because the virotherapy fails if the cytolysis is either
too short or too long. This result is in complete agreement
with the findings of Paiva et al. [8]. Furthermore, we point
out that the virotherapeutic efficacy is much more sensitive
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to other parameters, for instance viral entry and burst size,
than to m.

Regarding papillary tumors, a virotherapy based on small
virus entry (k = 1) and initial viral load (m = 1) can control
cancer growth. In this case the key factors determining a
successful therapeutic outcome are the virus spreading and its
replicative ability. Indeed, for small viral-burst sizes, the ther-
apeutic outcome for papillary tumors is almost independent
of Tl . We find that the virotherapy fails for oncolytic viruses
with high diffusivities. Success probabilities greater than 70%
are observed only for very small diffusivities (q � 6). In
contrast, for a fixed diffusivity, the therapeutic success of
highly replicative viruses exhibits a reentrant behavior as a
function of their lytic periods as shown in Fig. 4(b). Again,
our simulations suggest an optimal range for the time Tl

demanded by the oncolytic virus to kill an infected tumor
cell.

Finally, for fixed small virus entry (k = 1) and initial viral
load (m = 1), optimal oncolytic viruses to treat diffuse tumors
should exhibit high replicative rates and intermediate diffusivi-
ties. For faster viral spreading (q � 8), a successful therapeutic
outcome has a complex dependence on Tl . A reentrant behavior
is observed, leading to a decreasing probability of success at an
intermediate range of the time Tl for cytolysis. In contrast, for
oncolytic viruses having much slower spreading rates, highly
successful therapies require short times to induce the lysis of
infected cancer cells.

A relevant issue is how our simulation results can be
compared with those obtained from experimental assays of
or clinical trials on oncolytic virotherapy. Unfortunately, this
represents a difficult task due to the scarcity of quantita-
tive experimental data. Most of the studies on oncolytic
virotherapy have focused primarily on the safety of these
vectors and evaluate the anticancer efficacy of viruses.
Tests in vitro involve cancer cells cultured in monolayer or
three-dimensional compact-tumor spheroid models. Either the
xenograft models in experimental animals or the human tumors
treated in clinical trials are also solid tumors with compact
morphologies. Furthermore, since very distinct tumors were
treated using several different viruses, both the system and
the therapeutic conditions varied widely. Hence, almost all
parameters have changed simultaneously from one experi-
ment to another. Basically, the results are qualitative: the
antitumor efficacy of viruses has been limited. Virotherapy
is impaired by multiple factors, particularly low viral loads,
suboptimal delivery to target sites, barriers to virus spreading
within tumors, and the host immune response against these
vectors.

Our simulations reveal that the virus entry k is the major
parameter determining the therapeutic outcome. Once its value
is fixed, the lower is the initial dose of virus administered,
and the smaller is the chance of tumor eradication. Experi-
mental [23] and mathematical [25] results support this direct
correlation between m and therapeutic success. Also, our
simulations indicate that virus replication within the tumor
tissue, modelled by the viral-burst size bs , is the next main trait
in the hierarchy of factors determining virotherapeutic success.
Such findings are supported by observations from Friedman
et al. [7]. Decreasing within the hierarchy, the viral diffusivity
emerges as the next key parameter for a successful virotherapy.

Experimental observations reporting that antitumor efficacy
increases as intratumoral virus spreading is enhanced due to
voids and channels generated by induced-cancer-cell apoptosis
inside a tumor [29] are in agreement with this result. Finally,
experimental data that confronts our results concerning the
effects of the cytolytic time on the therapeutic outcome are
lacking.

From our model simulations, the efficiency of virus entry
in a cell, its replicative capacity inside an infected cell,
and its diffusivity within the tumor tissue emerge as three
crucial factors to fuel and amplify the successive rounds of
infection necessary to control or eradicate the tumor. Hence,
it is worthwhile to briefly comment on some trends of the
experimental research in these directions. Concerning virus
entry, a major challenge is the engineering of entry proteins
to achieve higher levels of infectivity. But this approach
is diametrically opposite to the search for entry inhibitors,
neutralizing antibodies, and vaccine immunogens that elicit
antibodies against virus-entry proteins [30,31]. Instead of
fighting a virus, the goal is to transform it into a better entry
machine while reinforcing its retargeting specificity. Here,
experimental results are scarce and constrained to comparative
analysis of the infectivities of distinct oncolytic viruses.
Thus, for instance, Ketola et al. [1] compared the oncolysis
in five human osteosarcoma cell cultures infected with the
Semliki Forest virus VA7-EGFP and the adenovirus Ad5	24.
They found that the kinetics of adenovirus infection were
much slower than those of the Semliki Forest virus. Large
amounts of adenoviruses were required to assure its spread
throughout the cell cultures and to lyse all the osteosarcoma
cells. Also, the authors demonstrated the differential efficacy
of the Semliki Forest virus against human osteosarcoma cell
lines. Virus spreading was observed in four of five cell lines
studied. In particular, the cell lineage MG-63 seemed to be
relatively resistant to the VA7-EGFP infection. Clearly, these
results can be understood in terms of the differences in virus
entry and replicative capacities as evidenced in our model.
Also, some attempts to enhance the replication of oncolytic
viruses have been performed since, for instance, the burst
size of a wild-type HSV is one or two orders of magnitude
greater than that of the engineered vector hrR3. Alternatives
include placing viral genes under the transcriptional control
of tumor-specific promoters [32] and mutating viruses to
express genes that overcome tumor-cell pathways blocking
viral protein synthesis [33]. Again, more attention needs to
be paid to this approach. A greater activity is observed in
the field of virus spreading. Several vasoactive cytokines, or
physical treatments, such as radiation or heat, increase tumor
vessels permeability and blood flow, leading to faster diffusion
[34]. Such strategies can be particularly relevant for systemic
virus administration and in treating tumors at the vascular
stage, mainly compact tumors exhibiting fast growth as our
results indicate. The incorporation of lytic enzymes, such
as hyaluronidase, into a conditionally replicative adenovirus
could also increase diffusion rates [35]. Furthermore, agents
that decrease the glycosaminoglycan concentration [36] or that
degrade interstitial collagen [37,38] can improve transport
in tumors. For instance, tumor collagen can significantly
hinder diffusion, and it was shown [36] that the matrix
metalloproteinases-1 and -8 can modulate the tumor matrix and
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improve the distribution of an oncolytic virus throughout the
tumor without affecting cell proliferation or viral replication.
In addition, a previous work [39] showed that the matrix
metalloproteinase-8 is antimetastatic, so it could be safely
used to improve the viral diffusion in tumors. Strategies that
change the tumor microenvironment are particularly important
in enhancing the efficacy of virotherapies against avascular
tumors and occult dormant metastases.

V. CONCLUSIONS

In summary, the outcomes of oncolytic virotherapies on
solid tumors were investigated through computer simulations
of a multiscale model for cancer growth. The model com-
bines macroscopic diffusion equations for the nutrients and
stochastic rules for the actions of individual cells and viruses.
Our simulations reveal that in immunosuppressed hosts, the
antitumor efficacy of a virus is determined primarily by its
efficiency of entry, its replicative capacity within the cancer
cell, and its ability to spread throughout the tissue. However,
the balance between these viral traits depends on the tumor
morphology. Indeed, the virotherapy of papillary tumors based
on oncolytic viruses with small diffusivities is highly effective
(success probability �80%) even for small virus entry but high
replication capacity. Furthermore, the therapy fails if the virus
both spreads and lyses infected cells very rapidly. In contrast,
for compact tumors, the therapy fails if vectors characterized
by small virus entry and slow intratumoral spreading are used
at safe values of m. In turn, for diffuse tumors, an intermediate
viral diffusivity maximizes the therapeutic success. Therefore,
the design of efficient oncolytic viruses must take into account
the dynamics of tumor growth, which is fast for compact
but slow for papillary cancers. It is the tumor growth that
determines the optimal traits for oncolytic viruses. These traits
do not necessarily include high diffusivity and cytolysis, which
are naively assumed as necessary conditions to amplify the
therapeutic inoculum in situ and promote fast viral spreading
throughout the affected tissue.
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APPENDIX A: SIMULATION PROTOCOL

The simulations were implemented as follows. At each
time step, Eq. (1) is numerically solved in the stationary
state (∂φ/∂t = 0) through relaxation methods. Also, a fraction
of the free virus present at every site is cleared, and each
remaining virus performs an independent random walk with
q steps. Provided the nutrient concentration and viral load at
any lattice site, Nc(t) cancer cells are sequentially selected at
random with equal probability. (Here, Nc(t) is the total number
of tumor cells, uninfected or infected, at time t .) For each one of
them, a tentative action (division, death, migration, or infection
for an uninfected cancer cell and lysis for an infected one)
is randomly chosen with equal probability. The selected cell
action is implemented or not according to the corresponding
local probabilities determined by Eqs. (2)–(5), and (7), and the
time is incremented by 	t = 1/Nc(t). If the carried action is
the infection of the selected cell, an integer random number
nv distributed as a Poissonian is generated and compared with
the local virus population σv . If σv � nv , nv viruses invade the
uninfected cancer cell, decreasing σv by nv . Otherwise, this
process will be repeated until it generates nv � σv . In turn, if
the carried action is the lysis of the selected cell, v0 new viruses
are introduced at the site of the lysed cell. At the end of this
sequence of Nc(t) updates, a new time step starts, and the entire
procedure (solution of the reaction-diffusion equations, virus
clearance and spreading, and cell dynamics) is iterated. It is
worthwhile to note that a particular cell can possibly perform
more than one action in a certain time step, but on average
every cancer cell will perform the same number of actions.
Also, the increment time 	t assures that, on average, each
cancer cell present at a given time has a chance to perform an
action during that time step. The simulations stop if any tumor
cell reaches the capillary vessel or the tissue border or if the
tumor is eradicated (Nc = 0).

APPENDIX B: PARAMETER ESTIMATES

In all simulations, the tissue is represented by a square
lattice of linear size L = 500 and lattice constant 	 = 10 μm,
corresponding to a tissue section of about 25 mm2. Assuming
a DNA synthesis phase of the cell cycle of about 11 h [40],
one time step in the simulations corresponds to about 4–5 h.
The parameters θdiv = 0.3 and λ2 = 10 were fixed. In order to
generate compact, papillary, and disconnected tumor growth

FIG. 7. (Color online) Progress curves—Nc (solid black line) and vfree (dashed blue line)—for compact tumors. The values q = 4, Tl = 16,
bs = 100, and N0 = 5000 are used in all figures. In the case of tumor eradication, m = 5 and k = 5 are used. The coexistence of tumor cells
and viruses is observed at m = 1 and k = 1. Finally, virus eradication occurs at m = 0.01 and k = 0.01.
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FIG. 8. (Color online) Progress curves—Nc (solid black line) and vfree (dashed blue line)—for papillary tumors. The values q = 25, Tl = 4,
bs = 100, and k = 1 for the virus and m = 1 and N0 = 5000 for the virotherapy are used.

patterns, distinct values of the parameters θdel, θmov, λ1, and
α were used as listed in Table I. The parameters γv and
θinf , characterizing the oncolytic virus, were also fixed (see
Table I). The key parameters controlling virus diffusion q;
entry k; replication bs ; the time for triggering cell lysis Tl ;
and m, specifying the virotherapy, were varied. The therapy
begins when the tumors have either N0 = 5000 or 10 000
cells.

The value fixed for γv , controlling viral clearance, is the
same used in Ref. [8] and corresponds to a virus with a long res-
idence time in the tissue (low clearance rate). In turn, the value
θinf = 0.01 corresponds to a highly infective oncolytic virus
(Pinf = 90%). Both of them are rather arbitrary, but for com-
parison, 70% of the hrR3 viruses successfully invade unin-
fected glioma cells [7]. The other viral parameters were varied
in ranges biologically reasonable. Indeed, bs ranged in the in-
terval [10,100] as experimentally observed for the burst size of
the oncolytic virus hrR3 [7]. The m also varied within ranges
used in virotherapy trials [26]. For comparison, viral doses
ranging from about 107 pfu (m ∼ 0.08) to 109 pfu (m ∼ 8)
were used in experimental tests [26]. The characteristic time
for lysis Tl was varied as in Ref. [8]. Assuming a simulational
time step of 4 h, Tl ranged from 8 h to 5 d. For comparison,
the mean lifetime of glioma cells infected by hrR3 is ∼18 h

FIG. 9. The probability of success of a virotherapy applied to
compact or solid tumors using m = k = 2. On the left bs = 10, and
on the right bs = 100. N0 = 5000 is fixed for the virotherapy. As
can be noted, an unexpected coupling between Tl and bs is observed.
Indeed, for a large viral-burst size bs = 100, the probability of success
is practically independent of Tl . However, for a small value (bs = 10),
this probability decreases with increasing Tl for q < 10 (small viral
spreading) but increases with Tl at larger q values. It seems that at
a high diffusivity, even a virus with a low replicative capacity can
sustain successive waves of infection by lysing the scattered cells
that survive the previous rounds of infection.

[7], and the lytic cycle of the adenovirus Ad2 is 32–36 h.
Therefore, the simulations assume viruses which are 4 times
faster to 4 times slower than the Ad2. The values considered
for the virus entry k lead, on average, to cell infections by
few viruses simultaneously. Unfortunately, we could not find
direct measures or estimates for k in the literature. Finally,
q (the number of steps in a viral random walk), a measure
of the viral spreading capacity, was estimated as follows.
Since in a random walk 〈r2〉 = Dt or 〈r2〉 = q	2, where D

is the diffusion constant, t is the diffusion time, and 	 the
length step, the virus diffusivity can be determined from q.
Assuming 	 ∼ 10 μm (lattice constant = linear cell size) and
t = 4 h, one finds Dmin = 2.5 × 10−5 mm2h−1 for q = 1 and
Dmax = 6.25 × 10−4 mm2h−1 for q = 25. These are the limit
values used for the virus diffusivity in the simulations. Taking
as a reference value D = 1.8 × 10−4 mm2h−1, the diffusivity
of the HSV in tumors with high collagen content [41], Dmin is
∼14 times less than and Dmax is ∼3.5 times greater than this
reference.

APPENDIX C

Here, additional results concerning the progress curves of
viruses and uninfected cancer cells for compact and papillary
tumors are shown in Figs. 7 and 8, respectively. Also, the
effect of the viral-burst size for oncolytic agents characterized
by moderate (k = 2) and high (k = 5) virus entry are exhibited
in Figs. 9 and 10, respectively.

FIG. 10. The probability of success of a virotherapy applied to
solid tumors using m = 1, k = 5, and N0 = 5000. On the left bs = 10,
and on the right bs = 100. Notice that the therapeutic success
decreases only for a virus with very low spreading, particularly when
its replicative capacity is low as well.
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