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Generalized theory for current-source-density analysis in brain tissue
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The current-source density (CSD) analysis is a widely used method in brain electrophysiology, but this method
rests on a series of assumptions, namely that the surrounding extracellular medium is resistive and uniform,
and in some versions of the theory, that the current sources are exclusively made by dipoles. Because of these
assumptions, this standard model does not correctly describe the contributions of monopolar sources or of
nonresistive aspects of the extracellular medium. We propose here a general framework to model electric fields
and potentials resulting from current source densities, without relying on the above assumptions. We develop a
mean-field formalism that is a generalization of the standard model and that can directly incorporate nonresistive
(nonohmic) properties of the extracellular medium, such as ionic diffusion effects. This formalism recovers the
classic results of the standard model such as the CSD analysis, but in addition, we provide expressions to generalize
the CSD approach to situations with nonresistive media and arbitrarily complex multipolar configurations of
current sources. We found that the power spectrum of the signal contains the signature of the nature of current
sources and extracellular medium, which provides a direct way to estimate those properties from experimental
data and, in particular, estimate the possible contribution of electric monopoles.

DOI: 10.1103/PhysRevE.84.041909 PACS number(s): 87.19.le, 87.85.dm, 87.17.Aa

I. INTRODUCTION

The current-source density (CSD) analysis [1,3] is a method
consisting of estimating the underlying current sources from
a series of recordings of the extracellular electric potential.
This method is widely used in neuroscience and applies well
to layered structures of the brain, such as cerebral cortex,
hippocampus, or cerebellum [1]. The CSD analysis is based on
the “standard” model of electric potentials in biological tissue
[1,3,4], which rests on the hypothesis that the extracellular
medium is resistive (ohmic) and uniform. Other influences,
such as ionic diffusion, are assumed to play a negligible role
on the propagation of the electric field.

Based on this set of hypotheses, the equation that deter-
mines the electric potential at macroscopic scales (∼50 μm or
more) is given by

∇ · (σ e∇V ) = σ e∇2V = ∂ρ

∂t
, (1)

where σ e is the electric conductivity of the extracellular
medium. This expression can be obtained by applying the
differential law of charge conservation and Ohm’s law. The
term − ∂ρ

∂t
is interpreted as the volumic density Im of current

sources. This equation forms the basis of the CSD analysis
method [1–3,5].

According to Eq. (1), the electric potential V would only
depend on electric conductivity and not at all on electric
permittivity. However, Poisson’s law in a homogeneous
medium (ε∇2V = −ρ) implies that V will be twice smaller
for twice larger ε with the same charge distribution, so it
is paradoxical that permittivity is not taken into account in
CSD analysis. Moreover, according to Eq. (1), the electric
potential is determined solely by the charge conservation law
and independently of Poisson’s law, which is contradictory
with Gauss’ law in Maxwell equations.

*Corresponding author: Destexhe@unic.cnrs-gif.fr

If we take Gauss’ law into account, we can write

∂ρ

∂t
= σ e∇2V = −σ e

ε
ρ.

The general expression for ρ is:

ρ(�x,t) = ρ(�x,0)e− t
τMW ,

where τMW = ε
σ e is the Maxwell-Wagner time of the medium.

However, τMW is usually considered as negligible (typical
values for biological tissue are τMW ≈10−10s, with σ =
0.3S/m, and ε ≈ 10−10F/m), such that the current source
density must be approximately zero, which is paradoxical. One
way to resolve this paradox is to consider that the Maxwell-
Wagner time is not negligible, or that electric parameters
display strong spatial variations. However, such conditions
contradict the hypothesis that the medium is resistive and lay
outside the domain of validity of Eq. (1) because in this case the
impedance of the extracellular medium is complex in Fourier
space [6,7].

Despite this paradox, the standard model seems to apply
relatively well to media such as brain tissue [1,3]. This model,
however, has the drawback that it cannot be used to determine
the validity of the hypotheses it is based on. Moreover, there
is no clear definition of microscopic or macroscopic levels
and, consequently, it is difficult to include possible frequency
dependencies that could result from different physical phe-
nomena at intermediate (mesoscopic) scales, such as ionic
diffusion or membrane polarization [7].

In the present paper, we introduce a more general for-
malism which does not rest on the hypotheses of classic
CSD where the medium is hypothesized to be uniform and
resistive, which also supposes that the electric parameters
are constant and independent of frequency. The goal of this
new formalism is to provide generalized expressions for CSD
analysis in nonresistive media. Our aim is also to provide
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a theory that is general enough to enable testing different
hypotheses concerning the nature of current sources and the
electrical properties of the surrounding extracellular medium,
which could then be directly estimated from experimental
data.

II. GENERAL THEORY

In this section, we derive a mean-field theory of the electric
field and potential resulting from current densities in biological
tissue, by staying as general as possible.

A. Definitions and scales

In the generalized formalism presented below, we will
define the current sources from conductance variations. We
will assume that the differential law of charge conservation
holds in a given domain D, without defining a current source
density per unit volume. We assume that the conductance
variations in cellular membranes (especially around synapses),
within domain D, are the principal origin of the extracellular
electric field. This assumption is more realistic and biological
compared to the “classic” assumption which is based on
current source densities per unit volume because real current
sources are caused by the opening or closing of membrane
conductances in neurons. Note that these two different points
of view can be complementary if we assume that the volumic
density of current source Im is

Im = −∂ρ

∂t
.

In this case, the two points of view are mathematically
equivalent. This is the reason why we wrote the source term
as − ∂ρ

∂t
in Eq. (1).

An important assumption of the present formalism is that
all observable phenomena can be modeled by fields that are
twice differentiable (class C2). While most fields will obey
this criterion, it will considerably simplify the mathematical
analysis to its simplest expression (commuting spatial and
temporal first-order derivatives). In mean-field physics, by
virtue of the Stone-Weierstrass theorem, it is always possible to
make a uniform-convergence approximation of the observable
phenomena by a mean-field model of class C2. Indeed,
because the mean-field of a discontinuous field of first kind is
necessarily a continuous field (the primitive of a discontinuous
function of first kind is continuous), this restriction to class C2

fields will not limit the applications of the theory developed
here. Moreover, the theory will remain general because most
fields are class C2 in practice. It will not apply to very particular
models, such as fields involving surfaces with infinitely small
thickness, current sources without volume, and fields that
necessitate infinite energies.1

Finally, the formalism developed below is only valid for
well-defined ranges of spatial and temporal scales. We will
consider scales greater than 1 μm (about 300 times the size

1In such particular cases, the partial and first-order derivatives of
fields �E, �D, �B, and �H are not defined for every point of space and
time.

of ions such as K+ or Na+, including solvatation). This scale
is chosen large enough for classic electromagnetism theory to
apply without ambiguity (although in principle it can apply to
scales down to a few nm). We will define as “microscopic”
scales of the order of 1 μm, while “macroscopic” scales will
be of the order of 50 μm or more. We will also consider the
typical range of frequencies of electrophysiological signals,
up to 10 kHz, for which the quasistatic approximation is
valid.

B. Mean-field Maxwell theory

We start from Maxwell equations where we consider the
spatial averages of the fields and electric parameters, which
will be denoted here by brackets 〈· · · 〉. The spatial average
is made over some reference volume, which is invariant.
Because of the scale invariance of Maxwell equations (e.g.,
see Ref. [8], chapter 4), the spatial averages of electric
field �E, electric displacement �D, magnetic induction �B, and
magnetic field �H are linked by the following linear operatorial
equations:

∇ · 〈 �D〉 = 〈ρfree〉 ∇ · 〈 �B〉 = 0

∇ × 〈 �E〉 = −∂〈 �B〉
∂t

(2)

∇ × 〈 �H 〉 = 〈��〉 + ∂〈 �D〉
∂t

where 〈��〉 and 〈ρfree〉 are the spatial averages of the current
density and free-charge density, respectively. These equations
allow one to find the general regularities that all models
must satisfy. For example, the laws of energy conservation
and momentum conservation can be deduced from this set
of equations [8]. In particular, by using the relation ∇ · (∇ ×
�C) = 0 (which is in general true for all vectorial fields of
class C2), one can deduce the differential law of charge
conservation:

∇ · (∇ × 〈 �H 〉) = ∇ · 〈��〉 + ∇ · ∂〈 �D〉
∂t

= ∇ · 〈��〉 + ∂∇ · 〈 �D〉
∂t

= ∇ · 〈��〉 + ∂〈ρfree〉
∂t

= 0 (3)

However, because the above equations relate the spatial
averages of interaction fields ( �E, �D, �B, �H ) with the spatial
averages of the two matter fields (��,ρfree), it is necessary
to complete them with a specific physical model to apply
them to a given biological medium. This specific model
must allow measuring spatial averages at a scale which is
determined by the measurement method (type of electrode
for example). Thus, the measurement system determines a
minimal reference volume, which necessarily implies to use a
mean-field formalism.

In general, (for all media of class C2), the fields 〈 �E〉,
〈 �D〉, 〈 �H 〉, and 〈 �B〉 are linked by the following general

041909-2



GENERALIZED THEORY FOR CURRENT-SOURCE-DENSITY . . . PHYSICAL REVIEW E 84, 041909 (2011)

equations:

〈 �D∗〉(�r,t) =
∫ +∞

−∞
〈ε〉(�r,τ, �E, �H )〈 �E〉(�r,t − τ )dτ

+〈 �C〉(�r,t, �E, �H ),

〈 �B〉(�r,t) =
∫ +∞

−∞
〈μ〉(�r,τ, �E, �H )〈 �H 〉(�r,t − τ )dτ, (4)

where μ and ε are, respectively, the absolute magnetic
permeability and absolute electric permittivity tensors. Here,
we have defined 〈 �D∗〉 = 〈 �D〉 + 〈 �C〉, where 〈 �C〉 is the source
field resulting from conductance variations. Note that in classic
electromagnetism, one defines the electric displacement rela-
tive to vacuum permittivity ε∞ by 〈 �Dω〉 = ε∞〈 �Eω〉 + 〈 �Pω〉
(in frequency space),2 which expresses the fact that the
polarization field is proportional to the electric field
through electric susceptibility 〈χω〉 (〈 �Pω〉 = 〈χω〉〈 �Eω〉). It
follows that 〈 �D∗

ω〉 = 〈ε∞〉〈 �Eω〉 + 〈 �Pω〉 + 〈 �Cω〉 = 〈εω〉〈 �Eω〉 +
〈 �Cω〉.

Considering Maxwell-Gauss’ law (∇ · 〈 �D〉 = 〈ρfree〉), and
the definitions of the interaction fields imply the fol-
lowing relations between charge density and interaction
fields:

∇ · 〈 �D∗〉 = 〈
ρfree

e

〉
∇ · 〈ε∞〉〈 �E〉 = 〈

ρfree
e

〉 + 〈ρ	cond〉 + 〈ρbound〉
∇ · 〈 �P 〉 = −〈ρbound〉
∇ · 〈 �C〉 = −〈ρ	cond〉, (5)

where 〈ρ	cond〉 represents the average variation of free charge
density produced by conductance variations, and 〈ρfree

e 〉 is
the average free charge density which does not result from
membrane conductance variations. Note that the divergence of
the field 〈 �C〉 depends on the exact mechanism of conductance
variation. If this mechanism does not produce monopoles, then
this divergence is zero. Also note that the field 〈 �C〉 is generally
assumed to be independent of the field 〈 �E〉, which is a valid
assumption for biological media in general, except if ephaptic
interactions must be taken into account.

We also have

〈��〉(�r,t) =
∫ +∞

−∞
〈σ e〉(�r,τ, �E, �H )〈 �E〉(�r,t − τ )dτ

+〈D〉∇〈ρfree〉, (6)

2 �E is the effective electric field and the polarization field �P is
produced by polarization of molecules and cell surface polariza-
tion. In general, the relation between these vectors is algebraic
in Fourier space, and thus a convolution integral in temporal
space.

where σ e is the electric conductivity and 〈D〉 > is the mean
ionic diffusion tensor.3 We define 〈D〉 > as follows:

〈D〉
N∑

i=1

∇〈
ρfree

i

〉 =
N∑

i=1

〈Di〉∇
〈
ρfree

i

〉
,

where the sums run over the different ionic species. Thus,
we can write that the part of current density caused by
concentration changes equals 〈D〉∇〈ρfree〉.4 In Eq. (6), we
have separated the current produced by ionic diffusion from
the current produced by other physical causes such as Ohm’s
effect, polarization, etc. Note that this separation was made
here for simplicity, but it is also possible to integrate diffusion
effects in the expression of the mean conductivity (see
Eq. (A 4) in Sec. A 1).

It is important to note that the first term in the righthand side
of Eq. (6) is not exclusively due to Ohm’s law (which relates to
energy dissipation) but can reduce to it in some cases [7,10]. In
general, Eq. (6) gives a time-dependent electric conductivity
(or frequency-dependent in frequency space), which is not the
case for Ohm’s law in general (see Appendix A 3). Also note
that the integrals in Eqs. (4) and (6) can be seen as convolution
products relative to time, in which case they take the form of
a simple product in frequency space.

Thus, according to this theory, it is sufficient to model
the physical and geometrical nature of the extracellular
medium by using electromagnetic parameters and diffusion
coefficients to simulate the interaction fields when the current
sources are known—this is usually called the forward problem.
Inversely, we can also deduce the physical characteristics of the
sources from the knowledge of the electromagnetic parameters
and interaction fields, as well as their spatial and temporal
variations—this is known as the inverse problem.

Finally, the integrals in Eqs. (4) and (6) must satisfy the
causality principle, according to which the future cannot
determine the present state of the system. For example,
the value of electric field 〈 �E〉 at time t + |	t | must not
influence the value of electric displacement 〈 �D〉 at time
t. Thus, the causality principle determines a supplementary
constraint on the possible values of tensors 〈μ〉, 〈ε〉, and 〈σ e〉,
which limits the number of possible mathematical models
of the extracellular medium. For instance, as detailed below
in Sec. II F, this principle imposes mathematical relations
between the electric parameters 〈ε〉 and 〈σ e〉, which are called
Kramers-Kronig relations for linear media.

3Because the law of ionic diffusion is given by ��mat = −D∇C when
the units of C are mol/m3 and when we have only one type of ion,
we have multiplied the expression of ��mat by −zF to yield the electric
current density �� = D∇ρ associated to each ionic species. z is the
valence of the ions considered, and F = 9.65 × 104C/mol is the
Faraday constant. The choice of the sign is according to the standard
convention. Note that if the fundamental charge is taken as that of the
proton, then one must multiply by the factor zF , but if it is that of the
electron, then the multiplying factor is −zF .

4Note that the spatial average of 〈D〉 will have similar values for
different ionic species because the diffusion coefficients of the main
ions (k+,Na+,Cl−,Ca++) have similar values for biological tissues
in physiological conditions (see [9]).
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The set of equations above define a mean-field formalism in
which Maxwell equations are formulated with spatial averages.
In the next sections, we consider different approximations to
this formalism.

C. The quasistatic approximation in mean field

The first approximation to the Maxwell equations is
the quasistatic approximation, which consists of decoupling
electric and magnetic variables. In general, the time variation
of 〈 �B〉 produces an electric field 〈 �E〉 (Lenz-Faraday effect),
the electric and magnetic variables are coupled in Maxwell
equations (2) by the following expression:

∇ × 〈 �E〉 = −∂〈 �B〉
∂t

. (7)

It was shown that for biological media and current sources,
the Lenz-Faraday effect is negligible [11]. In such conditions,
we can write

∇ × 〈 �E〉 = 0. (8)

Under this quasistatic approximation, the electric and
magnetic variables are decoupled in Maxwell equations, and
the electric field obeys

〈 �E〉 = −∇〈V 〉.
This approximation is also called the a priori quasistatic

approximation, by opposition to the a posteriori quasistatic
approximation, which consists of finding the general solu-
tion of Maxwell equations and later decouple the electric
and magnetic variables (see details in Ref. [11]). Although
these two approximations are not strictly equivalent, we will
only consider the a priori quasistatic approximation in the
remainder of this paper.

According to this approximation, Maxwell equations sim-
plify to the following expressions:

∇ · 〈 �D〉 = 〈ρfree〉
∇ × 〈 �E〉 = 0

∇ · 〈��〉 + ∂〈ρfree〉
∂t

= 0, (9)

where the current density 〈��〉 is linked to the electric field 〈 �E〉
by Eq. (6). Note that, contrary to the static cases (electrostatics
and magnetostatics), the fields 〈 �E〉, 〈 �D〉, 〈��〉, and 〈ρfree〉 are
here space- and time-dependent.

In the following, we consider the complex Fourier transform

Xω =
∫ +∞

−∞
X(t) e−iωtdt, X(t) = 1

2π

∫ +∞

−∞
Xω eiωtdω,

where ω = 2πf . Note that because of the linearity of the
spatial average, we have 〈 �X〉ω = 〈 �Xω〉.

Applying the complex Fourier transform to Eqs. (4), (6),
and (9) leads to

∇ · (〈εω〉∇〈Vω〉)=−〈
ρfree

eω

〉 + ∇ · 〈 �Cω〉
∇ · (〈

σ e
ω

〉∇〈Vω〉)= iω
〈
ρfree

eω

〉 − iω∇ · 〈 �Cω〉+∇ · (〈D〉∇〈
ρfree

ω

〉)
.

(10)

The first of these equations is Poisson’s law in mean-field.
Although, in some cases (electrostatics), the Poisson equation
is sufficient to determine the solution of the system, it is not
sufficient in the quasistatic case, and the second equation is
necessary to close the system. This second equation is the
differential law of charge conservation (in the presence of
diffusion) and takes into account the time variations of the
electric potential.

Multiplying the first equation of Eqs. (10) by iω and adding
the result to the second equation leads to

∇2〈Vω〉 + ∇〈γω〉
〈γω〉 · ∇〈Vω〉 = 1

〈γω〉∇ · (〈D〉∇〈
ρfree

ω

〉)
, (11)

where γω = 〈σ e
ω〉 + iω〈εω〉 is the admittance of the extra-

cellular medium. This equation is general and can be used
to calculate the extracellular potential in an extracellular
medium with arbitrarily complex properties (i.e., when the
electric parameters depend on frequency and space). It is a
generalization of expressions obtained previously [6,7]. The
righthand term accounts for ionic diffusion.

Because Maxwell equations are scale invariant, the expres-
sion above Eq. (11) is valid at all scales. Like in any mean-field
approach, the spatial scale can be chosen according to the scale
of the phenomenon that needs to be modeled, as well as the
physical size and distance between electrodes. For example,
in the case of CSD of mammalian cerebral cortex, one must
consider scales of the order of 50 μm to resolve the field
produced by each cortical layer.

Note that in the quasistatic approximation, the explicit
dependence of the electric field on magnetic permeability
μ completely disappears. However, there can still be an
implicit dependence through �H in nonlinear media, because
the electric field does not depend explicitly on magnetic
induction anymore.

D. The quasistatic approximation at larger scales

At small scales (≈1 μm), biological media such as the
cerebral cortex are far from homogeneous and isotropic. The
electric parameters can display large variations, for instance,
between fluids and membranes. However, at larger scales
(≈50 μm), such media can be considered as homogeneous
and isotropic. In such a case, the tensors 〈εω〉 and 〈σ e

ω〉 can
reduce to scalar quantities. Note that the fact of considering
larger scales suppresses the directional dependence of the
propagation of currents by a statistical equivalent, without
changing the frequency dependence produced by physical
phenomena at small scales. The transition from small scales
to larger scales gives the same form as Eq. (11), but with
scalar parameters, which will have an explicit dependence
on space, frequency, and the values of the field in gen-
eral.5 The rate of spatial variation of these parameters at

5Note that the space dependence is much smaller than the large
variations seen at microscopic scales, for example, between fluids
and membranes.
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scales of the order of 50 μm is approximately zero, such
that

∇〈
σ e

ω

〉∣∣
106μm3 ≈ 0

∇〈εω〉|106μm3 ≈ 0. (12)

Note that there can be a frequency dependence of the current
propagation, which results from microscopic inhomogeneities
of the electric parameters [6], from polarization phenomena
[10], or from ionic diffusion [7]. This frequency dependence
of the current will not disappear when considering larger
scales. On the other hand, new frequency dependencies
may appear, such as, for example, the transformation of a
frequency-independent conductivity tensor at small scales
(∼1 μm) to a scalar conductivity at large scales (∼50 μm) will
be associated to a frequency dependence of this macroscopic
conductivity (for details, see Ref. [7]). In agreement with
this, measurements of the macroscopic conductivity demon-
strated strong frequency dependence in different biological
tissues [12].

E. The linear approximation in mean-field

Still within the quasistatic approximation, we now consider
the further simplification that the extracellular medium is
linear. In a linear medium, the electric parameters are
independent of the values of the fields (note that this linearity
is different than that of Maxwell equations, which are always
linear). In this case, the electric parameters only depend on
space and time (or space and frequency).

In this case, the system of Eqs. (10) becomes linear at small
scales. This linear approximation is easy to justify for the
magnetic field, given the small currents involved (for example,
4π × 10−7 H/m in neocortex) and the gradient of μ is almost
zero (see Ref. [13]). In contrast, the linear approximation
is less trivial in the case of the electric field because of
the many nonlinearities involved. For example, several ionic
conductances are strongly voltage-dependent (such as the
Na+/K+ conductances involved in action potentials), which
will make the electric parameters of membranes strongly
dependent on the electric field. Nevertheless, the total volume
of tissue occupied by membranes is small compared to other
regions where the linear approximation is valid, so biological
tissues can in general be considered as linear. Note that
this linearity is evident for low frequencies (<10 Hz), but
it is less evident for high frequencies (>100 Hz), where
nonlinear phenomena such as action potentials can have a
major contribution.

F. The Kramers-Kronig relations under
the linear approximation

As discussed above in Sec. II B, the causality principle
determines a supplementary constraint on the possible values
of tensors 〈μ〉, 〈ε〉, and 〈σ e〉. In the linear approximation, one
can show that, in general (for isotropic media of class C2), the
linking equation between the electric displacement and electric
field takes the following form:

�D(�x,t) = �E(�x,t) +
∫ ∞

0
f (�x,τ ) �E(�x,t − τ )dτ. (13)

In this case, one can show that the frequency dependence
of electric parameters is not arbitrary but is linked by the
Kramers-Kronig relations (see Sec. 82 in Ref. [14]):

εω(�x) − ε∞(�x) = 2

π
t

∞

0

σ e
ω′(�x) − σ e

0 (�x)

ω
′2 − ω2

dω′,
(14)

σ e
ω(�x) − σ e

0 (�x) = −2ω2

π
t

∞

0

εω′(�x) − ε∞(�x)

ω
′2 − ω2

dω′,

where principal integrals (t) are used. ε∞ is the absolute
electric permittivity of vacuum and σ e

0 is the static electric
conductivity (ω = 0). Note that these relations can be seen as
a direct and inverse transform. The Maxwell-Wagner time | εω

σ e
ω
|

represents the characteristic time (or “inertia”) for settling into
a stationary regime and can be strongly frequency dependent
[10]. Interestingly, this ratio is mathematically analogous to
the time-frequency uncertainty principle in Fourier transforms
when the electric conductivity of the extracellular medium
becomes very small at zero frequency (see Appendix IV E).
Note that there exists no such relation for the spatial variations
of electric parameters, which are specific to each medium.

It is important to note that the Kramers-Kronig relations
have a strong consequence on the plausibility of purely
resistive media. If a medium is purely resistive, then both
conductivity and permittivity are constant and independent of
frequency. However, if one takes into account a very weak fre-
quency dependence of conductivity (“quasiresistive” media),
such as σ e

ω − σ e
0 ∼ f α with α�1, then the Kramers-Kronig

relations impose that we necessarily have εω − ε∞ ∼ f −(1−α).
In such a case, the permittivity will be strongly frequency
dependent, so will be the Maxwell-Wagner time τMW = | εω

σω
|.

Thus, a purely resistive extracellular medium is a singularity
and is not likely to be a realistic model for complex biological
media.

III. APPLICATION OF THE QUASISTATIC MEAN-FIELD
THEORY TO LINEAR MEDIA

In this section, we apply the theory outlined above to media
that are linear in the electromagnetic sense and homogeneous
and isotropic (at macroscopic scales). This is equivalent to
assuming that the macroscopic parameters 〈σω〉, 〈εω〉, and
〈D〉 are scalars independent of space, such that ∇(〈σω〉 +
iω〈εω〉) ≈ 0 and ∇〈D〉 ≈ 0. This approximation is certainly
valid for relatively large distances (greater than ∼50 μm). We
also consider the system under the quasistatic approximation
as defined above.

In the following sections, we examine different limit
cases. The first case corresponds to the standard model with
dipolar sources and a resistive (or quasiresistive) extracellular
medium. A second case will consider the same model but with
additional monopolar sources. The third case will consider
ionic diffusion (not present in the two first cases), which also
implies monopolar sources. In each case, we will derive the
expression to use for CSD analysis.
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A. Dipole sources in resistive and quasiresistive media

We start with the standard model in which the electric
conductivity of the extracellular medium is constant (in space
and frequency), scale invariant, and isotropic. We also consider
that diffusion is negligible. Under these hypotheses, we have
∇〈γω〉 = 0 (homogeneous and isotropic medium) and 〈γω〉 =
σ̄ = cst, and the general formalism Eq. (11) reduces to

∇2〈Vω〉 = 0. (15)

We can also consider a slightly more realistic model of
the extracellular medium by assuming that it is quasiresistive
(〈σω〉 ≈ σ̄ ) instead of resistive (〈σω〉 = σ̄ ) (because the latter
represents a singularity as outlined above in Sec. II F),
isotropic, and homogeneous for large scales (∼50 μm;
the medium is allowed to be nonhomogeneous for smaller
scales of the order of ∼1 μm). Note that, in general, the
nonhomogeneity of conductivity at smaller scales can induce
a frequency dependence at larger scales (see Refs. [6,7]).
Thus, the hypothesis that the macroscopic conductivity is
independent of frequency is equivalent to assuming that there
is no significant variations of impedance at microscopic scales.

In such conditions, Eq. (11) again reduces to

∇2〈Vω〉 = 0. (16)

In some formulations, the standard model does not consider
the possibility of microscopic (∼1 μm) monopolar sources
[1,3]. This is equivalent to hypothesize that, at every time,
each portion of cell membrane has an equal number of positive
and negative charges at opposite sides of the membrane, such
that it is locally neutral. This hypothesis is also equivalent
to stating that the extracellular electric field is produced by
dipoles (or more complex multipolar arrangements) and that
the monopolar component of the field is negligible at scales of
∼1 μm.6 This implies that the attenuation of the extracellular
potential follows a law that varies as 1/r2 (or 1/r3, 1/r4 . . .

for multipoles of higher order) when r → ∞, where r is the
distance to the source. Thus, in the standard model, the electric
displacement in frequency space [see Eqs. (4) and (5)] is given
by:

〈 �D∗
ω〉 = ε∞〈 �Eω〉 + 〈 �Pω〉 + 〈 �Cω〉 = 〈εω〉〈 �Eω〉 + 〈 �Cω〉, (17)

where

∇ · 〈 �D∗
ω〉 = 0

∇ · ε∞〈 �Eω〉 = + 〈
ρbound

ω

〉
(18)

∇ · 〈 �Pω〉 = − 〈
ρbound

ω

〉
∇ · 〈 �Cω〉 = 0

at large scales (∼50 μm). Taking the inverse Fourier transform,
one obtains

∇2〈V 〉 = 0. (19)

6Note that one cannot say that the monopolar component is
rigorously zero, because there is at least a monopolar component
in the ion channels themselves, because of ion selectivity.

According to this model, the inverse solution (CSD method)
can be obtained assuming that the voltages measured at n

different extracellular sites are solution of Laplace equation.
According to the superposition principle, the extracellular
potential can be considered as resulting from a sum of n

macroscopic dipolar sources for sufficiently large n. Note
that the value of n is determined by Shannon’s sampling
theorem, according to which the number of samples (number
of electrodes n) must be twice larger than the larger spatial
frequency of the field. To evaluate these n dipolar sources,
one can simply apply the inversion of the matrix linking the
n measured voltages with the n dipolar sources according
to the “forward” solution of Laplace equation (see, e.g.,
Ref. [3]). Note that this approach is different than the classic
CSD method proposed by Mitzdorf [1], which is based on a
Poisson-type equation.

The hypothesis of local neutrality in a homogeneous and
isotropic extracellular medium implies that the frequency
dependence of the measured signal is only due to the
frequency dependence of the source (for example, the effect of
morphology—see Ref. [15], the exponential or biexponential
nature of synaptic conductances, correlations in synaptic
activity, action potentials, etc.), because Laplace equation
does not explicitly depend on frequency. Thus, according to
the standard model, there is no filtering due to extracellular
space and the power spectrum of the extracellular potential is
identical to that of the current sources.

Finally, it is important to note that, in a resistive extracellular
medium, if we express the extracellular potential as a function
of the dipole moments instead of the current sources, then
the power spectral density (PSD) of the electric potential will
necessarily have a supplementary frequency dependence of
the form 1/ω2 compared to that of the current. This is due
to the fact that the current is proportional to the temporal
derivative of the the dipole moment �pω (defined from the
charge distribution). However, the situation is different if
the medium is quasiresistive. In this case, the Kramers-
Kronig relations give εω ∼ 1

ω
, and thus the ratio �pω

εω
will

have little frequency dependence. It follows that the PSD of
the extracellular potential will have approximately the same
frequency dependence as the current sources in a quasiresistive
medium. This is a striking difference between resistive and
quasiresistive media. As discussed above, the latter is a more
realistic situation because any spatial variation of microscopic
conductivity will necessarily induce a frequency dependence
of the macroscopic conductivity (see Ref. [6]).

B. Monopolar sources in resistive and quasiresistive media

In the previous section, we hypothesized that the extra-
cellular medium is locally neutral at microscopic scales (∼1
μm), and thus, that the sources of the electric potential are
dipoles. We now relax this hypothesis, and allow significant
electric monopoles to appear in addition to conductance
variations, so that the field results from both monopolar and
dipolar contributions. Electric monopoles could result from
different physical sources, such as the ionic selectivity of
synaptic ion channels (similar to a “Maxwell Daemon”),
combined with the finite velocity of charge movement [16].
These factors should create some accumulation of charge in
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the vicinity of the synapse when synaptic conductances are
activated.7 Note that monopoles are transient by definition,
and equivalently, one could consider that the conductance
variations determine a nonstationary regime ∇ · 〈��〉 + ∂〈ρfree〉

∂t
=

0 (see Appendix IV B). In this transient regime, Kirchhoff’s
“point rule” does not apply (it is based on the law of current
conservation ∇ · �� = 0) and would apply only when the system
reaches a stationary state. However, Kirchhoff’s “loop rule” is
always valid under the quasistatic approximation, because we
have ∇ × �E = 0, and consequently

∮ �E · �ds = 0, which is at
the basis of the latter rule.

Contrary to the assumptions of the dipole model, monopolar
sources imply that integrating the charge density over a closed
surface surrounding each source is nonzero. To include the
contribution of monopolar current sources, we have

I n
ω =2

∂D

〈��ω〉 · n̂dS =
∫∫

D

∫
∇ · 〈��ω〉dv−iωQω = 0, (20)

where Qω is the total charge contained in the source. Note
that this relation shows that the monopolar component is
linked to the current through a temporal derivative, which is
a consequence of the charge conservation law. Consequently,
the extracellular potential (which is here proportional to the
charge) will not have the same power spectrum as the source
and will have an additional ∼ 1

ω2 component for a resistive
extracellular medium. However, similar to the case of dipolar
sources in the previous section, the situation is different for a
quasiresistive medium. The Kramers-Kronig relations imply
εω ∼ 1

ω
, and the ratio Qω

εω
will have very little frequency

dependence and the PSD of the extracellular potential will
be very similar to that of the sources.

If we consider the same conditions as for the standard model
(resistive or quasiresistive media), we obtain

∇ · 〈 �D∗
ω

〉 = 〈
ρfree

eω

〉
∇ · ε∞〈 �Eω〉 = 〈

ρfree
eω

〉 + 〈
ρ	cond

ω

〉 + 〈
ρbound

ω

〉
∇ · 〈 �Pω〉 = − 〈

ρbound
ω

〉
∇ · 〈 �Cω〉 = − 〈

ρ	cond
ω

〉
. (21)

In such conditions, Eq. (11) becomes

∇2〈Vω〉 = 0, (22)

for resistive and quasiresistive extracellular media. Thus, in
temporal space, we have the same equation for both cases:

∇2〈V 〉 = 0. (23)

However, if we take into account monopolar current sources
and the law of charge conservation, then we have in general

σω∇2〈Vω〉 = iω〈ρω〉, (24)

where σω = cst.

7Note that it is important here to take into account the spatial extent
of the synapse, contrary to the standard theory, where synapses are
considered as point processes.

Thus, the model with monopolar current sources has
a different structure than the dipole model in Sec. III A
because 〈ρω〉 = 0. Local neutrality in a homogeneous and
isotropic extracellular medium implies an identical frequency
dependence of the current source Iω = −iω〈ρω〉) and the
extracellular potential. Like the standard model, there is no
“filter” in this case. There is a notable difference, however.
The law of attenuation with distance varies here in 1/r instead
of 1/r2 for r → ∞. If the number of electrodes is large enough
to respect Shannon’s sampling theorem, then the current
source densities can be simply evaluated by approximating the
Laplace equation using finite difference methods, as well as
the knowledge of the “forward” solutions of this equation (see
Ref. [3]). We will see in the next section that these conclusions
are different if ionic diffusion is taken into account.

C. Models with ionic diffusion

While the influence of ionic diffusion was neglected in the
previous sections, we now consider this case more explicitly
without any other hypothesis about the medium. If a selective
ion channel opens, the flow of ions may induce accumulation
of charges in the region adjacent to the channel if ions diffuse
faster than the time needed for passing through the channel
(which will generally be the case). The electric field resulting
from conductance variations is not selective on the type of ion,
such that the positive ions are attracted and negative ions are
repulsed if the field is negative (and vice versa for a positive
field). This is contrary to the flow inside the channel because it
is selective to only a subset of ionic species. The combination
of these factors makes it unavoidable that there will be charge
accumulation around open ion channels. In the standard model,
this charge accumulation is considered as negligible.

We now evaluate the consequences of this phenomenon
on the frequency dependence of the field produced by ionic
conductances in the subthreshold regime. If we consider a
homogeneous extracellular medium with constant electric
parameters (independent of frequency at large scales, ∼50
μm), then we have

〈
σ e

ω

〉∣∣
M

= σ̄ ,

〈εω〉|M = ε̄,

〈D〉|M = D̄ = 0, (25)

where the parameters σ̄ , ε̄, and D̄ do not depend on space.
According to those hypotheses, variations of ionic con-

centrations appear in the vicinity of the open ion channels,
and these variations are opposite to the current produced
by the electric field resulting from conductance variations.
It thus appears that the conditions of current propagation
at microscopic scales (∼1 μm) cannot fulfill the condition
of homogeneous ion concentration which is at the basis of
Ohm’s differential law (see Appendix A 3). In such conditions,
the electric parameters of the extracellular medium have the
following form at microscopic scales (∼1 μm):

〈
σ e

ω

〉∣∣
m

(�x) = σ̄m(�x),

〈εω〉|m(�x) = ε̄m(�x),

〈D〉|m(�x) = D̄m = 0, (26)
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with

〈γω〉|M = 〈〈γω〉|m〉|M. (27)

This last equation is necessary to keep the consistency between
microscopic (∼1 μm) and macroscopic (∼50 μm) scales.

According to this model, the current density (at microscopic
scales, ∼1 μm) is given by

〈 �j 〉|m = −σ̄m∇〈V 〉|m + D̄m∇〈ρ〉|m, (28)

where we have [see Eq. (A11)]

σ̄m = λqτcnv(�x,t). (29)

This expression can be deduced by separating the domain
into sufficiently small elements such that ion density can be
considered as spatially homogeneous, and sufficiently large
for Ohm’s law to apply.

According to Boltzmann distribution (see Appendix A1),
we have

∇〈ρ〉∣∣
m

(�x,t) = 〈q〉2

kT
nv∇〈V 〉|m(�x,t) = 〈q〉2

kλqτcT
σ̄m∇〈V 〉∣∣

m
.

(30)

By taking into account Eqs. (28) and (29), we obtain

〈 �j 〉
∣∣∣∣m =

[
D̄m − kλqτcT

〈q〉2

]
∇〈ρ〉

∣∣∣∣
m

= 〈β〉|m∇〈ρ〉|m, (31)

where 〈β〉 is an effective diffusion coefficient. Note that the
value of 〈β〉 is smaller than the mean diffusion coefficient be-
cause kλqτcT

〈q〉2 must be positive. The value of 〈β〉 also depends on
the values of ionic concentrations because several parameters
in Eq. (31) are concentration-dependent and is proportional to
temperature because the ionic diffusion coefficient is itself
proportional to temperature (see for example the Einstein
relation for diffusion).

Applying the differential law of charge conservation, we get

〈β〉|m∇2〈ρ〉|m = −∂〈ρ〉|m
∂t

. (32)

Thus, the charge density produced in the vicinity of the ion
channel is solution of a parabolic differential equation similar
to the diffusion equation.8

It follows that the charge density obeys

∇2〈ρω〉
∣∣∣∣
m

= −i
ω

〈β〉|m 〈ρω〉
∣∣∣∣
m

. (33)

At microscopic scales (∼1 μm), we obtain [see Eq. (11)]

∇2〈Vω〉
∣∣∣∣m + ∇(〈γω〉|m)

〈γω〉|m · ∇〈Vω〉
∣∣∣∣
m

= iω

〈γω〉|m · 〈D〉|m
〈β〉|m 〈ρω〉|m ∼ iω〈V 〉|m. (34)

Here, the proportionality between 〈ρω〉|m and 〈Vω〉|m can be
deduced from the linear (first-order) approximation of Eq. (A3)

8Note that the coefficient 〈β〉|m depends on ion concentrations via
λq , 〈q〉2, and τc, and thus could vary greatly according to the activity
of the surrounding neurons.

(see Appendix A1). The second-order approximation would
give a cubic term in 〈Vω〉|m.

Applying the consistency equation between scales by
assuming the statistical independence of the parameters leads
to the following equality:

∇2〈Vω〉
∣∣∣∣M = − iω

〈γω〉|M · 1

〈β〉|M 〈ρω〉
∣∣∣∣
M

, (35)

with

1

〈γω〉|M = 1

N

N∑
j=1

1〈
γ

j
ω

〉∣∣
m

,

1

〈β〉|M = 1

N

N∑
j=1

〈Dj 〉|m
〈βj 〉|m , (36)

〈D〉
∣∣∣∣∣∣M = 1

N

N∑
j=1

〈Dj 〉
∣∣∣∣∣∣
m

,

where N is the ratio between the reference volumes at
macroscopic and microscopic scales (note that to simplify the
formalism, we have approximated the macroscopic mean by a
discrete summation over microscopic means). The second term
on the lefthand side of Eq. (34) becomes zero at macroscopic
scales [see consistency Eq. (27)]. Note that the means over
parameters γω and βm are harmonic means, while the means
over matter fields are arithmetic means.

Finally, by applying the inverse Fourier transform, we
obtain (for Maxwell-Wagner times much smaller than unity)

σ̄∇2〈V 〉
∣∣∣∣
M

= − 1

〈β〉|M
∂

∂t
〈ρ〉

∣∣∣∣
M

. (37)

Thus, the CSD method in the presence of ionic diffusion
takes a form that is very close to the Mitzdorf model
[1], because we have one source term. However, there are
two notable differences: first, the frequency dependence of
charge density implies that the extracellular medium will be
frequency-dependent according to an impedance that varies as
1/

√
(ω) (see Appendix A4). Second, the extracellular potential

attenuates with distance according to a Yukawa potential e−k(ω)r

r

instead of 1
r2 , as in the standard model. In this case, we have

|〈Vω〉|m(r)| = |〈Vω〉|m(R)|Re
− 1

2

√
ω

|〈β〉|m | (r−R)

r
. (38)

Here, the extracellular potential is proportional to the charge
density [see Eqs. (A3), (A14), and (A15) in Appendix A4]
under the linear approximation and for a spherical source.
It is interesting to note that the exponential term increases
with frequency such that the extracellular medium favors the
propagation of low frequencies (low-pass filter, as shown
in Fig. 1). This type of attenuation law in Fourier space is
also consistent with an exponentially decaying impedance.
If the frequency spectrum is narrow, one can replace ω

by its maximal value k = 1
2

√
max(ω)
|〈β〉|m |, which leads to an

attenuation law for the potential as e−k(r−ro )

r
. We can thus

write that the electric field is approximately equal to 〈 �E〉|m =
−∇〈V 〉|m = e−k(r−ro)(kr + 1) 1

r2 r̂ . In a resistive medium, this
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(a)
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FIG. 1. (Color online) Attenuation profile of the extracellular
potential as a function of distance. The profile of the potential
with distance is shown for two positive values of 〈β〉: one value
comparable to the diffusion coefficients of k+,Na+,Cl− (left), and
another value 100 times smaller (right). When 〈β〉 is comparable to the
diffusion coefficients, the attenuation according to Yukawa potential
is similar to Coulomb’s potential and we have a Warburg impedance.
For smaller values of 〈β〉, the Yukawa potential determines a
significant additional low-pass filter. The attenuation law is very steep
for frequencies larger than 100 Hz when 〈β〉|m = 10−11m2/s. The
different curves indicated are the Coulomb’s attenuation law as 1/r

(monopoles; solid line) and as 1/r2 (dipoles; dotted line; thick gray
lines correspond to attenuation according to a Yukawa potential; thin
lines correspond to Yukawa attenuation combined with a Warburg
impedance, which is the most complete case taking into account ionic
diffusion effects. In each case, different frequencies are compared
(1, 10, 100, and 1000 Hz) and are shown by different colors and
dashed lines, as indicated. The current source has a radius of 5 nm.

leads to an electric resistivity given by 〈ρe〉m = 1
〈σ e〉|m(r) =

4π
I

e−k(r−ro)(kr + 1) (note that the current I = |�j |4πr2 is
conserved in a resistive medium, and the field is given by
〈 �E〉|m = 〈�j 〉|m/〈σ (r)〉|m). Note that this particular distance
profile of the potential was calculated by assuming that the
medium is homogeneous (see Appendix A4), which makes it
applicable only at short distances from the membrane (of the
order of 10 to 50 nm).

Finally, it is important to note that this frequency de-
pendence cannot be removed because it is an effect of the
feedback caused by ionic diffusion when ion channels open,
and this is inherent to biological tissue. Because the PSD of
the extracellular voltage is of the form ∼ 1

ω
I (ω) (see Eq. (A15)

in Appendix A4), one can view the effect of ionic diffusion as
a “1/f filter,” as found previously [7].

D. Comparison between the different models

We now compare the different cases examined here. From
the point of view of the differential equations involved, in the
“standard” model based on dipoles, as well as with monopoles,

the extracellular potential is solution of the Laplace equation,
which is elliptic. In the third model with ionic diffusion, the
extracellular potential is solution of a Poisson-type equation
where the source term is proportional to the time derivative
of the voltage (under the linear approximation), which gives a
parabolic equation. As outlined above, the diffusion model
is closer to the monopole model (as diffusion can have
monopolar effects) in a resistive extracellular medium, but
leads to a fundamentally different mathematical form. The
physical reason for this difference is that the ionic diffusion at
the interface ion channel/medium increases the inertia of the
system as a function of frequency.

At the point of view of the CSD analysis method, different
algorithms must be used according to which model of the
extracellular medium is assumed. In the two first cases, one
must use a “forward” solution because Laplace equation is
noninvertible. In this case, it is necessary to explicitly include
the distance dependence of the extracellular potential, which
varies as 1/r2 for dipoles (for distances sufficiently large
compared to the size of the dipole) and 1/r for the model
based on monopoles. Note that if the distance to the sources
is not large enough (compared to the typical size of the
sources), or if the dipolar moments are very large compared
to monopolar moments, then the attenuation will be closer to
a linear combination of 1/r and 1/r2.

In the diffusive model, however, the approach is totally
different because of the parabolic nature of the equations. In
this case, it is enough to apply the Laplace operator to recover
the sources. Two strategies are possible. First, one could simply
apply Laplace operator on the extracellular voltage to yield
estimates of the current source densities. Second, one could use
a “forward” model and consider an attenuation law following
a Yukawa potential e−k(ω)r

r
and apply the same procedure as for

the other models.
Perhaps the most interesting aspect is that the three different

models considered here have a different spectral signature.
In the dipole model (or monopole model in a quasiresistive
medium), the PSD of the extracellular potential is identical to
that of the sources. The resistive monopole and the resistive
dipole model exert a filtering effect of 1/f 2 type, whereas
the diffusive model is equivalent to a 1/f filter. Thus, the
frequency characteristics of the signal can serve as a criterion
to determine the most appropriate model. For example, if
the PSD of the extracellular voltage has 1/f structure, this
automatically discards a pure monopole model, as well as
dipole models in resistive or quasiresistive media, and would
suggest diffusive type models.

E. Synthesis and applications to experimental data

In this section, we synthesize the theoretical developments
provided here and suggest a guide of how to apply them to
experimental data. The generalization of the CSD method for
different cases of current sources and type of extracellular
medium, is summarized in Table I. The table considers
monopolar and dipolar current sources, as well as different
types of resistive and nonresistive media.

To perform a CSD analysis by allowing nonresistive prop-
erties of the extracellular medium, we suggest the following
procedure:
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TABLE I. Different generalizations of the CSD method. The table shows the mean-field equations for different types of media and for
monopolar or dipolar sources. The Mitzdorf model is shown apart because it does not correspond to any of these mean-field scenarios.
Abbreviations: Res. is resistive homogeneous medium; Quasires. is quasiresistive homogeneous medium; Res. + diff. is resistive homogeneous
medium + ionic diffusion; Gen. is general (nonhomogeneous, with spatial- and frequency-dependent variations of electric parameters); 1-pole
is monopole; 2-pole is dipole. Note that the frequency-dependence of the permittivity and conductivity are not independent but are linked by
the Kramers-Kronig relations. The quantity Vω

IS
ω

is the ratio between the Fourier transform of the extracellular potential Vω and the Fourier

transform of each point current-source I S
ω , which produce the field (asymptotic solution, far from the sources). The function f (ω) in “res +

diff” determines a Yukawa type potential (see Fig. 1).

Source Medium εω σ e
ω

Vω

IS
ω

Law

1-pole Res. cst cst ∼ 1
rω

σ e
ω∇2〈Vω〉 = iω〈ρfree

ω 〉
Quasires. ∼ 1

ω
cst ∼ 1

r
σ e

ω∇2〈Vω〉 = iω〈ρfree
ω 〉

Res. + diff. ∼ 1√
ω

∼ 1√
ω

∼ e−f (ω)(r−ro )

r
√

ω
∇2〈Vω〉 = −iω 〈D〉|

〈γω〉|〈β〉| 〈ρfree
ω 〉

Gen. εω σ e
ω gen. ∇2〈Vω〉 + ∇〈γω〉

〈γω〉 · ∇〈Vω〉 = 1
〈γω〉∇ · (〈D〉∇〈ρfree

ω 〉)
2-pole Res. cst cst ∼ 1

r2ω
∇2〈Vω〉 = 0

Quasires. ∼ 1
ω

cst ∼ 1
r2 ∇2〈Vω〉 = 0

Res. + diff. ∼ 1√
ω

∼ 1√
ω

∼ e−f (ω)(r−ro )

r2√
ω

∇2〈Vω〉 = 0

Gen. εω σω gen. ∇2〈Vω〉 + ∇〈γω〉
〈γω〉 · ∇〈Vω〉 = 0

Mitzdorf (2-pole) Res. cst cst ∼ 1
r2 σ e∇2〈V 〉 = −Im

(1) Estimate the type of extracellular medium from the
power spectral structure of CSD signals. As detailed above
(Secs. III A, III B, III C), the type of medium (resistive,
quasiresistive, diffusive, etc.) and type of current sources
(monopolar, dipolar, etc.) can be inferred from the power
spectral structure of the extracellular potential. This analysis
should be done on nonfiltered data to set constraints on the
possible combinations of sources type of medium.

(2) Identify the correct CSD expression compatible with
the type of source/medium inferred from power spectra.
Table I summarizes the different cases considered here. The
expression identified is then used to calculate the current
sources from the extracellular potential recordings.

IV. DISCUSSION

In this paper, we have formulated a series of generalizations
of the CSD analysis method applicable to extracellular record-
ings in brain tissue. This generalization is based on a general
theory that we derived and which aims at linking the extracel-
lular potential with current source densities in the tissue. We
have considered a mean-field version of Maxwell equations by
considering the different fields as averages over some reference
volume. By varying the size of this volume, one can apply the
same theory to different scales. At microscopic scales (∼1 μm
and smaller), the theory must use the microscopic values for
electric parameters (for example, the very different resistivities
of fluids or membranes). For mesoscopic or macroscopic scales
(∼50 μm and larger), the theory can directly include the
“macroscopic” measurements of conductivity and permittivity,
as well as their possible frequency dependence if needed. Note
that this mean-field approach takes into account the physical
and biological properties of the sources, and thus is more
general than previous approaches [7], which did not consider
source densities.

We have examined different limit cases, such as a purely
resistive extracellular medium with current sources consisting

exclusively of dipoles, in which case the theory recovers the
standard model. In this standard model, the mean-field theory
shows that the electric potential must be solution of Laplace
equation, such that the “classic” CSD approach of Mitzdorf [1]
does not apply. To inverse the CSD in this model, one must
apply the forward solutions of Laplace equation because the
associated operator is noninvertible (see Ref. [3]). In resistive
media, the extracellular potential must have an additional
frequency dependence of 1/f 2 relatively to that of the current.
Interestingly, we found that Laplace equation remains valid for
extracellular media which are quasiresistive (where the electric
parameters weakly depend on frequency). In this case, the
frequency dependence of the extracellular potential is similar
to that of the current. A weak frequency dependence was
indeed found in some experimental measurements of resis-
tivity [17,18], while other experiments [12] displayed a much
more pronounced frequency dependence. With respect to the
attenuation with distance, the standard model predicts an atten-
uation law as 1/r2, for both resistive or quasiresistive media.

We also examined the case of monopolar sources. If such
monopolar sources are present in addition to dipolar sources,
within resistive or quasiresistive media, then the CSD equation
takes a slightly different form, predicting that the potential
will attenuate asymptotically with the inverse of distance
(1/r), while the standard dipole model predicts a square
dependence (1/r2). With monopolar sources, the potential in
the extracellular medium is also solution of Laplace equation,
and thus the inverse algorithm of the CSD method does not
apply identically as for dipoles. To find the inverse CSD,
one proceeds similarly as the standard model by using the
“forward” solution of Laplace equation. However, in this case
the sources must be considered as a linear combination of
terms varying as 1/r (monopoles) and 1/r2 (dipoles) in this
forward solution.

As a third model, we examined the case of ionic diffusion
within resistive or quasiresistive media. In this case, the
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CSD takes a form very close to the “monopolar” CSD
discussed above, but we found that charge density is frequency
dependent according to a Warburg impedance in 1/

√
(ω) (see

Appendix A4 and Sec. III C). This result is in agreement with
a previous modeling study of extracellular potentials in the
presence of ionic diffusion [7]. Another consequence is that,
for spherical symmetry, the attenuation with distance follows a
Yukawa potential e−k(ω)r

r
, which decays faster than the different

laws considered above for large enough frequency (see Fig. 1).
This particular form is responsible for a low-pass filtering
of the extracellular medium. Note that this form is obtained
for spherical symmetry, but other forms may be obtained in
different geometries.

It is important to note that the CSD theory was originally
designed without specific hypotheses about the nature of
current sources [2,4,5], other versions of the CSD theory
clearly assumed that current sources are dipoles [1,3]. As-
suming dipolar sources is equivalent to assuming that we
have stationary current conditions at all scales. However, we
show here (Appendix A2) that at small scales (synapses),
such a stationary current condition is not necessarily met.
A first possible source of monopolar effects is the inertia
of charge movement along membranes together with ion-
channel selectivity. Following the opening of ion channels,
the flow of ions will entrain a re-equilibration of the charges
adsorbed on both sides of the membrane. While this process is
usually considered as instantaneous, together with neglecting
ion-channel selectivity, these processes may have important
consequences. Indeed, if one takes into account the fact that
charges do not move instantaneously and ion-channel selectiv-
ity, this will necessarily create transient charge accumulation
and monopoles. A similar effect will occur through ionic
diffusion and electric field, at the interface between the ion
channel and the extracellular medium, because ions diffuse
faster than their mean passage time through the channel,
which will also create charge accumulation and monopolar
effects. Note that this mechanism produces an external electric
field that will contribute to the extracellular field (in addition
to transmembrane currents). These effects will contribute
to transient monopoles, during which Kirchhoff’s node law
will not apply. The fact that ions move considerably slower
than electrons in a metal conductor will also participate to
deviations from Kirchhoff laws. Whether this transient time
is significant, and whether the system could be continuously
“outside of equilibrium” due to sustained synaptic activity,
should be investigated by future work.

In the diffusion model, one can directly use the Laplace
operator to inverse the CSD, contrary to the other models.
Taking into account ionic diffusion requires to revise the
“forward” approach, because the attenuation law does not
follow a 1/r2 law but rather a Yukawa-type law, while
the extracellular medium is associated to a Warburg-type
impedance. In a previous study, we showed that indeed
a Warburg-type impedance could account for the transfer
function between intracellular and extracellular potentials [19]
(for frequencies comprised between 3 and 300 Hz). It is also
consistent with measurements of conductivity and permittivity
[12] (but see Ref. [17]). Note that the linear approximation in
the diffusion model is not valid for high values of the potential

(larger than ∼50 mV; see A4), so this model applies well to
subthreshold activity but may need to be revised for action
potentials. Similarly, corrections to the CSD given by the
“forward” approach (see, for example, Ref. [21]) may also
need to be reformulated for nonresistive media.

Thus, with respect to the paradox of the CSD method, as
described in the introduction, our study suggests that it is
naturally solved by taking into account ionic diffusion. This
introduces an additional source term in the general equation
for the electric potential [see Eq. (11)]. This additional term
gives a Poisson-type equation for the potential (instead of
Laplace equation), similar to the classic CSD approach.
Contrary to the cases with resistive and quasiresistive media,
the classic algorithm of CSD inversion given by Mitzdorf [1]
is applicable here. Thus, the results obtained with the classic
CSD analysis are perfectly consistent with ionic diffusion
because diffusion gives a source term, which is very close to the
phenomenological model of current source density introduced
by Pitts and Mitzdorf [1,2], but in a manner consistent with
Maxwell-Gauss law. So, we conclude that the usual approach
for CSD inversion, although paradoxical, should nevertheless
give results equivalent to a model with ionic diffusion and
consistent with Maxwell-Gauss law.

Finally, the few limit cases considered here are by no means
exhaustive. For example, we neglected the Maxwell-Wagner
time of the extracellular medium and the microscopic varia-
tions of impedance. The theory outlined here is general enough
to include these effects if needed, which is another way to
solve the paradox. For instance, considering phenomena such
as “reactive” extracellular media, which react to the electric
field (for example through polarization of cell membranes),
can be done by taking into account the Maxwell-Wagner time
of the medium (see details in [7,10]). According to Gabriel
et al. [12], the macroscopic electric permittivity becomes
larger while macroscopic conductivity becomes smaller
for smaller frequencies, when the electric field is imposed
according to a well-defined direction. In these measurements,
ωτMW � 1 for frequencies larger than 10 Hz, but ωτMW may
be considerably larger for lower frequencies [7], where electric
polarization may play an important role. The second term
in the lefthand side of Eq. (11) would then not be negligible
anymore. Because this term can be considered as an additional
source term (see Ref. [6]), similar to the case of diffusion, this
also solves the paradox described in the introduction.

In conclusion, we have provided here a generalized CSD
approach valid for more realistic properties of the extracellular
medium, taking into account ionic diffusion or polarization
effects, usually neglected in the standard CSD analysis [1,3].
We found that including such effects may have deep conse-
quences on the expression to be used for estimating current
sources, and thus may also have consequences on the values
of current sources estimated from experimental recordings.
For example, the potential due to monopolar sources will
decay slower than for dipoles, which will necessarily affect
the recorded potential at the electrode. Similarly, considering
“reactive” aspects of the extracellular medium by including a
significant Maxwell-Wagner time leads to a different CSD
expression, close to the form derived for ionic diffusion.
Future work should apply these expressions to extracellular
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recordings in brain tissue, with the aim of identifying which of
these phenomena are most consistent with experimental data.
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APPENDIX

1. Impedance for systems with ionic diffusion

In this Appendix, we consider ionic diffusion at the interface
between ion channels and the extracellular medium, as well as
at the interface with the cytoplasm. We use the quasistatic ap-
proximation (in the thermodynamic sense), which implies that
the net charge density must be the solution of a parabolic partial
differential equation, as for pure diffusion phenomena. We will
next consider the system in spherical symmetry, in which case
the impedance is equivalent to a Warburg impedance.

a. Ionic diffusion under the quasistatic approximation
in the thermodynamic sense

The current density at microscopic scales obeys the
equation

〈 �j 〉|m = −σ̄m∇〈V 〉|m + D̄m∇〈ρ〉|m, (A1)

with [see Eq. (A11)]

σ̄m = λqτcnv(�x,t). (A2)

Let us assume that the system is in a quasistatic case in
the sense of thermodynamics. As shown by application of
Maxwell distribution of velocity distribution and the principle
of detailed balance [20], we can deduce the Boltzmann distri-
bution for a field that varies infinitely slow. This approximation
is valid here because the drift velocity of ions under an electric
field is much lower than the absolute velocity of ions (which
is of the order of sound velocity). Within this quasistatic
approximation, we can apply the Boltzmann distribution to
obtain the number of ions per unit volume as a function of
time and space:

nv(�x,t) = n∞
v

[
e+ 〈q〉|m〈V 〉|m (�x,t)

kT + e− 〈q〉|m〈V 〉|m (�x,t)
kT

]
,

when we assume that V (∞) = 0 at infinite distance, where
n∞

v is the number of ions per unit volume at an infinite
distance from the source (“far distance”) and 〈q〉 is the
mean absolute charge. k = 1.3806503 × 10−23J/◦K is the
Boltzmann constant and T is the temperature in degrees
Kelvin. It follows that the net charge density is related to
the value of the electric potential according to

〈ρ〉|m(�r,t) = n∞
v 〈q〉|m

[
e+ 〈q〉|m〈V 〉|m (�x,t)

kT − e− 〈q〉|m〈V 〉|m (�x,t)
kT

]
, (A3)

where 〈ρ〉|m(�r1,t) is the average net charge density. Note that
the − sign in the second righthand term comes from the sign

FIG. 2. (Color online) Scheme of an isopotential membrane
compartment with ion channels. The blue circles indicate ion channels
in the membrane. The dotted line indicates a Gauss surface delimiting
the interior of the compartment. The values of electric permittivity ε

are equal to εm in the membrane and εc in the cytoplasm. The electric
conductivity σ is equal to σc in the open channels and is assumed to
be zero in the membrane.

of the charge. Also, note that this relation implies that the
net-charge density is zero at an infinite distance and is linked
to the electric potential by a nonlinear relation.9

Applying the operator ∇ on the net charge density gives

∇〈ρ〉|m(�x,t) = (〈q〉|m)2

kT
nv∇〈V 〉

∣∣∣∣
m

(�x,t)

= (〈q〉|m)2

λqτckT
σ̄m∇〈V 〉

∣∣∣∣
m

. (A4)

Note that no such relation would be possible outside of the
quasistatic approximation in the thermodynamic sense.

2. Nonstationary aspect of the electric field produced
by membrane conductance variations

In this Appendix, we show that if the transmembrane
current is nonzero, this necessarily implies a charge variation
at the interior of the compartment according to a nonstationary
regime:

∇ · �� + ∂ρ

∂t
= 0.

We define as “interior” the domain delimited by the inner
surface of the cell membrane as indicated in Fig. 2. We will
show that for different values of stationary current, the net
charge inside a cable compartment is different from zero and
depends on the value of the current. Thus, when the current is
variable, the system is necessarily in a nonstationary regime.

To demonstrate this, suppose that we have a current density
�j that is time-independent and stationary, satisfying

∇ · �j = 0.

The amount of charge situated strictly inside the compartment
can be calculated from the integral of the electric field across

9A consequence of this nonlinear relation is that the medium will
become nonlinear for high values of the electric potential.
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a closed surface:

Qint = 2
∂D

ε �E · n̂dS =
∫∫

channel+axial

εc
�E · n̂dS

+
∫∫

membrane

εm
�E · n̂dS, (A5)

where the integral is made over a Gauss surface that goes
through the middle of the membrane thickness, as indicated in
Fig. 2. The surface also avoids ion channels (by surrounding
them below their inner side). ε = εc and ε = εm are the
electric permittivity of the cytoplasm and of the membrane,
respectively.

Taking into account Ohm’s differential law and stationary
current condition, one obtains

I =
∫∫

channel+axial

�j · n̂dS =
∫∫∫

∇ · �jdv

=
∫∫

channel+axial

σc
�E · n̂dS = 0, (A6)

where σc is the electric conductivity of the cytoplasm. Because
the capacitive impedance is infinite for f = 0, the surface
integral over the membrane is zero, and we obtain

Qint =
∫∫

membrane

εm
�E · n̂dS, (A7)

because εc
�E = εc

σc

�j when electric parameters are independent
of space.

The cylindric symmetry together with the isopotentiality of
the surface of the membrane compartment imply that this inte-
gral is nonzero and depends on the value of the transmembrane
current Im. If we have two different transmembrane currents,
then the values of the electric field inside the membrane are
necessarily different and the values of Qint are different, too.
In particular, if the current Im is zero, this integral equals the
negative charge that there can be inside the compartment at
rest.

It follows that, if we have a variable transmembrane current,
the interior charge varies to satisfy ∇ · �j = − ∂ρ

∂t
= 0 because

the membrane time constant τm is not negligible. This shows
that the variation of current sources caused by membrane
conductance variations have the properties of a nonstationary
regime. Note that this nonstationarity requires us to take into
account the volume of the membrane compartment and would
not be present for point processes.

3. Ohm’s law and frequency dependence

In this Appendix, we show that Ohm’s law implies that
the ratio between potential and current does not depend on
frequency for frequencies smaller than 104 Hz. The aim of the
appendix is to show the physical bases of the model shown in
Sec. III C.

Let us apply an electric field �E, independent of time and
space, at time t = 0 and during a time interval 	T , to a
homogeneous aqueous solution (similar to salted water) at

thermodynamic equilibrium. The field will accelerate every
ion according to the following velocity law:

�v(tf ) = �v(ti) + qk

mq

�E(tf − ti), (A8)

where ti is the initial ion collision time and tf its final collision
time. If the field is applied during a time interval 	T much
longer than the typical collision time between two molecules
(or ions), then the mean velocity of ions is given by

〈�v(t)〉	T = 〈�v(ti)〉	T + qk

mk
q

�E〈tf − tI 〉	T

= 〈�v(ti)〉	T + qk

mk
q

�Eτk
c , (A9)

where τ k
c is the mean collision time of ion k, qk is the

charge of ion k, and mk the mass of ion k. Note that the
mean collision time for ions such as Na+,K+,Cl−,Ca++
in sea water are approximately equal to 10−12 − 10−14s for
temperatures between 250◦K and 350◦K [20].

If the system is at thermodynamic equilibrium, we have
〈v(ti)〉t = 0. It follows that the time average of the current
density is given by

〈��〉 =
〈

N∑
k=1

q2
k τ

k
c

mk
q

nk
v

〉
�E, (A10)

where nk
v is the number of ions of type k per unit volume.

Because the quantities q2
k

mk
q
, τ k

c , and nk
v are statistically indepen-

dent, we can write

σ e = λqτcnv, (A11)

where λq = 〈 q2
k

mk
q
〉k , τc = 〈τ k

c 〉k , and nv = N〈nk
v〉k are average

values of the quantities q2

mq
, τc, and nv for each type of ion.

Thus, this expression shows that the ratio between the time
average of the current and the electric field does not depend on
time when the time interval 	T is much longer than the mean
collision time between two molecules of the solution, because
the number of collisions of each ion is very large.

Because the mean collision time is of the order of 10−12–
10−14 s for a temperature included between 250◦K and 350◦K
(see details in Ref. [20]), we can write that we have a very
good approximation of a variable electric field by a piecewise
constant function (staircase), with time intervals much longer
than the mean collision times. Then, the time average of the
current density will be proportional to the applied field. We can,
therefore, write that the ratio between mean current density
and applied electric field does not significantly depend on
the frequency of electric field—nor of time—for frequencies
smaller than 104 Hz.10 This approximation is called differential
Ohm’s law.

10In fact, experiments have shown that the frequency of the signal
much reach the order of 109–1010 Hz to evidence a deviation between
the measurements and the formalism given here (see details in
Ref. [20]).
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4. Ionic diffusion in spherical symmetry

To simplify the computation of Eq. (33), we consider a
model with a spherical source, surrounded by a spherically
symmetric (or isotropic) extracellular medium with boundary
condition and isopotential over the surface of the source. In
this case, we have the following equality in Fourier space:

d2〈ρω〉|m
dr2

+ 2

r

d〈ρω〉|m
dr

+ i
ω

〈β〉|m 〈ρω〉|m = 0. (A12)

The general solution of this equation is

〈ρω〉|m(r) = A(ω)
e
√−i ω

〈β〉|m r

r
+ B(ω)

e
−√−i ω

〈β〉|m r

r
, (A13)

where r is the distance between the geometric center of the
source. Because we must have no charge accumulation at
infinite, we must set A = 0, which gives

〈ρω〉|m(r) = 〈ρω〉|m(R)
Re

−√−i ω
〈β〉|m (r−R)

r
. (A14)

Taking into account Eq. (31), the current density is given
by:

〈jω〉|m(r) = 〈β〉|m ∂〈ρω〉|m
∂r

= 〈β〉
∣∣∣∣
m

(
1

r
+

√
−i

ω

〈β〉|m

)
〈ρω〉

∣∣∣∣
m

(r). (A15)

By developing the net charge density [see Eq. (A3)] in the
Taylor series, we have at first-order

〈ρ〉∣∣
m

(�x,t) = n∞
v 〈q〉∣∣

m

[
e+ 〈q〉|m〈V 〉|m (�x,t)

kT − e− 〈q〉|m〈V 〉|m (�x,t)
kT

]
≈ 2

(〈q〉m)2n∞
v

kT
〈V 〉

∣∣∣∣
m

(�x,t). (A16)

At physiological temperature (310◦K), we can write that
the precision of this linear approximation is larger than 90%
if the potential is smaller than 15 mV (these estimates are
obtained by replacing Boltzmann constant by the values of the
mean charge, ≈2 × 10−19 C). However, the precision drops
to about 8% for 100 mV, in which case one must consider up
to the third-order term (∼〈V 〉|3m) in the Taylor expansion. This
is the case for action potentials, and thus the propagation of
the field will become more complex for spikes.

It follows that the impedance between infinite distance and
a given point P at distance r from the source is given by

Zω(r) = 2
kT

(〈q〉|m)2〈β〉|mn∞
v

1(
1
r

+
√

−i ω
〈β〉|m

) . (A17)

Thus, the impedance will tend to a Warburg impedance
for large distances from the sources and for high frequencies.
Moreover, if the curvature radius is very large, or for planar
membranes, one can set R = ∞, which gives

Zf ≈ 2
kT

(〈q〉|m)2〈β〉|mn∞
v

1(√−i ω
〈β〉|m

) = C√
ω

, (A18)

where C ∼ (1 − i) and thus, the phase of the impedance
becomes independent of frequency.

b
.

FIG. 3. Representation of κ as a function of the exponent b. The
values of κ were calculated from expression 1

−2
π t

∞
0

1
x1−b (x2−1)

dx

, where

t∞
0

1
x1−b (x2−1)

dx = limx→1

∫ x

0 [x−(1−b) + x(1−b)] 1
(x2−1)

dx.

One sees that the value of the parameter 〈β〉|m and the
curvature radius determine the magnitude of the phase. They
also determine the distance at which the impedance becomes
equivalent to a Warburg impedance. For example, the estimates
of impedance in rat cortex made previously [19] indicate
that the impedance can be well approximated by a Warburg
impedance for frequencies above 3 Hz.

5. Kramer-Kronig relations

In this Appendix, we show that the Maxwell-Wagner time
τMW = εω

σ e
ω

≈ k
ω

when the conductivity is very low at zero
frequency, based on Kramers-Kronig relations [see Eq. (14)].

These relations show that if σ e
ω does not depend on

frequency, then εω will also be frequency-independent. These
relations also show that if εω − ε∞ = kω−(1−b), then we have
[see Eq. (14)]

σ e
ω − σ e

0 = −2ω2

π
t

∞

0

k(ω′)−(1−b)

ω′2 − ω2
dω′.

By setting x = ω′
ω

, we obtain

σ e
ω − σ e

0 =
[−2

π
t

∞

0

1

x1−b(x2 − 1)
dx

]
kωb = k1kωb,
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where we have, by definition,

k1 = t
∞

0

1

x1−b(x2 − 1)
dx

= lim
|ε|→0

[ ∫ 1−|ε|

0

1

x1−b(x2 − 1)
dx

+
∫ ∞

1+|ε|

1

x ′1−b(x ′2 − 1)
dx ′

]
.

By replacing x = 1/x ′ in the second integral in the righthand
term, we get

k1 = lim
|ε|→0

∫ 1−|ε|

0
[x−(1−b) + x(1−b)]

1

(x2 − 1)
dx.

This relation shows that we have εω−ε∞
σ e

ω′−σ e
0

= 1
k1ω

= κ
ω

(we

have set κ = 1
k1

), such that a small variation of σω relative to
frequency (for low frequencies) will entrain a strong variation
of εω relative to frequency and, thus, a very large value of τMW

for low frequencies. If σ e
0 ≈ 0, and if εω is much larger than

that of vacuum, then τMW is given by

τMW = εω

σ e
ω

≈ κ

ω
, (A19)

where κ is a constant that depends on the exponent b

(see Fig. 3). This approximation corresponds well to the
experimental measurements of Gabriel et al. [12].

Finally, if the conductivity varies very slowly with respect
to frequency (small value of a), then the permittivity will be
proportional to 1/ω and will therefore vary very steeply at low
frequencies.
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