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Molecular motors in conservative and dissipative regimes
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We present a theoretical study of a rotatory molecular motor under a conservative torque regime. We show that
conservative and dissipative regimes present a different observable phenomenology. Our approach starts with
a preliminary deterministic calculation of the motor cycle, which is complemented with stochastic simulations
of a Langevin equation under a flashing ratchet potential. Finally, by using parameter values obtained from
independent experimental information, our theoretical predictions are compared with experimental data of the
F1-ATPase motor of the Bacillus PS3.
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I. INTRODUCTION

Molecular motors are the machinery of the cell whose
energetic input is either chemical energy such as the hydrolysis
of a nucleotide or the ion flux across a membrane [1–8]
following the corresponding physical and chemical laws [1,2].
There is a rich variety of molecular motors: linear ones such
as kinesin and myosin [3,4] and rotatory ones such as the
bacterial flagellar motor and F1-ATPase [5–8]. These devices
are involved in different tasks such as transport of vesicles
along the neural axon, propulsion, pumping, and muscle
contraction.

The F0F1-ATPsynthase motor is a rotatory reversible
machine composed of two main motor parts F1 and F0, which
are joined through the central γ shaft [9]: F1 works with the
hydrolysis or catalysis of ATP while F0 works with an ion
flux [8,10]. In its direct working regime, F1F0-ATPsynthase
uses the energy available from an ion gradient to synthesize
ATP from its hydrolysis products. Reversibly, for adequate
concentrations of ions and nucleotides, F1 can hydrolyze ATP
driving the F0, which is now acting as an ion pump [5].
Moreover, the F1 motor part can be isolated by generating
a rotatory motion of the γ shaft out of the hydrolysis of ATP.
In this regime, the F1 motor part is called F1-ATPase.

Initial experiments were done by attaching a micrometric
load to the shaft [11,12]. From the tracking of the load, the
angular trajectory of the shaft became available, thus making it
possible to study the velocity of the motor and its dependence
on the ATP concentration and the friction of the load [13–15].
An experimental assay using attached magnetic or dielectric
beads [16,17] allowed one to exert a constant torque τc on the
motor that can either assist or hinder the motion.

All these experiments indicate that the torque applied
on molecular motors is an important control parameter to
understand the internal dynamic mechanisms of these devices.
There are two physical ways to impose an external torque on
the motor: One is the above-mentioned conservative torque
τc acting directly on the motor, while the other is the torque
exerted by the drag of the load attached to the motor axis,
which produces a dissipative torque. While the former can be
controlled directly by the experimental setup, the dissipative
torque is an indirect observable depending on the velocity of
the motor and the rotational friction coefficient of the attached
load. Moreover, the domains of both torques are different.
Dissipative torques always operate with positive velocities. In

contrast, the domain of conservatives torques is not bounded
and works with both positive and negative velocities.

A previous study allowed us to understand quantitatively
the working of the motor in the purely dissipative case
[18]. The aim of this paper is to extend our approach to
accommodate the conservative regime as well. Moreover,
using experimental information, we will apply our model to
interpret the experimental data for the velocity of the F1 motor
of the Bacillus PS3.

The structure of the paper starts with the extension of the
model presented in Ref. [18]. We study the effects of the
conservative torque in the different processes composing
the cycle of the motor. We then describe how to obtain the
specific parameter values of the model from the chemical
experimental information on F1. We continue with the explicit
development of the deterministic analysis applied to this
particular motor and its comparison with the available physical
experimental and stochastic simulation results. Finally, we end
with a summary and perspectives.

II. MODEL

The average velocity ω of any rotatory motor can be
calculated from the ratio between the total length θ (tT )
advanced versus the corresponding time spent tT . Since a
molecular motor performs its function in closed identical
cycles, the mean velocity of the motor can be calculated as the
mean velocity along a complete cycle [18–20]. In this cycle,
the motor advances a certain characteristic angular distance
θ0 = 2π/3, which is fixed by the biomolecular structure of the
motor. In contrast, each cycle is composed of a set of processes
that last different average times ti . Therefore, our first guess to
estimate the velocity of the motor is

ω = θ0∑
ti

, (1)

where the summation runs over all the different processes
composing the cycle.

Hence, in order to obtain an expression for ω, the nature
of the processes making up one step must be clarified to get
an estimation of the corresponding ti . Since the aim of this
analysis is to reproduce the average velocity of the motor, it is
not necessary to know the particular time distribution for each
ti , but only its mean value. Therefore, this approach allows us to
get a preliminary analytical expression for the torque-velocity
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FIG. 1. Scheme of the dynamics of the F1-ATPase. The shaft
(circle) advances by the force introduced from the flashing between
the relaxed potential (solid line) and the excited potential (dashed
line). Solid thick arrows show the advance of the shaft along each
substep under the corresponding torques τ1 and τ2, while dashed
thick arrows point out the different flashings occurring along the
step and correspond to conformational changes of the molecule. The
grayscale used for coloring the shaft indicates the time evolution of
each step (from darker to lighter tones). The scheme is presented
for (a) the pure dissipative case without external torque and (b) an
external conservative torque τc > 0 assisting the motion of the shaft.

curves without the complicate chemical kinetic pathways of
such motors.

Experimental measures point out two well-differentiated
alternating behaviors of the shaft: dwell (chemical) and
advancing (mechanical) times [13–15]. During the dwell
times, the motor fluctuates around a steady-state position. In
contrast, during each mechanical time it advances one substep.
The whole step is composed of two differentiated substeps
of size θ1 = αθ0 and θ2 = (1 − α)θ0, where the ratio α is
observed experimentally to be α � 0.7 [13].

A more detailed analysis of the shaft dynamics can be
described by a Langevin equation with a flashing ratchet
mechanism between two different sawtooth potentials V1 and
V2. Each potential represents one conformation state of the
protein, namely, an occupied catalytic site V1 and a free
catalytic site V2 with their corresponding torques τ1 and τ2

(Fig. 1).
With the presented elements, the cycle operation can be

analyzed. The energetic transduction cycle starts with the
motor in its relaxed state V2 (empty catalytic site) waiting for
an ATP molecule (Fig. 1). Once an ATP molecule arrives at
this site and the hydrolysis starts, it produces a conformational
change of the motor to its excited state (V2 → V1). The excited
potential drives the shaft to its minimum advancing the first
substep θ1. Then the shaft jiggles around this minimum. During
this catalytic dwell, the hydrolysis products are released to
the media. After that, the motor recovers the empty relaxed
conformation (V1 → V2) producing the second substep θ2.
Now the cycle is completed and the motor is again in its

relaxed conformation with an empty catalytic site, waiting for
the next ATP molecule.

A. Mechanical times

Since there are two different substeps, there will be
two different mechanical times. Considering an overdamped
regime in which the inertial force is neglected over the
friction of the system (due to its low Reynolds number),
the deterministic dynamics during the mechanical times are
described as

(γ0 + γL) ωi = τi + τc, (2)

where γ0 is the internal friction of the shaft inside F1, γL is the
friction of the load with the medium, τi is the motive torque
that the molecule applies on the shaft, and τc is the external
conservative torque applied to the load. The subindex i can
take two values i = {1,2} for each substep. The subindex 1
corresponds to the first substep caused by the excited potential
and subindex 2 corresponds to the second substep caused by
the relaxed one.

In Eq. (2), ωi is the velocity along the mechanical time
tmechi

. Both terms are related through the specific substep
distance �θi ,

tmechi
= �θi

ωi

= �θi

γ0 + γL

τi + τc

. (3)

The effective torque acting on the shaft τi + τc produces
a tilting of the driving potential (Fig. 1). Additionally, in
contrast to the purely dissipative case, if a conservative torque
is present, there is a constant torque acting on the load even dur-
ing the dwell times. Therefore, when the shaft is in a potential
minimum, its spatial distribution is shifted and the expected
spatial position of the particle does not coincide with the mini-
mum of the potential (Fig. 2). Hence this changes the effective
distance to cover for the next mechanical step once the exci-
tation occurs. An assisting torque will reduce the distance to
cover while a hindering torque increases it. The new average
starting position for the step can be analytically estimated from
the equilibrium distribution P (θ ) around the minimum of the
relaxed potential, which can be approximated as an infinite
linear piecewise well [21]. Accordingly, the probability is
divided in two parts: P− for θ < 0 and P+ for θ > 0 [22],
which for the ATP dwell are

P−(θ ) � 1

kBT

(
1

τc + τ2
− 1

τc − τ2

)−1

e(τc+τ2)θ/kBT , (4)

P+(θ ) � 1

kBT

(
1

τc + τ2
− 1

τc − τ2

)−1

e(τc−τ2)θ/kBT . (5)

The value of the shift δθ (τc) is

δθ (τc) = 〈θ〉 =
∫ ∞

−∞
θP (θ )dθ = kBT

2τc

τ 2
2 − τ 2

c

, (6)

which is a purely thermal phenomenon. Without thermal
fluctuations, the average relaxed position would coincide with
the minimum of the relaxed potential.

Equation (6) will be valid only if the dwell time is long
enough to allow the shaft to reach the equilibrium probability
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FIG. 2. Effect of a conservative torque in the equilibrium prob-
ability distribution of the shaft (gray shade) in the minimum of a
piecewise well (solid line). When no external torque is considered
(top case) the profile is symmetric and centered in the minimum of
the potential, while an external applied force (bottom case) shifts the
profile so the average position of the shaft does not coincide with the
minimum of the potential.

distribution. In the case of the second substep, the catalytic
dwell time prior to the second stroke is not long enough to
reach the equilibrium distribution [13]. Hence the shift advance
for �θ2 will not be taken into account.

With Eq. (6) and the definition in Eq. (3), we get the two
mechanical times using �θ1(τc) = θ1 − δθ (τc) and �θ2 = θ2

with the corresponding torques τ1 and τ2. Therefore, the
contribution of an external conservative torque not only is that
of modifying the total torque through Eq. (2) but also alters
the distances to cover in a mechanical substep.

B. Chemical times

Chemical times are the lapses when there is no shaft
advance. Due to the enzymatic nature of such times, the dwell
chemical time depends on the inverse of the ATP concentration
tATP. The remaining catalytic times are grouped into t0 and
stand for the rest of the reactions independent of [ATP], such
as the release of products to the media or other internal tasks
needed by the motor [16,23]. These two contributions can be
grouped as

tchem = tATP + t0 = 1

kATP[ATP]
+ t0 ≡ t0

(
kM

[ATP]
+ 1

)
,

(7)

which has been rewritten in terms of a Michaelis-Menten
relation, in agreement with the average dwell time observed
in experimental data [13,18]. This expression also gives the
relation between the catalytic constant kATP and the effective
Michaelis-Menten constant kM ,

kM = (kATPt0)−1. (8)

However, even though during the chemical times there
is no mechanical stroke acting on the shaft, their duration
may be affected by the external forces. It has been observed
experimentally that an assisting conservative torque reduces
the dwell times while a hindering torque increases them [17].
Similar results have been observed for other molecular motors
[3]. An accepted theory to explain this phenomenon is that the
catalytic site is deformed due to the external force [24]. The
steric effects of this deformation change the probability of
the ATP molecule reaching its catalytic site. This phenomenon
is equivalent to considering the external torque as an external
catalyst or inhibitor in the reaction [25].

We assume now that kATP can be approximated by a linear
function of the external torque,

kATP = k0 + k1 τc, (9)

where the parameters k0 and k1 can be obtained from the
experimental data, as will be explained in Sec. III.

With the description of the different dwell and mechanical
processes, the total time for a cycle becomes available and the
angular velocity can be computed. This is done by introducing
Eqs. (3), (7), and (8) into Eq. (1),

〈ω〉 ([ATP],τc)

= θ0

[θ1 − δθ (τc)] γ0+γL

τc+τ1
+ θ2

γ0+γL

τc+τ2
+ t0

(
1 + kM (τc)

[ATP]

) . (10)

This is a simple analytical expression that will give information
on the chemical and mechanical substeps’ relevance.

C. Stochastic simulations

The energetic processes involved in the motion of the motor
are larger but comparable to the thermal energy and a correct
theoretical study should include thermal fluctuations [26,27].
In fact, thermal fluctuations are partially included in the shift
δθ [Eq. (6)], which is a thermal effect. Actually, thermal effects
can be extensively studied along the whole trajectory from the
simulation of the overdamped Langevin equation describing
the dynamics of the system. This is achieved by adding the
thermal force on Eq. (2),

(γ0 + γL)θ̇ = −V ′(θ,t) + τc + ξ (t), (11)

where ξ (t) is a Gaussian white noise of correlation

〈ξ (t)ξ (t ′)〉 = 2kBT (γ0 + γL)δ(t − t ′) (12)

and −V ′(θ,t) is the corresponding torque of the flashing
potential,

V (θ,t) = V1(θ ) + [V2(θ ) − V1(θ )]η(t). (13)

The flashing mechanism of the potential is determined by
the time-dependent function η(t), which can switch between
two values 0 and 1. If the motor is in the excited one, η = 0,
which results in V (θ,t) = V1(θ ); if the motor is in the relaxed
one, η = 1, which results in V (θ,t) = V2(θ ).

In order to carry out the simulations, we propose explicit
transition times between both states, which depend on the
working of the motor and must be extracted from the
experimental observation of trajectories. The most important
source of stochasticity is observed experimentally to be that
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of the ATP dwell time s, which is observed to follow a
two-step rate-limiting reaction that can be well approximated
by a single-step first-order reaction with an exponential
distribution [28]

P (s) = e−skATP[ATP]

kATP[ATP]
, (14)

which has a mean dwell time of (kATP[ATP])−1, as seen
in Eq. (7).

In contrast, the catalytic release time t0 and the mechanical
times have not been seen to have a relevant variation in time.
Several simulations considering stochasticity in t0 and tmech

have been carried out without obtaining variations in the
resulting velocity. Therefore, they will be considered constant
from here on.

Once the times are well defined, the flashing potential can
be simulated with the occupation times texcited = tmech1 + t0,
which is constant in time, and trelaxed = tmech2 + s, where s

is random following Eq. (14). The numerical simulations are
performed using standard algorithms. More information can
be found in Ref. [18].

III. MODEL PARAMETERS OF F1-ATPASE
FOR BACILLUS PS3

Up to now, all the parameters of the model have been
identified for a generic F1-ATPase rotatory motor. In this
section we show how to obtain their effective values for the
specific F1 motor of Bacillus PS3.

There is a great variety of F1-ATPase rotatory motors, each
one operating in different scenarios. Our model can incorporate
these differences in the model parameters, which have to be
evaluated for each particular case and set of circumstances. In
doing so we have to use the available experimental information
concerning chemical reaction rates, experimental torques, etc.,
avoiding the use, if possible, of a fit of the experimental
velocities. The model parameters for Bacillus PS3 have been
obtained as follows.

First of all, it is useful to split the parameters into
three groups. One group includes those parameters that are
controlled externally through the experiment. They are usually
the concentration of [ATP], the external conservative torque
τc, and the friction of the load attached to the gamma shaft γL.

A second group comprise those parameters that are specific
to the Bacillus PS3 F1 motor. They do not change with the
external conditions. These block include the internal motive
torques of the motor τ1 and τ2, the free energy used in a step
�GATP, and the internal friction of the shaft γ0. Since these
parameters are independent of the realization, their values can
be extracted from different experimental setups. Actually, the
torque τ1 can be obtained from recent experiments performed
with the ADP-inhibited form of F1 [16]. These experiments
unravel the sawtooth potential form of the excited potential
around its minimum (corresponding to the first substep) and
a value of τ1 = 35 ± 2 pN nm can be extracted (Fig. 3). This
value is in agreement with an alternative experiment in which
the stalling force of the motor was seen to be approximately
−40 pN nm [17]. Accordingly, the value of the torque applied

units of

FIG. 3. Experimental values for the excited potential (circles) to
the left of its minimum. The potential introduces a torque of τ1 =
35 ± 2 pN nm. Data are extracted from Ref. [16].

from the relaxed potential for the second substep τ2 can be
obtained from �GATP and τ1 using the energy balance relation

�GATP = τ1θ1 + τ2θ2, (15)

which returns a value τ2 � 58 pN nm. From this last analysis
we have to expect a larger torque in the second substep.
Moreover, as different F1 motors operate in similar work
regimes, with the same free energy �G it is expected that
these values are shared with other F1 motors [14].

A third group consists of the parameters that are sensitive
to the particular experimental conditions. These parameters
are, in general, those related to the chemical kinetics of the
motor, which are k1, k0, and t0. The parameters k1 and k0 can
be obtained from experimental data of kATP in Ref. [17]. The
linear fit is shown in Fig. 4 and the explicit values obtained
are in Table I. The catalytic dwell parameter t0 ∼ 0.6 ms is
guessed by taking a reaction rate ratio that is equivalent to
that in Ref. [13]. These values for the reaction rate at zero
conservative torque (in the dissipative regime) return a value
that is different from previous experiments [13]. This is a
clear signature of the difference in concentration of ATP, ADP,

FIG. 4. Experimental results for the ATP binding constant. The
linear approximation in Eq. (9) for the binding fits well with the
experimental values extracted from Ref. [17].
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TABLE I. Table of parameters used in the theoretical calculations and numerical simulations for the PS3 F1.

Parameter Value

Control Parameters [ATP]
τc

γL 0.14 pN nm s

Motor Intrinsic Parameters �G 90 pN nm
τ1 35 pN nm
γ0 0.005 pN nm s

Experimental Setup Parameters k1 0.183 pN−1nm−1 μM−1 s−1

k0 9.164 μM−1 s−1

t0 0.6 ms

phosphate, and perhaps other ions changing the ionic strength
from both experiments. Hence, all the parameter values are
known (Table I) and can be used to compare and predict results
of F1 from Bacillus PS3.

IV. RESULTS

A. Average velocity

Preliminary results on the motor velocity are obtained
by introducing the parameter values in Eq. (10) for the
conservative torque in the wide domain (−40,60) pN nm.
The goodness of fit of this prediction can be established by
comparing Eq. (10) with experimental curves from Ref. [17].
A good qualitative and partially quantitative match between
theory and experiments is found without any free parameter
(Fig. 5), thus confirming that the effects of the external
conservative torque are well controlled by the model. However,
the uncertainty of the experimental error bars may be relevant
and more precise experiments could shed further light on
the goodness of fit of the theoretical results. Thus, using
the same approach as in Ref. [18] for a dissipative regime
with the appropriate physical and chemical changes, it is
possible to predict the dependence of the mean velocity versus
a conservative torque, a friction γL [18], and [ATP].

(r
ev

/s
)

FIG. 5. Angular mean velocity versus conservative torques for
three ATP concentrations. Solid lines are the theoretical prediction
in Eq. (10), dashed lines correspond to numerical simulations, and
symbols are from experimental data [17]. The parameters used are
those of Table I.

The simulation results are quantitatively similar to those
of the deterministic theoretical prediction as seen in Fig. 5.
However, simulations show that, in general, the velocity of the
motor is slower than the deterministic prediction, as it should
be. This effect comes from failed ATP hydrolysis processes
that do not produce a successful step, which is magnified
for hindering torques, similar to the behavior observed in
Ref. [29]. This phenomenon was analyzed theoretically in
Ref. [18]. However, the fidelity between simulation and
theory shows a certain degree of robustness against thermal
fluctuations.

It is interesting to note that the motor does not respond
in an equivalent way to the same torque values in different
regimes, namely, dissipative or conservative. This can be seen
in Fig. 6, where the torque-velocity relation is plotted in both
situations.

One particular case of these differences is observed for
the stall force of the motor. For a conservative hindering
torque, the motor stalls when the torque applied counters the
motive torque, τc(stall) = −τ1. In contrast, one could guess
that a dissipative torque will never be able to stop the motor.
Nevertheless, for large enough values of the friction of the
load γL, the motor velocity decreases so dramatically that the
dissipative torque tends to a constant value, which can be

(r
ev

/s
)

FIG. 6. Comparison between the velocities obtained from
Eq. (10) for hindering conservative torques (solid line) and dissipative
torques in the same range of values (dashed line). The dissipative
torque is obtained through the variation of γL. The parameters used
are those of Table I and [ATP] = 50 μM.
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calculated from Eq. (10),

τd (stall) = γLω|γL→∞ = θ0
�θ1
τ1

+ �θ2
τ2

� 40.5 pN nm. (16)

This result also shows that the stall dissipative torque can be
larger than the internal torques of the motor, which is not the
case for the stall conservative torque. This prediction of the
model can be checked experimentally.

B. Torque regimes and backstepping

The time distribution proposed in the preceding section for
the mechanical times is based on the shift of the equilibrium
distribution. It is valid when the external conservative torques
are smaller than the internal motive torques of the motor. Once
the internal torques are exceeded the motor is not able to retain
the shaft and the stepping is not driven by flashing assisting
torques but by jumps over a set of potential barriers.

Thus the limiting values of the conservative torques are
those of the excited potential, which are lower than the
relaxed ones. For values of external torques greater than the
motive ones, the experimental information is very poor and
no conclusions can be obtained. However, several comments
can be made, especially for large hindering torques. Now the
motor has two different behaviors: The motor either stalls and
stays fixed for large values of the torque or breaks and rotates
backward [17]. The stalling regime suggests that the excited
state is not stable when the motor goes backward flashing to
the relaxed state, which is able to retain the motor. Therefore,
in general, the motor is able to retain the shaft for hindering
torques larger than the excited advancing torque (Fig. 7).

In contrast, the slippage effect shows that the stalling
mechanism does not always work. In terms of our model this
would mean that the motor is not able to flash to the relaxed
state. It remains in the excited state and hence a high enough
hindering torque may cause backward steps. Therefore, this

(r
ev

/s
)

FIG. 7. Different behaviors for high values of hindering torques
compared with experimental results (crosses). Usually the motor
stays still around ω = 0; however, slippage events (crosses inside
circles) allow backward motion. The velocity during the slippage
is the one fixed by the excited potential (dashed line), while the
measured velocity must be the result of a mixture of both behaviors,
fixed and slippage (shaded area). Experimental data are extracted
from Ref. [17].

is equivalent to the case of a particle falling along a tilted
sawtooth potential. Experiments show that the slippage effect
is not permanent, but lasts only a few steps. Therefore, there
will be a maximum backward velocity fixed by the velocity of
a particle trapped in the excited state. In real experiments, since
motors present both behaviors, slippage and rest behavior, the
velocity measured must be an intermediate velocity between
ω = 0 and the velocity for a fixed excited potential (Fig. 7).
Therefore, the phenomenology observed experimentally is
explained easily from the framework of our model, which
also predicts correctly the velocities observed in each regime.

V. CONCLUSION AND PERSPECTIVES

In this paper the dependence of the velocity of the F1-
ATPase with an external conservative torque has been studied.
In contrast to the purely dissipative case, the conservative
torque is always present in the dynamics. This scenario has
introduced three theoretical elements in the description of the
motor dynamics: the effective torque τi + τc, the shift of the
rest state δθ , and the kinetic constant dependence kATP(τc).
Thus the mechanisms of the stepping altered by the external
torque have been identified and quantified. In addition, the
values of all the parameters of the model have been extracted
from complementary experimental information that is different
from the data of Fig. 5. This gives an added value to the
predictive power of the model.

Both of our theoretical approaches, deterministic and
stochastic, allow us to compare the conservative regime with
the dissipative one. Each regime returns a different behavior
with a characteristic torque-velocity profile, i.e., for the same
value of the torque in each regime, distinct average velocities
are obtained. This also implies a different available range of
torques and different stall torques. The physical origin of these
facts appear because the conservative torque is constant in
time while the dissipative torque depends on the instantaneous
velocity of the motor.

In order to measure experimentally these predictions,
experimental assays are necessary in which the same motor
works in the two regimes. These observations must be done
in the same experimental conditions since there is a strong
dependence on the effective experimental parameters k1, k0,
and t0. The measures of these different behaviors in the same
setup can give very useful information on the working of the
specific motor.

Although the theoretical results are in agreement with the
experimental data, there is still much experimental work that
remains unclear. Mainly, the uncertainty in the applied torque
for each bead is very high, so it is not possible to extract precise
values such as the saturation values for the hindering torques.
More experimentally accurate quantities could help one obtain
more precise values for the torques, which would be useful
in predicting a more accurate description of the potentials.
This model may be able to determine the extent to which the
precision in such parameters must be improved in order to
obtain further information on this motor.

Moreover, even though the model returns reliable informa-
tion on the operation of the motor, the results are limited to
a regime in which the external torque does not surpass the
values of the internal torques of the potential. Beyond this
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parameter region, the model can have different interpretations.
A deeper exploration of trajectories under larger torques could
unravel interesting properties of the motor. It should be noted
that in those regimes, the analytical expression in Eq. (1)
needs to be revised since the regular stepping phenomenon
is lost.
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