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Dynamic response of micropipettes during piezo-assisted intracytoplasmic sperm injection
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In the intracytoplasmic sperm injection (ICSI) process, a piezoelectric actuator is commonly used to assist
the piercing of cell membrane. The longitudinal pulses that are performed by the piezo actuator, however, cause
undesired lateral vibrations at the drawn tip of the injection micropipette. This mechanism is not well understood,
despite its critical role in piezo-assisted cellular microinjection. We provide an analytical model to characterize
the micropipette tip vibrations under assumed base excitation arising from the piezoelectric pulses. The resulting
dynamic response is determined by using the Duhamel integral method. This study quantifies the effect of fluid
damping, embedded mercury, and the apparent cell membrane elasticity. We found that, in practice, a small
mercury droplet filled in pipette essentially creates higher shear forces at the membrane-pipette interface. The
increased shear due to underdamped eigenmodes is conceived to assist the piercing of the cell membrane.
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I. INTRODUCTION

Microinjection is a well-accepted method to introduce
sperm, nucleus, DNA materials, or macromolecules into
biological cells for biomedical research and applications such
as infertility treatment, cloning, and cryopreservation [1–3].
The procedure starts with penetration of a glass micropipette
through the cytoplasmic membrane followed by substance
delivery into the cells. Here we focus on the intracytoplas-
mic sperm injection (ICSI) process, which is one of the
broadly used fertilization techniques. During ICSI the oocyte
(unfertilized egg) is immobilized by a holding pipette, and
then an injection pipette penetrates through both the zona
pellucida and oolemma to introduce the sperm into the oocyte’s
cytoplasm [4,5]. The zona pellucida is a polymer layer made
of glycoproteins that enclose the whole oocyte [6], whereas
the oolemma is the cytoplasmic membrane. Piercing through
the oolemma of a mouse oocyte is difficult due to its high
flexibility and compliance to the motion of the injection
pipette. To assist the penetration, a piezo-driven longitudinal
pulse train is commonly introduced to the injecting pipette
(Fig. 1). However, this pulse train unavoidably excites lateral
vibrations at the pipette holder and the micropipette [7]. It
is believed that the lateral vibration at the pipette-membrane
contact point may damage the oolemma and thus reduce
the success rate of ICSI. In practice today, this difficulty is
overcome by filling the pipette tip with mercury. However,
there is no supporting comprehensive analysis to this claim.
Contradicting viewpoints also exist on whether fluid damping
can significantly suppress the tip vibration prior to and during
the oocyte penetration process [7–9]. Furthermore, it is not
clear whether the lateral vibration in such a short period
of time (usually around milliseconds) assists the membrane
penetration or yields harmful effects to the oocyte. This
study provides an analysis to clarify the added mercury, fluid
damping, and piezo-triggered tip vibration effects from the
continuum-mechanics viewpoint.

Dynamic response of the micropipette can be modelled
as a Euler-Bernoulli beam with a fluid damping effect. Such
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mathematical framework is similar to those used for simulating
resonant behaviors of an atomic force microscope (AFM)
cantilever tip driven by a harmonic base motion [10–12].
For a very small oscillation amplitude compared to the beam
thickness or pipette diameter, the fluid damping force acting
on the cantilever can be approximated by using the classical
boundary layer theory [13]. For a simple cylindrical cantilever
beam the linear streaming model can be solved analytically.
A finite element numerical analysis of the dynamic response
of the micropipette under oscillatory forcing was provided
by Fan et al. [9]. However, the boundary layer model is
applicable for small-amplitude oscillation and not appropriate
for characterizing the fluid damping effect caused by the
large-amplitude oscillations of the ICSI micropipette, which
was clearly observed from the optical images provided by Ediz
and Olgac [7,8]. In principle, the distinct flow pattern induced
by large-amplitude pipette oscillation can be resolved only
numerically. To simplify the model, here we use an empirical
approximation of the drag force on an oscillating cylinder
to quantify the fluid damping effect under the pulse-excited
vibration. The indentation resistance from the membrane is
modelled by an axial force applied to the pipette, and the shear
effect is simplified based on apparent viscoelastic properties
of the oolemma cell membrane.

II. ANALYSIS

The assembly for piezo-assisted ICSI consists of three
major components: piezoelectric actuator, pipette holder, and
glass pipette that is drawn to a very narrow tip with diameter
around 10 μm (Fig. 1). The actuator generates an axial pulse
train that leads to an apparent decaying lateral vibration near
the pipette holder. Direct measurement of the pipette vibration
is very difficult; however, the excited lateral vibration was
successfully detected by a noncontact photonic probe at the
pipette holder [8], showing that a 2-Hz longitudinal pulse train
given by the piezoelectric actuator excites about 6-kHz lateral
decaying vibration with duration about 4 ms. The majority
of the micropipette can be assumed solid except the drawn
tip. Thus, one can assume that the lateral vibration at the
pipette holder is transmitted up to the narrowing shoulder
without attenuation. This base vibration subsequently excites

041908-11539-3755/2011/84(4)/041908(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.041908


MEHDI KARZAR-JEDDI, NEJAT OLGAC, AND TAI-HSI FAN PHYSICAL REVIEW E 84, 041908 (2011)

~

L 1.1 mm~

D ~ 10 µm

D ~ 8 µm

60 µs

0.5 s

x

w o

i

micropipette

pipette
holder

piezo-electric
actuator

drawn tip
shoulder

mercury
column

sperm
head

longitudinal
piezo pulse

t24µm

lateral
vibration

6 kHz

0.5 s
4 ms

FIG. 1. Schematic of a micropipette assembly. The longitudinal
pulse train is introduced by the piezo actuator and is carried through
the pipette holder. As a result, the pipette shoulder undergoes a
decaying lateral oscillation excited by the longitudinal piezo pulse
train. The drawn pipette is filled with the culture medium and mercury
before aspiration of the sperm head near the pipette mouth.

the flexible pipette tip. In an ICSI procedure the drawn tip is
fully immersed in the culture medium with viscosity similar
to water. The free vibration of the tip is suppressed by
this surrounding medium and additionally by the embedded
mercury. Moreover, when the tip indents the oolemma, the
lateral and axial forces between the pipette tip and the oolemma
membrane should be considered. To facilitate the analysis,
a few important assumptions are made: (i) there is no slip
between the tip and the membrane, (ii) the structural damping
due to the energy dissipation of the glass material and the
friction between the glass and mercury is negligible, and
(iii) the small pipette section for sperm head deployment is
neglected and the drawn pipette tip is assumed either empty or
completely filled with mercury (two limiting cases).

A. Mathematical model

Presuming the structure of the vibrating tip follows the
Euler-Bernoulli beam theory [14], the membrane indentation
can be incorporated and modelled by an axial compressive
load, and the hydrodynamic resistance to the tip is represented
by a linear damping effect. The one-dimensional governing
equation thus can be written as

EI
∂4w

∂x4
+ T

∂2w

∂x2
+ ρA

∂2w

∂t2
+ c

∂w

∂t
= 0 (1)
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FIG. 2. (a) Axisymmetric schematic of oocyte in contact with
the pipette tip and (b) a phenomenological model for the membrane
indentation effect.

for 0 � x � L and t � 0, where w(x,t) is the lateral displace-
ment of the tip, E is Young’s modulus, I = π (D4

o − D4
i )/64 is

the area moment of inertia, in which Do and Di are outer and
inner diameters of the micropipette (Fig. 1), T represents the
axial force, ρ is the structure density, A = π (D2

o − D2
i )/4 is

the pipette tip’s cross-sectional area, ρA is the effective mass
per unit length, and c (kg m−1s−1) is the apparent viscous
damping coefficient that accounts for the fluid damping effect.
If the pipette is filled with mercury, the effective mass of
the pipette tip should be modified and account for the mass
of glass and mercury. The axial force T in Eq. (1) is the
resistance from the indented oolemma, which is calculated
from the tension stress due to the stretching of the membrane
[Fig. 2(a)].

Before the indentation, the oocyte is spherical with surface
area S0 about 4πR2, where R is the oocyte radius. The area
of the undeformed spherical cap is S1 = 2πRh while the
deformed part of membrane has conical surface with area
S2 = πrd. Assuming that the stress distribution is uniform
and isotropic, in the meridian direction the tensional stress is
σ = kD(S2 − S1)/S0, where kD is the membrane area dilation
modulus. Now by integrating the tension stress near the folding
edge with radius r , the axial force T can be formulated
as

T = 2πrσ cos θ. (2)
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Furthermore, the moving base of the beam is clamped (Fig. 2),
and the two boundary conditions are

w(0,t) = a0e
−εt sin(2πω0t) and

∂w

∂x
= 0 at x = 0,

(3)

where a0 is the initial amplitude of vibration, ε represents
an empirical decaying rate of the forced vibration at the
shoulder, and ω0 is the forcing frequency. These parameters
are determined from the measurement using a photonic sensor
placed near the pipette holder [7].

Assuming that the point contact between the tip and the
membrane has no bending resistance, the bending moment for
the tip vanishes and is expressed as

∂2w

∂x2
= 0 at x = L. (4)

Additionally, it was found that lipid bilayer membrane has
viscoelastic properties [15,16], and, thus, the membrane
response due to the shearing motion from the tip at the
contact point may be represented by the Maxwell viscoelastic
model [17] with a serial arrangement of a spring and a dashpot
[Fig. 2(b)] and expressed as

τ + μL

kL

∂τ

∂t
= μLγ̇ at x = L, (5)

where τ is the shear stress, μL is the apparent membrane
viscosity, kL is the membrane modulus, and γ̇ is strain
rate at the contact point. Assuming that there is no slip at
the contact point, the above Maxwell boundary condition can
be formulated in terms of the tip displacement as

EI
∂3w

∂x3
+ EI

μL

kL

∂4w

∂x3∂t
= μL

∂w

∂t
. (6)

The initial conditions for the beam equation [Eq. (1)] are
w(x,0) = ẇ(x,0) = 0.

Considering the following characteristic scales:

length ∼ L, displacement ∼ a0,
(7)

time ∼ ω−1
0 , frequency ∼ ω0,

where ω0 (�6 kHz) is the driving frequency from the pulse
train applied to the micropipette base, the scaled beam equation
becomes

λ
∂4w∗

∂x∗4
+ ζ

∂2w∗

∂x∗2
+ ∂2w∗

∂t∗2
+ κ

∂w∗

∂t∗
= 0, (8)

for 0 � x∗ � 1 and t∗ � 0, where x∗ and t∗ are scaled
spatial and temporal variables, respectively. The corresponding
boundary conditions are

w∗(0,t∗) = e−ηt∗ sin(2πt∗),
∂w∗

∂x∗ (0,t∗) = 0,

(9)
∂2w∗

∂x∗2
(1,t∗) = 0,

ψ
∂3w∗

∂x∗3
(1,t∗) + ∂4w∗

∂x∗3∂t∗
(1,t∗) = ϕ

∂w∗

∂t
(1,t∗).

The dimensionless groups are defined as

λ = EI

ω2
0L

4ρA
, ζ = T

ω0L2ρA
, κ = c0

ω0ρA
,

(10)

η = ε

ω0
, ψ = kL

μLω0
, and ϕ = kLL3

EI
,

which measure the relative contributions of elastic to structure
inertial effect (λ), axial load to structural inertial effect (ζ ),
viscous damping to structure inertial effect (κ), decay rate
of the forcing frequency to the forcing frequency (η), the
forcing to membrane relaxation time scales (ψ), and the lateral
elasticity of membrane to the elasticity of the micropipette
beam (ϕ). Note that λ is equivalent to the stiffness of
the beam, and the axial force in ζ provides a compressive
effect that reduces the natural frequency of tip vibration. The
hydrodynamic viscous damping in κ does not affect the nature
of the beam but does determine whether the vibrating modes
are overdamped. The membrane relaxation time scale is of
the order of 10−1 s [15], which is much higher than the
tip oscillation time scale (∼10−4 s). Therefore, ψ is around
10−3, meaning the membrane viscous effect is negligible at
this driving frequency, and the Maxwell boundary condition
reduces to a simple spring model for the lateral displacement.
In dimensionless form, it is

∂4w∗

∂x∗3∂t∗
(1,t∗) � ϕ

∂w∗

∂t
(1,t∗). (11)

Integrating the above equation with time and considering the
zero initial condition, we obtain:

∂3w∗

∂x∗3
(1,t∗) = ϕw∗(1,t∗), (12)

Other dimensionless groups are of the order of 1 to 10, and,
therefore, the corresponding terms are kept in the formulation.

During ICSI the pipette tip is fully immersed in the oocyte
culture medium with a viscosity similar to water. As a result,
a damping force arises to suppress vibration of the pipette
tip. This force is similar to the damping force from viscous
fluid to an oscillating cylinder. The fluid flow induced by
an oscillating cylinder has complicated patterns, including a
streaming boundary layer for small-amplitude oscillation [13]
and vortex shedding behind the cylinder. These patterns are
characterized by the Reynolds number (Re), the Keulegan-
Carpenter number (KC), and/or the Stokes’ parameter (β)
[18,19]. However, analytical solutions exist only for cases with
low-Re and low-KC regime and small oscillation amplitude,
so the boundary layer approximation is applicable for finding
the frequency response and hydrodynamic resistance of a
cantilever beam [9,12]. As mentioned in the Introduction,
such an approximation is not appropriate for determining
the damping force on the oscillatory micropipette considered
for an ICSI application. In our case, for medium density
∼103 kg/m3, viscosity ∼ 10−3 kg m−1s−1, tip diameter 10 to
22 μm, Re ∼ 10 to 30, KC ∼ 5 to 50, and β ∼ O(1), a pair
of symmetric vortices may appear behind the cylinder or even
detach from the cylinder surface when the moving direction
of the cylinder changes [18]. The total drag of the oscillating
cylinder is composed of (i) the quasisteady viscous drag and
(ii) the force history primarily due to the reversal of the motion
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direction [20]. Because the main contribution of the total drag
comes from the viscous effect, to facilitate the analytical study,
here we consider only the quasisteady approximation for the
fluid damping on the dynamic response of the micropipette.
A reasonable estimation of such damping can be calculated
by the drag coefficient and an estimated linear relation between
the local drag force and the moving velocity of the drawn tip.
The local drag force per unit length can be calculated by

FD = �U 2DCD/2, (13)

where � is density of fluid, U is the lateral velocity of
micropipette, D is diameter of micropipette, and CD is the
drag coefficient. Without direct numerical simulation of the
complicated flow, the drag force can be estimated by the scaling
relationship [21]:

CD � 1 + 10Re−2/3
D , (14)

which represents a uniform flow passing through a cylinder
with Re ranging from creeping flow regime up to the order
of 105. For the given fluid density and cylinder diameter,
the dimensional local damping force per unit length can be
simplified as

FD � 0.0075U 2 + 0.0123U 4/3, (15)

where

U = (a0ω0)∂w∗/∂t∗. (16)

A reasonable linear approximation of the scaling relationship
FD ∼ cU is good for Re up to 30 and the corresponding
drag coefficient c � 0.025 (kg m−1s−1). Comparing with the
reported numerical results [20], this approximation underesti-
mates the damping effect by about 10% due to the neglected
force history for a cylinder undergoing a large-amplitude
oscillation.

B. Integral solution

The asterisk superscript is dropped hereafter in this section
for convenience. The proposed mathematical model includes
a time-dependent boundary condition [the first condition
in Eq. (9)] and can be solved by the Duhamel integral
method [22]. This method is in general applicable for a linear
equation with time-dependent nonhomogeneous boundary
condition arising from the forcing effect. For this purpose the
corresponding auxiliary problem for the dynamic response of
the step input has to be solved, expressed as

λ
∂4u

∂x4
+ ζ

∂2u

∂x2
+ ∂2u

∂t2
+ κ

∂u

∂t
= 0, (17)

where u is the solution for the corresponding auxiliary
problem and the boundary conditions are u(0,t) = 1,u′(0,t) =
0,u′′(1,t) = 0, and u′′′(1,t) = ϕu(1,t), and the initial condi-
tions u(x,0) = 0 and u̇(x,0) = 0 indicate that the micropipette
is initially at rest without deformation. The solution for
the auxiliary problem is a sum of the steady state and
transient solutions, u(x,t) = f (x) + v(x,t). The steady-state
part satisfies

∂4f (x)

∂x4
+ ζ

λ

∂2f (x)

∂x2
= 0 (18)

with boundary conditions f (0) = 1, f ′(0) = 0, f ′′(1) = 0,
and f ′′′(1) = ϕf (1). The last two conditions describe the
spring-hinged conditions. The solution of the steady-state
formulation is, therefore,

f (x) = A1 cos(αx) + A2 sin(αx) + A3x + A4, (19)

where the coefficients are

A1 = ϕ tan α

α3[(tan α)(sin α) + cos α] − ϕ[α − tan α]
,

(20)

A2 = −A1

tan α
, A3 = −αA2, and A4 = 1 − A1.

Note that α2 = ζ/λ gives the comparison of the axial force to
the pipette tip’s stiffness.

The resulting equation for the transient part v(x,t) is
formulated as

λ
∂4v

∂x4
+ ζ

∂2v

∂x2
+ ∂2v

∂t2
+ κ

∂v

∂t
= 0, (21)

where the boundary conditions are v(0,t) = 0, v′(0,t) = 0,
v′′(1,t) = 0, and v′′′(1,t) = ϕv(1,t) and the initial condi-
tions are v(x,0) = −f (x) and v̇(x,0) = 0. Letting vn(x,t) =
Xn(x)Tn(t) we obtain the eigenequation:

∂4X(x)

∂x4
+ ζ

λ

∂2X(x)

∂x2
− ω2

n
λ

X(x) = 0, (22)

where ωn is the natural frequency. The boundary conditions
corresponding to the eigenfunction are X(0) = 0, X′(0) = 0,
X′′(1) = 0, and X′′′(1) = ϕX(1). The mode shape of the
uniform beam Xn(x) can thus be derived and expressed as

Xn(x) = cosh(kn1x) − cos(kn2x) − [sinh(kn1x) − sin(kn2x)]

×
[

k2
n1 cosh kn1 − k2

n2 cos kn2

k2
n1 sinh kn1 − kn1kn2 sin kn2

]
, (23)

where

kn1 =
{

2ζ/λ + [
4(ζ/λ)2 + k4

n
] 1

2

} 1
2
,

(24)

kn2 =
{
−2ζ/λ + [

4(ζ/λ)2 + k4
n
] 1

2

} 1
2
,

and kn = (ωn/λ)
1
4 is the flexural wave number connected to

the natural frequencies ωn and the stiffness parameter λ. The
corresponding frequency equation becomes

0 = [
k2
n1 cosh kn1 + k2

n2 cos kn2
]{

k3
n1 cosh kn1

+ kn1k
2
n2 cos kn2 − ϕ

[
sinh kn1 − kn1

kn2
sin kn2

]}

− [
k2
n1 sinh kn1 + kn1kn2 sin kn2

]{
k3
n1 sinh kn1 − k3

n2 sin kn2

−ϕ[cosh kn1 − cos kn2]
}
. (25)

The temporal equation is

∂2T

∂t2
+ κ

∂T

∂t
+ ω2

nT = 0 (26)

for Ṫ (0) = 0, and the solution is

Tn(t) = e−κt/2

(
eβnt + 2βn − κ

2βn + κ
e−βnt

)
, (27)
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where βn is the damped vibration frequency of the micropipette
as a a function of dimensionless natural frequency ωn and the
damping factor κ:

βn = [
(κ/2)2 − ω2

n

]1/2
. (28)

From the initial condition v(x,0) = −f (x), the following
solution for the auxiliary problem can be obtained:

u(x,t) = f (x) −
∞∑

n=1

(2βn + κ)
∫ 1

0 f (x)Xndx

4βn

∫ 1
0 X2

ndx
Tn(t)Xn(x).

(29)

The summation is the time-dependent contribution of every
eigenmode. Finally, based on the Duhamel integral method, the
complete vibration can be expressed as a closed form integral
solution:

w(x,t) =
∫ t

0
u(x,t − τ )

∂w

∂t
(0,τ )dτ, (30)

where u is the response of the micropipette to a unit step input
at the base (x = 0) and ∂w(0,τ )/∂t represents the velocity of
the lateral motion at the base.

III. RESULTS AND DISCUSSION

A. A free-vibrating tip

The dynamic features of the micropipette can be understood
from a free-vibrating tip (ζ = 0, ϕ = 0), which is governed by
the damped Euler-Bernoulli beam equation. For this special
case, the eigenmode reduces to

Xn(x) = cosh(knx) − cos(knx)

− cosh(kn) + cos(kn)

sinh(kn) + sin(kn)
[sinh(knx) − sin(knx)],

(31)

and the corresponding characteristic equation is

1 + cos kn cosh kn = 0, (32)

which yields the wave numbers (kn) 1.875, 4.694, 7.854, 10.99,
and so on. The transient solution is the same as Eq. (27).
Therefore,

u(x,t) = 1 −
∞∑

n=1

(2βn + κ)
∫ 1

0 Xndx

4βn

∫ 1
0 X2

ndx
Tn(t)Xn(x), (33)

and w(x,t) again can be found by Eq. (30). As a result,
we calculate the tip response to a continuous input function
w(0,t) = a0tanh(τ0t) that represents the impulse. The param-
eters corresponding to the experimental setting are as follows:
L = 1.1 mm, ρglass = 2,290 kg/m3, ρHg = 13 543 kg/m3,
E = 63.4 GPa, Aglass = 2.827 × 10−11 m2, AHg = 5.027 ×
10−11 m2, I = 2.898 × 10−22 m4, ω0 = 6 kHz, empirical
decaying rate γ = 1000 s−1, initial amplitude a0 = 12 μm,
and τ0 is set to 100 s−1 for a short duration of the step. The
dynamic response of micropipette tip in fluid to this input is
illustrated for cases of empty micropipette and pipette filled
with mercury.

time [ms]

in liquid

(a)

1, mercury1, empty

(c)(b) 2.3 kHz1

14
40

79
131 194

7.8 kHz1

48
137

268
443

662

in liquid
in vacuum

w
w1

w

empty
pipette

pipettt filled
with mercury

input step

tip filled
with mercury

empty tip

*

FIG. 3. Dynamic response at the free end of the drawn pipette
tip to a step input in liquid: (a) the beam deflection w∗ (scaled by
a0 = 12 μm) for an empty drawn pipette tip and a tip filled with
mercury; (b) dynamic response in the frequency domain for an empty
tip (λ = 5.38 and κ = 64.4, w is scaled by the first eigenmode
contribution, amplitude w1); and (c) response for a tip filled with
mercury (λ = 0.47, κ = 5.59).

In Fig. 3(a), the step response for the micropipette tip
immersed in viscous fluid shows that the triggered oscillation
has an overshoot regardless the existence of mercury. After
the initial overshoot, the vibration damps out quickly to a new
position w∗ = 1 with almost the same settling time for both
cases. For empty micropipette the damping profile is smooth.
For the pipette filled with mercury the average damping and
settling time are almost the same as the empty pipette, whereas
the contributions of higher harmonics cause significant noise.
Figures 3(b) and 3(c) show the dynamic response at the end of
the tip in the frequency domain, both in vacuum and immersed
in a viscous fluid. All lateral deflections are rescaled by
w1 � 17.4 μm, which is the amplitude of the first eigenmode
of the empty micropipette in vacuum. The frequencies are
scaled by the first natural frequency corresponding to the
empty tip and to the tip filled with mercury. In Fig. 3(b),
for an empty pipette the fluid damping effect suppresses
all of the eigenmode contributions, while Fig. 3(c) shows
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that for the pipette filled with mercury the contribution
from higher eigenmodes is still quite effective under fluid
damping. Comparing Figs. 3(b) and 3(c), the mercury case
contributes more to the lateral vibration for higher eigenmodes,
either with or without fluid damping. Therefore, the high
frequency oscillation observed in Fig. 3(a) (shown by the
dashed line) is the result of higher amplitudes and at higher
eigenmodes.

Figure 4 shows the mercury effect on the response of the
micropipette under decaying base oscillation without fluid
damping. The dimensionless groups κ = 0, η = 0.17, and
λ = 5.38 are used for the empty micropipette and λ = 0.47
is used for the tip filled with mercury. Recall that the λ

value measures the relative contribution of structure elasticity
to the inertia effect of drawn tip. For large λ the oscillation
amplitude near the free end is significantly larger, whereas
with the mercury the high inertia reduces the beam stiffness and
results in a lower vibration amplitude, and thus the deflection of
the whole tip levels off significantly. This result is qualitatively
consistent with experimental observations (Figs. 9 and 10
in Ref. [7]), showing that the added mercury reduces the
amplitude at the end of the tip by two- to fivefold [Figs. 4(a) to
4(c)]. Figures 4(d) and 4(e) show the dynamic response at the
tip end to the decaying forced vibration at the base. In Fig. 4(d)
for an empty tip, the first natural frequency ω1 is very close
to the forcing frequency ω0. This causes larger amplification
of the amplitude. However, for the tip filled with mercury
[Fig. 4(e)], natural frequencies are away from ω0 which leads
to a smaller amplitude response. The first mode for an empty
tip has about fourfold higher amplitude than the tip filled with
mercury. This is consistent with the beam shapes observed in
Figs. 4(a) and 4(b).

By adding the hydrodynamic damping effect (i.e., pipette
in liquid), one observes a reduction of the lateral vibration
especially for an empty tip (shown in Fig. 5). Overall, the fluid
damping is more efficient for an empty tip with lower inertia
and a higher κ value. This agrees well with the complete tip
response to the base excitation Eq. (3) that is shown in Fig. 3.
With fluid damping, the tip vibration behaves surprisingly
similarly for cases with and without embedded mercury. Note
that this observation is contingent on the parametric selection
for the pipette and the ambient medium. Variations of these
parameters can easily reverse the comparative outlook. It is
safe to state, however, that the mercury-filled pipette has fewer
oscillations in the biological liquid medium than in the air. This
is an intuitively obvious result.

The highlight finding of this paper, on the other hand, is
as followings. The authors of Ref. [7] compare the pipette
tip responses between the empty tip and tip filled with
mercury cases while they are in the air. They declare from
this observation that the similar comparison should hold when
the pipette is in the liquid. The present study brings a contrary
viewpoint, whereby induction of a properly selected viscous
damping for the medium could render almost identical tip
movements for the two pipettes (with and without mercury) in
the viscus liquid medium. We may even state that the ambient
liquid can be selected such that the earlier proposed advantage
of having mercury in the pipette could be, in fact, a handicap.
This is a very sensitive point that has not been recognized in
earlier investigations.

FIG. 4. Response to the base excitation of a drawn tip without
the fluid damping effect: (a) the transient beam profiles for an empty
drawn tip at a range of dimensionless time t∗ = 1 to 1.75 (t∗ = ω0t ,
1/ω0 � 0.17 ms), which covers the second cycle of the vibration;
(b) beam profiles for a tip filled with mercury; (c) time evolution
at the tip end for both cases; (d) dynamic response in the frequency
domain for an empty tip; and (e) a tip filled with mercury. The location
x is scaled by the tip length 1.1 mm, and the lateral deflection w is
scaled by the initial amplitude of the forced vibration, 12 μm.

B. Tip in contact with membrane

In this section we add another new and untreated feature
of microinjection operation. When the drawn tip is engaged
with the oolemma membrane, the membrane generates an axial
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FIG. 5. Fluid damping effect corresponding to the cases presented
in Fig. 4. The new dimensionless parameters are as follows:
(a) λ = 5.38, κ = 64.4, and η = 0.17 for an empty tip with ω∗

n = 7.8,
48.7, 137.7, and so on; (b) λ = 0.47, κ = 5.59, and η = 0.17
for a tip filled with mercury and ω∗

n = 2.3, 14.4, 40.3, etc.; and
(c) the time evolution at the tip end for both cases. Note that for
the empty pipette the first mode is overdamped and the higher
harmonics are underdamped (ω∗

1 < κ/2 < ω∗
2,ω

∗
3, . . . ,ω

∗
∞), while for

the mercury-filled tip all modes are underdamped.

force on the tip. This force can be calculated by using Eq. (2).
The initial and deformed profiles of the oolemma membrane
are measured from optical images [23], and, thus, the axial
force T applied to the tip can be calculated. For this purpose,
we multiply the relative change of the area, (S2 − S1)/S0, with
the area dilation modulus kD (for which a reference value
about 450 mN/m [24] is selected) so the tension stress of
the membrane σ can be determined. The resulting shear force
at the tip-oolemma contact point can also be estimated by
kL � kD and Fs = kDa0w

∗ at x = 1.1 mm, where w∗ is given
by the integral solution Eq. (30).

Figure 6 shows the transient shear force applied from the
tip to the oolemma. A high shear up to several micronewtons
appears during the first few milliseconds. This finding indicates
that filling the tip with mercury yields approximately fourfold
higher shear force on the oolemma in comparison with the
empty tip. This is due to increased inertial effect and the greater
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FIG. 6. Pipette engaged in oocyte, all in liquid medium.
(a) Transient deflections of the tip at different instants and (b) the
estimated shear force acting on the oolemma with and without the
mercury. The parameters used are as follows: λ = 5.38, ζ = 1.204,
κ = 64.40, η = 0.17, and ϕ = 32.6 for an empty tip and λ = 0.47,
ζ = 0.07, κ = 5.59, η = 0.17, and ϕ = 32.6 for a tip filled with
mercury. The indentation depth is around 65% of the oocyte diameter.

contribution from higher harmonics. When filled with mercury
the tip displacement at the contact point as well as the applied
shear force are much larger. This property possibly eases the
piercing the flexible oolemma. According to the frequency
response shown in Fig. 3, the higher harmonic vibration of
the tip with mercury will provide additional shear to the
membrane compared with the empty tip. However, to the best
of our knowledge, no experimental evidence or study has ever
addressed this issue before.

A few sensitivity tests are presented next in a broader range
of membrane stiffness, medium viscous damping, pipette tip
length, and the pipette indentation depth on the maximum
shear force Fs,max. Figure 7(a) shows that a larger membrane
elasticity implies a larger shear force when everything else
remains the same. In this limit, the shear force vanishes and
no resistance exists against the lateral movement of the pipette
tip as the membrane elasticity approaches zero. In the other
limiting condition for a very stiff membrane, the pipette tip
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FIG. 7. (a) Effect of membrane elasticity on the maximum shear
force while the pipette is in a viscous liquid, (b) viscous damping
on the maximum shear force, and (c) pipette tip length on the
maximum shear force for the tip filled with mercury; the dashed
lines indicate forcing. Squares are data points corresponding to
the conditions provided in Fig. 6. The parameters used are as
follows: L = 1.1 mm, Do = 10 μm, Di = 8 μm, c = 0.025 kg ms−1,
ε = 1000 s−1, ω0 = 6 kHz, and a0 = 1.2 μm.

is essentially pinned, so w(L,t) = 0 and ∂2w(L,0)/∂x2 = 0.
This asymptotic behavior yields higher shear forces for all
three different filling liquids as shown in Fig. 7(a). Figure 7(b)

shows the medium viscous effect on the maximum shear force
while all other parameters remain fixed. For the mercury-
filled tip, the shear force decreases much more steeply with
increasing viscosity and approaches a similar asymptotic value
as for the other tips. The shear force monotonically decays
as the viscosity increases. In comparison with the less dense
filling liquid, such as Fluorinert [5], the tip filled with mercury
has the first natural frequency that is much closer to the pulse
train frequency at the base (6 kHz). As a result, a resonant
response is expected at the tip, which yields a larger amplitude
and larger shear force as observed in Fig. 7(b). When the tip
is filled with lighter material the medium viscosity does not
seem to affect the maximum shear force significantly. All cases
approach the limit with a large viscous effect. The effect of the
tip length on the maximum shear force is shown in Fig. 7(c).
For a short tip the rigidity λ is large enough to keep a relatively
flat pipette profile during the vibration and thus the shear force
is higher and the trace for the tip end has almost no phase
shift compared with the excitation. Applying a longer tip will
reduce the rigidity, lead to flexible tip profiles, and cause larger
delays in the trace with respect to forcing. Figure 7(c) shows
that the shear force does not monotonically decrease as the
length increases due to the complicated tip vibration profiles.
Multiple inflections along the beam profiles appear for longer
tips that may generate a smaller vibration amplitude at the tip
end and, thus, smaller maximum shear force. We also expect
that longer pipette tips yield higher viscous dissipation effects
that limit the vibration amplitude at the tip.

Figure 8 presents the effect of membrane indentation depth
on the shear force. A deeper indentation to the oolemma
membrane yields a larger axial resistance T to the tip. The
resulting maximum shear force Fs,max is calculated based
on the oolemma profiles [23] at various indentation depths.
This earlier study shows that for an indentation depth ranging
between 0 and 66% of the oocyte diameter (�100 μm), r is
around 0 to 37.1 μm, d is about 0 to 63 μm, h is about 0 to 3 μm,
and θ is approximately 90◦ to 30◦. The resulting axial force T

goes from 0 to approximately 3.96 μN. This value is within
the same order of magnitude as that reported by Sun et al. [25]
and Sen et al. [26]. Figure 8 reveals that the maximum shear
force remains almost constant for small indentation depth up

FIG. 8. Effect of indentation depth to the maximum shear force.
The parameters are listed in Fig. 7. Note that different scales are
applied for different tips.
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to 35%. The relative change of the maximum shear force is
less than 1% for the tip filled with mercury and ∼3.5% for
an empty tip. This shows that the axial load has slight effect
on the tip-membrane shear force. Although this percentage
seems small, in practice, larger indentation depths may prevent
the slip between the tip and the membrane during the lateral
vibration of the tip. Because the oolemma’s rupture tension
is unknown, as a reference, the reported lipid membrane’s
rupture tension on the order of 10−2 N m−1 [27,28] is used
as a reference. Considering the pipette tip diameter of about
10 μm, the shear force for rupturing membrane is around
0.1 μN. This value is an order of magnitude lower than the
shear force shown in Figs. 6 and 8, implying that the oolemma
might be pierced by the shear force triggered by the lateral
pulse trains instead of the axial piezo-actuated force.

IV. CONCLUSION

This study presents an analysis of piezo-induced tip
vibration of an ICSI pipette. The results show that the first

few eigenmodes play a major role in the dynamic response of
the vibrating tip. Cases with and without embedded mercury
in the micropipette are studied in vacuum and in a viscous
fluid medium. For selected parametric quantities we observe
an interesting comparison: In viscous liquid the pipette tip
filled with mercury shows larger strokes than that of the empty
pipette. This finding contradicts the current hypothesis among
the ICSI community that believes that when the tip is filled
with mercury, the movement of the tip is constrained. The
mercury-induced larger strokes could cause larger shear force
and may ultimately lead to piercing of the cell membrane.
The study sheds some light onto this intriguing dynamics. The
authors hope that this work will promote further studies and
experimental evidence that will bring more engineering tools
to the use of practitioners of ICSI.
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