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Effect of local thermal fluctuations on folding kinetics: A study from the perspective
of nonextensive statistical mechanics
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The search through the proteins conformational space is thought as an early independent stage of the folding
process, governed mainly by the hydrophobic effect. Because of the nanoscopic size of proteins, we assume that
the effects of local thermal fluctuations work like folding assistants, managed by the nonextensive parameter
q. Using a 27-mer heteropolymer on a cubic lattice, we obtained—by Monte Carlo simulations—kinetic and
thermodynamic amounts (such as the characteristic folding time and the native stability) as a function of
temperature T and q for a few distinct native targets. We found that for each native structure, at a specific system
temperature T , there exists an optimum q∗ that minimizes the folding characteristic time τmin; for T = 1, it is found
that q∗ lies in the interval 1.15 ± 0.05, even for native structures presenting significantly different topological
complexities. The distribution of τmin obtained for specific q > 1 (nonextensive approach) and temperature T

can be fully reproduced for q = 1 (Boltzmann approach), but only at higher temperatures T ′ > T . However,
assuming that the complete set of proteins of each organism is optimized to work in a narrow range of temperature,
we conclude that—for the present problem—the two approaches, namely, (T ,q > 1) and (T > T ′,q = 1), cannot
be equivalent; it is not a simple matter of reparametrization. Finally, by associating the nonextensive parameter q

with the instantaneous degree of compactness of the globule, q becomes a dynamic variable, self-adjusted along
the simulation. The results obtained through the q-variable approach are utterly consistent with those obtained
by using a target-tuned parameter q∗. However, in the former approach, q is automatically adjusted by the chain
conformational evolution, eliminating the need to seek for a specific optimized value of q for each case. Besides,
using the q-variable approach, different target structures are promptly characterized by inherent distributions of
q, which reflect the overall complexity of their corresponding native topologies and energy landscapes.
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I. INTRODUCTION

The series of events that drive a polypeptide chain
into its stable native structure is not yet fully understood.
Protein systems involve so numerous complex interactions
and remarkable properties that they continuously require
new experiments, as well as theoretical and computational
approaches [1–5].

Along the folding process of globular proteins, the corre-
sponding native states are found so quickly that, in spite of
being a stochastic process, the search through the protein’s
huge conformational space cannot be processed at random
[6]. However, though being so rapid, folding rates (kf ) of
different proteins of about the same size span over many
orders of magnitude; kf is a measure of how fast the folding
process leads the chain from the unfolded state up to the
native structure. Therefore, even for two-state, single-domain
proteins, the current theories of folding kinetics remain too
limited to accurately explain this experimental observation
[7]. Indeed, characterization of the refolding of such simple
proteins has shown that factors such as stability and chain
length, as proposed by theoretical studies, are apparently not
as influential on kf as the global average sequence separation
between contacting residues in the native state, that is, the
native structure Contact Order [8].

One reason for not fully understanding the fold-
ing process—besides the conflicting interpretations of its
fundamentals—may be because the mechanisms for protein
folding have been routinely proposed from ensemble-averaged
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properties [9–11]. Hence, to date, virtually all approaches
proposed to investigate the folding process can only partially
explain the phenomenon [12]. For instance, the transition
state concept provides a satisfactory explanation for two-state
kinetics but not for folding reaction rates, while the funnel
landscape idea can give insights about the folding rates but not
for two-state kinetics [13].

Our central aim in the present work is to show evidence
concerning the importance of local thermal fluctuations for
the folding kinetics of globular proteins. A typical behavior of
small, single-domain, globular proteins is used here as an ideal
prototype: Many of such proteins fold via an all-or-nothing
process, that is, without detectable intermediates [14]. In the
next section, we present a few characteristics of the search
step of the folding problem, which are common properties to
all proteins. The simplified model employed here, presented
in Sec. III, focuses exclusively on the search mechanism and
is grounded on the hydrophobic effect. The effects of local
thermal fluctuations on a nanoscale structure are treated in
the context of nonextensive statistical mechanics; see Sec. IV.
Resulting data are analyzed in detail through the dependence
of the folding characteristic time τ on the temperature T and
the nonextensive parameter q; see Sec. V. Comments and
conclusions in Sec. VI are devised according to the premises
stated at the end of the next section.

II. GENERAL CHARACTERISTICS
OF THE PROTEIN-FOLDING PROCESS

In this section we review a few attributes of the search
stage of the folding problem, common to all proteins. Such
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general properties are used to formulate three premises, which
compose general grounds for the folding problem and are
incorporated in the model employed in the present work.

A remarkable landmark of the folding process is its
robustness. Folding must be similarly processed in a wide
temperature range, covering about 100 ◦C, at the same time
that all functional proteins of each individual organism—living
in the most different environment—are properly stable near a
particular ideal temperature. Actually, living organisms are
found in extreme conditions; some of them live in places with
temperatures close to freezing water [15], while others are
found in environments with boiling water temperatures [16].
Therefore, the search mechanism must work properly over the
full range of liquid water temperature, while for each living
species, the functional temperature is, in general, restricted to
a relatively much smaller range than that. This property of the
folding phenomenon is better understood if one considers that
the search mechanism is mainly governed by the hydrophobic
effect. It has been shown experimentally that the transfer free
energy varies slightly in the temperature interval from about
zero to 100 ◦C, at least for small hydrophobic molecules
[17,18]. Considering that during the search for the native
structure any other conformation of the chain is (logically)
unstable, the folding process should be composed by two
temporal independent steps [19]: the search mechanism, as the
first stage, followed by overall stabilization that begins only
when the chain is close enough to its native structure, at the
instant when energy and structural requirements, as encoded
in the residue sequence, would be associated in a cooperative
and productive way.

As a second general property, we recall that proteins present
an extraordinarily precise and fast self-organization process
[20]. They fold some 10 orders of magnitude faster than the
predicted rate of a random search mechanism; thus, although
folding rates do appear to have been fully optimized by natural
selection, one can think about each protein as an amino
acid sequence that was designed to fold as fast as possible.
Actually, even though it is unclear whether the high folding
rates result from evolutionary optimization, or a consequence
of selection for stability, which is certainly a product of natural
selection [21], the fact is that protein folding is a general, very
fast process. Indeed, it has been shown that the probability
of finding a fast-folding sequence, choosing it randomly
from the set of all possible sequences, is very small [22].
Furthermore, there is also a physiological aspect related to fast
folding: Because there are not enough chaperones to support
the folding process of every protein (anyway, chaperones are
also proteins), they must fold very rapidly in order to avoid
aggregation due to exposing hydrophobic areas of their surface
for too long [23,24]. Therefore, it is reasonable to presume
that some common peculiarities of the native structures and
efficient instructions encoded along the chain will ultimately
provide an optimized and very fast folding process.

Finally, we note that globular proteins can be approached
as independent nanomachines. This view contrasts with the
nature of most currently available experimental data and
explains certain inadequate interpretations of the folding prob-
lem. The stable appearance and properties of homogeneous
macroscopic objects result from the average activity of a
very large number of atoms. But, opposing this scenario,

nanostructures such as colloidal particles or proteins, in contact
with a thermal reservoir (the solvent, in the present case),
perceive local thermal fluctuations in a special way [25,26]:
Local unbalanced forces continuously shake and deform such
nanostrucutures, and its contingent effects cannot be inferred
from most available protein kinetics data [6]. So, one could
ask how, in different aspects, do local thermal fluctuations
affect the folding process [27]? Certainly, new data and
ideas emerging from single-molecule experiments will help to
illuminate this subject [1]; for instance, data about transition
paths at equilibrium, which is observable only for single
molecules, permit to obtain crucial mechanistic information,
such as folding and unfolding rates [28].

Based on such general characteristics, some hypotheses
can be formulated as general grounds for the folding problem,
which are fundamental constituents of the model described
along the next two sections. Therefore, we assume that
(1) the complete folding process is composed by two time-
and mechanistically independent steps, namely, the search
mechanism, governed mainly by the hydrophobic effect,
and the overall productive stabilization; (2) for typical one-
domain, two-state globular proteins, instructions encoded in
the residues sequence provide a kinetic folding mechanism
as fast as possible; and (3) at nanoscale dimensions local
thermal fluctuations emerge as a peculiar attribute of the
protein molecule enabling an effective folding process.

III. THE LATTICE MODEL

The model presented here is devoted to the first stage
of the folding process, the search step. For the sake of
computational efficiency, a lattice model is used: A chain
of 27 beads occupying consecutive and distinct sites of a
three-dimensional infinity cubic lattice, represents a single
protein-like chain in solution; effective solvent molecules,
which explicitly interact with the chain, fill up the lattice
vacant sites. Along the simulation, solvent molecules and chain
units exchange their respective sites so that all sites of the
lattice always remain fully filled [29]. For each configurational
change, only the transfer free energy is taken into account
(variations on the system hydrophobic energy); solvent-solvent
and residue-residue interactions are represented by hard core-
type interactions (excluded volume). For lattice models and
uniform-density solvent, this interaction scheme is exactly
reproduced using inter-residue potentials with first-neighbor
pairwise interaction, namely, gi,j = hi + hj , where hi is the
hydrophobic level of the ith residue along the chain sequence
[30]. Residues are taken from a repertory of ten distinct
elements (a 10-letter alphabet), which are characterized by
distinct hydrophobic levels {hk} and a set {ci,j } of inter-residue
steric specificities. The hydrophobic effect, characterized by
set {hk}, represents the most general and influential chemical
factor acting along the folding process [31], while set {ci,j }
mimics steric specificities of the real residues. Such constraints
determine which pairs of residues are allowed to get closer
as first neighbors; its main consequence is to select folding
and unfolding pathways through the configurational space.
Set {ci,j } is fixed for each monomer pair; that is, it does not
depend on particularities of the native structure [3,19].
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The configurational energy E([κ,l]) of an arbitrary chain
configuration ξ is defined by the set [κ,l] of Nξ first-neighbor
inter-residue contacts (0 � Nξ � 28); that is,

E([κ,l]) =
∑
{i,j}

(gi,j + ci,j )δ(i,j ),[κ,l], (1)

where the sum runs over the set of all residues pairs {i,j}; the
factor δ(i,j ),[κ,l] = 1 if (i,j ) belongs to the set [κ,l]; otherwise
δ(i,j ),[κ,l] = 0.

The present model is not native centric; that is, data from the
native structure are not employed to guide the chain along the
simulation. Therefore, a rule for residue sequence designing,
valid for any target structure representing the native structure,
is necessary. The provided syntax is mainly based on the
hydrophobic inside rule [32] and on the local topological
features of the target structure [33].

The native state of models based on the stereochemical po-
tential does not present enough stability because such additive
potential, gi,j = hi + hj , marginally satisfies the segregation
principle; that is, gi,i + gj,j − 2gi,j = 0. However, adding
up steric constraints {ci,j } to the hydrophobic potential gi,j

[Eq. (1)] helps to select folding and unfolding pathways, which
makes the folding process faster and improves the overall
stability condition of the globule in the native state [19].

The folding process was simulated through the Metropolis
Monte Carlo (MC) method, in which a generalized Boltzmann
weight was employed, as described in the next section. The
configuration evolution is processed by standard elementary
chain moves, namely, crankshaft, corner, and end flips. The
process evolves without any reference to the native configura-
tion, except to check when it is found for the first time: For
each particular run, the number of MC steps spent to reach the
native structure from the initial configuration (the first passage
time) is taken as the folding time t for that case.

IV. LOCAL THERMAL FLUCTUATIONS AND THE
NONEXTENSIVE STATISTICAL MECHANICS

In this section, in order to motivate the use of nonextensive
statistical mechanics, we analyze the energetic effect due
to thermal fluctuations on nanometric particles, as a typical
protein molecule. Usual thermodynamic and kinetic data
about proteins are time-averaged results from the collective
behavior of many molecules, something between ∼1017 and
1020 molecules/liter. However, when considered individu-
ally, thermodynamic properties of proteins surely undergo
strong fluctuations. For instance, let us reproduce here a
specific thermodynamic calculation [34] for one representative
protein of, say, 250 residues, with molecular mass m =
4 × 10−23 kg, which typically shows specific heat capacity
(Cp

∼= Cv) about 0.3 kcal kg−1K−1, at temperature T =
300 K. The internal energy fluctuation about the mean for
one molecule gives �Urms

∼= 6 × 10−20 cal per molecule
(�Urms = (kT 2mCv)1/2); note that kT � 10−21 cal, for room
temperature. Essentiality, it would be in the same order of
magnitude of the typical enthalpy changes on thermal denat-
uration of proteins—tens of kcal/mol [35]—if all molecules
were fluctuating in concert [34]. Fluctuations are individually
uncorrelated, and, so, only the average effect of a huge
number of macromolecules is perceived. However, if only a

single protein is focused, then one can see how local thermal
fluctuations can affect—through the above estimated internal
energy fluctuations—folding kinetics. This scenario suggests
that the folding process has to be explained for a single
molecule.

Therefore, let us think about a protein in solution (relaxing
toward thermal equilibrium) as a heterogeneous system con-
stituted by particles of different sizes, namely, a large body, the
chain, immersed in the solvent, which is constituted by smaller
particles (water molecules). In this scenario, the solvent can be
seen as a heat reservoir at thermodynamic temperature, let us
say, β−1

0 . Thermal fluctuations drive stochastically individual
protein chains to change their configurations, similar to what
occurs with colloidal particles suspended in a fluid (Brownian
movement). Accordingly, due to its relatively larger size with
respect to water molecules, it is reasonable to assume that
the chain configurations evolve at a certain rate that depends
on the instant local amount of (available) kinetic energy,
including the water molecules impacting the chain. So let us
represent the instant local-average of this kinetic energy by
β−1, a kind of instantaneous local temperature, which cannot
be confused with the thermodynamic temperature β−1

0 of the
whole system (chain plus solvent). Therefore, considering such
heterogeneous system (with a finite component: the chain), one
could think about a generalized Boltzmann factor expq (−β0ε)
as an integral over all possible locally instantaneous β−1, that
is,

expq(−β0ε) =
∫ ∞

0
exp(−βε)f (β) dβ, (2)

where the subscript q is a parameter of the distribution
f (β). It has been shown that if f (β) is assumed to be the
χ2 distribution, a special case of the gamma distribution
of variable β, present in many common situations [36], the
generalized Boltzmann factor becomes [25,26,37]

expq(−β0ε) = [1 − (1 − q)β0ε]
1

1−q , (3)

which is the same expression proposed in the context of
nonextensive statistical mechanics [38,39]. It is important to
note that the χ2 distribution,

f (β) = [
(n/2)]−1

(
n

2β0

)n/2

β−1+n/2 exp

(
− β

2β0
n

)
, (4)

must be parameterized such that the heat reservoir temperature
β−1

0 coincides with the average of the β−1; that is, β0 = 〈β〉 =∫ ∞
0 βf (β)dβ. The nonextensive parameter q, set as

q = 1 + 2/n, (5)

is associated with the relative dispersion of β, according to
q = 1 + (〈β2〉 − β2

0 )/β2
0 , where n is the number of degrees of

freedom. This point will be resumed later in the next section.
In the present work, our interest is on the kinetic behavior

of the chain during the search stage of the folding process.
Therefore, for MC realizations we assume a generalized
transition probability expq (−β0�εab) = 〈exp(−β�εab)〉 [see
Eq. (2)] between the configuration a with energy εa , and
configuration b with energy εb, that is,

expq(−β0�εab) = [1 − (1 − q)β0�εab]
1

1−q , (6)
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FIG. 1. (Color online) Functional difference between the gener-
alized and the ordinary exponential function: �q (x) = expq (−x) −
exp(−x), with q � 1, and between two ordinary exponential
functions with the argument of one of them rescaled: �a(x) =
exp(−ax) − exp(−x), with a � 1; the parameter a represents a small
increment in the system temperature. Their profiles are similar, but,
for a and q near to 1, the maximum of �a(x) and �q (x) occur at about
xa = 1 and xq = 2, respectively. In both cases, xa and xq increase very
slowly when a and q depart from 1.

where �εab = εb − εa . For the sake of adequacy (and to
avoid misunderstandings), henceforward the heat reservoir
temperature β−1

0 will be represented by T , and any reference
to local fluctuations should be understood as the effect of local
average kinetic energy, as discussed above [in the paragraph
just before Eq. (2)].

For q � 1 the q-exponential and the conventional ex-
ponential function approach each other. Actually, one may
expect that expq (−x) is effectively equivalent to the conven-
tional exponential function in which its argument has been
slightly changed (that is, with the temperature somewhat
increased). Comparing the two following difference func-
tions, namely, �q(x) = expq(−x) − exp(−x) and �a(x) =
exp(−ax) − exp(−x), as shown in Fig. 1 for a � 1 and q � 1,
one sees that their profiles are similar, although the maximum
of �a(x) occurs about xa = 1, and for �q(x) it is about xq = 2.
Actually, the lima→1(xa) = 1, while limq→1(xq) = 2; in both
cases xa and xq increases slowly when a decreases from one
and q increases from one.

In the next section, we compare the effect of both ap-
proaches on the configurational kinetics through MC simu-
lation, and then we discuss on the possible implications on
understanding the folding mechanism. In order to address
this issue directly, we consider the folding time t and the
folding characteristic time τ (described in the next section)
as useful analytical amounts emerging from folding kinetics.
The comparison between the two approaches emphasizes the
effects of local thermal fluctuations on a class of heterogeneous

systems (with nanosized components) in the context of the
nonextensive statistical mechanics.

V. RESULTS AND DISCUSSION

Some properties of the lattice model described in Sec. II are
very important for the present study. The model is virtually able
to fold any 27-mer sequence properly designed (the design rule
is provided) for any maximally Compact Self-Avoiding (CSA)
configuration. In addition, the model reproduces the observed
correlation between folding rates and the complexity of the
native structures [33]. We selected three CSA configurations
(targets) representing uncorrelated native structures. For each
target α, a set {pi}α of N independent Monte Carlo simulations
represents the folding process of a diluted solution of N

noninteracting proteins. The MC time ti spent to find the native
structure (first passage time) corresponds to the folding time
of the ith protein in {pi}α . So, at the end of N independent
runs, one gets a set {ti}α of N independent folding times for
target α. By counting the number of folding times that fall
in each time interval [t,t + �t], one finally gets the decay
histogram of the number of unfolded proteins as a function
of the MC time t . These data are then fitted by one or
more exponential functions, giving the specific characteristic
folding time τ for that structure; τ corresponds to the inverse
of the folding rate. The simulations were carried out in a
given range of thermodynamic temperatures T for several
values of the nonextensive parameter q, and for three distinct
native structures. Each native structure is characterized by its
topological complexities, which can be roughly estimated by
its structural Contact Order [8].

The effect of parameter q on the folding characteristic
time. Table I shows τ as a function of temperature T and
nonextensive parameter q, for the intervals 0.9 � T � 1.5 and
1 � q � 1.4. The three target structures are identified as ID
866, 1128, and 36335. In general, τ depends on the structure
complexity, and it is a continuous convex function of T and q.
A number N = 150 of independent runs were used for each
pair (q; T ). The structure ID 36335 presents higher topological
complexity than the other two, a fact reflected in its larger τ .

For any temperature Ti , there is a specific qi = q(Ti), let us
say q∗

i , that minimizes τ → τmin, as emphasized by the bold
outlined cells in Table I; better approximations can be achieved
by extra refinement of q and a larger set of independents runs.
The uncertainty in τ was estimated by the standard deviation
of the mean of means, considering 20 distinct samples {ti}N
(with N = 150) taken from an extended set of 104 independent
runs. The uncertainty δτ depends on the pair (q; T ); for N =
150, the smallest uncertainties, �5%, occur for the q∗

i values
that minimize the characteristic folding time τ ∼= τmin. Note
that for each target structure and specific temperature, the
coarse changes �q = ±0.1 about q∗

i produce variations �τ

on τmin, which are smaller than the uncertainty δτ . This fact
is represented in Table I by two or more horizontally adjacent
bold outlined cells, meaning that for the involved temperatures
and values of q, δτ � �τ . On the other hand, when the system
approaches the glassy regime (q = 1, and T < 1) the time
spent in metastable states increases substantially, and so δτ is
strongly influenced by the size N of set {ti}N of independent
runs.
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TABLE I. The characteristic folding (MC) time t for three target (native) structures; the unit MC time used here corresponds to 8100
attempts to move the chain. For each structure and temperature Ti there is a specific q = q(Ti) � 1 that minimizes τ (cells outlined in bold).
Due to the higher topological complexity of structure ID 36335, its τ is 5 to 10 times larger than the corresponding values of τ for the two
other structures. A set of N = 150 independent runs was used to estimate τ for each pair (T ,q). The figures were rounded off according to
average relative uncertainty δτ = 10% (two significant figures); see text. At T = 1, the interval of values for q that give the smallest folding
characteristic times are usually dependent on the complexity of the corresponding native structure (cells outlined in bold, bold figures).

T 1 1.1 1.2 1.3 1.4 1 1.1 1.2 1.3 1.4 1 1.1 1.2 1.3 1.4

0.9 560 54 20 22 48 330 30 31 30 45 8700 870 240 310 470

1 130 28 19 26 67 120 24 31 36 81 3800 560 230 380 1100

1.1 40 22 25 40 130 47 26 30 50 130 1450 230 210 520 1700

1.2 39 18 29 65 320 24 26 36 90 310 680 200 260 780 3200

1.3 21 21 52 190 470 21 26 57 190 620 460 180 370 1560 ...

1.4 23 30 80 280 1000 24 36 92 320 1400 170 210 ... ... ...
1.5 28 47 170 810 2300 26 59 170 710 3100 200 290 ... ... ...

ID   1128             q       CO = 0.29894 ID  866                 q       CO = 0.27513 ID 36335           q         CO = 0.30423

In general, simplified models associate one specific optimal
folding temperature Topt for each particular sequence [40]
[41], as the temperature that maximizes the folding speed
for that sequence. However, having in mind that the proteins
of any living organism work optimally in a relatively narrow
temperature interval, τmin is adopted here as the optimum τ, the
actual characteristic folding time. This is also in accordance
with the assumed hypothesis of “folding as fast as possible”
(see Sec. II). As we will comment below, q can be considered
as a dynamic variable, dependent on each instantaneous
configuration. However, assuming the hypothesis of “folding
as fast as possible” allow us to determine q∗, a kind of
averaged q, which specifies the actual characteristic folding
time τ = τmin.

Table I is a kind of unrefined encompassing survey of how
τ depends on T and q. Although a more detailed investigation
is necessary (note, for instance, that at T = 1, for the three
target structures, q∗ lies in the range from q = 1.1 up to
1.2), the present scenario suggests that the kinetics of the
search mechanism is equally reproduced, regardless whether
the chain configurations are relatively weighted by means
of the generalized Boltzmann factor at temperature T [see
Eq. (3)] or by the conventional Boltzmann factor at some
higher temperatures T ′ with respect to T . This result is readily
ratified if, for each q, the behavior of τ is plotted as a function
of the translated temperature scale Tq = T − T ∗

q , as illustrated
in Fig. 2 for structure ID 1128. T ∗

q is the temperature in which
τ approaches τmin for that value of q. Essentially, all curves
coalesce, behaving in nearly the same way about Tq = 0.

Folding time distribution. A more detailed examination
shows that the distributions �(t) of folding times t can
be essentially the same for both approaches, that is, using
either the generalized expq(−�ε/kT ), or the conventional
Boltzmann factor exp(−�ε/kT ′), with T ′ > T . The re-
sult presented in Fig. 3 shows �(t) for the structure ID
866, for different values of T and q; here a much larger
number N of independent runs were employed (N = 104)
for each case. In general, the distributions are better fitted
with one or more lognormal curves, depending on the
temperature.

For (q; T ) = (1; 1), conventional Boltzmann factor and
T = 1, the system approaches the glassy regime with man-
ifestation of ergodic difficulties, as indicated by the three
peaked curve (Fig. 3, open, smaller circles). As T increases
from T = 1, the domain of t is accordingly reduced. At
T ∼= 1.5 the distribution presents the smallest domain, namely,
0 < ln(t) < 5.5, and as T increases from this point its behavior
is reverted: The size of the domain starts to increase again, and
the curve peak moves toward a larger t .
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 (1.25, 0.90);    18

FIG. 2. (Color online) The τ vs T “U shape”: Folding characteris-
tic time τ as a function of the translated temperature Tq = T − T ∗

q for
several (q,T ) combinations. T ∗

q is the temperature in which τ = τmin

for the specified value of q. For each q, the temperature range was
covered by increments �T = 0.05. All curves behave very similarly
around Tq = 0.
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FIG. 3. (Color online) Folding time distributions � for structure
ID 866. The lognormal distribution for q = 1.1 and T = 1.0 (larger
open circles) was fitted using two peaks Gaussian [continuous
thicker line, amplitude: (A1; A2) = (1310 ± 40; 430 ± 70); width
(w1; w2) = (0.49 ± 0.07; 0.8 ± 0.3), and average (μ1; μ2) = (2.91 ±
0.09; 5.0 ± 0.2)]. For q = 1.0 the folding time behavior is shown for
several temperatures (fitted by basic spline functions). In particular,
the folding time distributions for (q,T ) = (1.0,1.25) and (1.1,1.0)
are practically the same, confirming that the generalized Boltzmann
factor (q > 1) at temperature T corresponds to the conventional
Boltzmann factor (q = 1) with a certain increase in T . In the region
of the smaller folding times [ln(t) < 2.5] and for temperatures in
the interval 1.0 � T < 1.5, all curves coalesce, including the case
(q,T ) = (1.1,1.0). At T = 1.0 and q = 1 (open gray circles) the
system approaches the glassy regime, and manifestation of ergodic
difficulties is evident. At temperature T = 1.5 the distribution has the
lowest domain, that is, 0 < ln(t) < 5.5 (open squares), and inasmuch
as T increases from this point, the peak of the distribution moves
again toward larger t , as illustrated for T = 1.9 (full squares).

In the region of the smaller folding times, namely, for
ln(t) < 2.5, for the cases with q = 1 and T restricted in the
interval 1.2 � T � 1.5, all curves present the same behavior
(Fig. 3). The meaning for this is that, even with the temper-
ature 25% higher than T = 1.2, there exists some starting
configurations (random, totally open: without any topological
contact) that, combined with certain configurational evolution,
can lead the chain very rapidly into the native structure. Note
that this is also true for the case (q; T ) = (1.1; 1). Remarkably,
(q; T ) = (1.1; 1), open large circles, and (q; T ) = (1; 1.25),
full smaller circles (generalized and conventional Boltzmann
factor, respectively), give practically the same frequency
distribution �(t), implying in the convergence of the folding
characteristic time for the two cases, namely, τmin = 24 and
26, respectively (see Table I and Fig. 3).

Native stability. As pointed above (Sec. III), the additive
potential employed here satisfies marginally the segregation
principle, and so, once in the native state, it will be stable only
at relatively low temperatures. In accordance with the previous
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FIG. 4. (Color online) The native stability. The fraction of time
in which the chain stays in the native state along the simulation as
a function of the temperature T , namely, σq (T ), is shown for q = 1
and q = 1.1. In the inset, the native stability [actually �G/(kBT )] is
shown as a function of the temperature. Note that at (q; T ) = (1; 1.25)
and (q; T ) = (1.1; 1), the native stability is the same: �G/(kBT ) =
0.25, as emphasized by dotted lines. This result (for structure ID
866) is a direct consequence of the coalescence of the distribution of
folding time � for the same two pairs (q; T ) used here (as shown in
Fig. 3, small full and larger open circles).

results, the native-state stability changes with q: If q increases,
the stability diminishes as if the temperature of the whole
system was increased. Figure 4 illustrates (target structure ID
866) the relative residence time σq in the native state as a
function of the temperature T for two cases, namely, q = 1
and 1.1. For the present proposal, the native state is defined
as any structure with at least 24 out of 28 native contacts:
Once the native state is found (actually, to save considerable
simulation time, the runs start with the chain already in the
native structure), the chain systematically leaves and comes
back into the native state. Therefore, the relative residence
time σq(T ) gives the fraction of time in which the chain stays
in the native state along the simulation. This is achieved by
the ratio between the sum of MC time intervals in which the
chain stays in the native state and the total simulation MC time.
Therefore, interpreting kinetically the ratio Keq = [N ]/[U ] in
the expression for the stability �G = −kBT ln Keq, that is,
Keq = σq/(1 − σq),then

�G/(kBT ) = − ln

[
σq(T )

1 − σq(T )

]
. (7)

The inset of Fig. 4 shows how stability changes with the system
temperature T . Note that in perfect agreement with the results
shown in Fig. 3 for the characteristic time distribution, the
effect of the generalized Boltzmann factor is equivalent to the
increase in the system temperature: One finds G/(kBT ) ∼= 0.25
for (q; T ) = (1.1; 1), and about the same 0.25 for (q; T ) =
(1; 1.25), as indicated by the dotted lines.

The apparent equivalence between the generalized and con-
ventional Boltzmann factor. Although these results corroborate
the notion that the net effect of the generalized Boltzmann fac-
tor (q � 1) is equivalent to increasing the system temperature,
this apparent sameness cannot be employed here as a useful
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resource because, in real systems, the folding process is opti-
mized in a relatively narrow range of temperature for the total
set of proteins of each particular living organism. As already
mentioned in Sec. II, the search mechanism operates equally
in a large temperature interval, from about zero to 100 ◦C.
However, if proteins are exposed to increasing temperatures,
loss of solubility or enzymatic activity is observed over a fairly
narrow range. For the set of proteins of each organism there is a
working temperature interval Tω − �Ta � T � Tω + �Tb [in
general with (�Ta + �Tb)/Tω � 15%; absolute temperature]
outside of which its functionality can be seriously reduced or
completely lost. Therefore, the system temperature T must be
kept as the reference temperature, measured macroscopically,
and all thermal characteristics of a nanosize body, in response
to the local fluctuations, should be conveniently controlled by
the nonextensive parameter q.

Parameter q as a dynamic variable. For any target structure
in contact with a specific thermal reservoir (the solvent) at
temperature T , it is always possible to adjust q in order to get
the optimum τ . But what intrinsic factors would determine a
specific q∗ value that would induce the fastest folding for that
specific protein? In the present case, namely, a chain evolving
through the configurational space from an open chain into a
compact specific globule, the straightforward idea comes from
the observation that the effects of local thermal fluctuations
should be dependent on the spatial scale [42,43]. Along
the folding process, wrong packing tendencies and specific
traps are recurrent, but local thermal fluctuations—on such a
nanometric chain—can disassemble them, promoting a rich
variety of globule sizes and shapes during the process.

Therefore, let us consider Eq. (5), which allows us to
associate the dynamic nature of the number of degrees of
freedom n with the parameter q [Eq. (5)]. As the chain degree
of compactness changes in the course of time, n changes
accordingly: For an open chain we have qmin = 1 + 2/nmax →
1, and for a fully compact globule qmax = 1 + 2/nmin. Using
nmin = 1 as a limiting condition, one gets a kind of upper
bond for q, that is, sup q = 3. Therefore, as the chain suffers
thermal effects depending on its compactness, it is reasonable
to assume that the simulation process is governed by a
variable [44] rather than fixed q. The instantaneous q is then
functionally linked to the compactness of the globule. For a
flexible, linear, open chain, n grows with its length, which
is proportional to the number of monomers. But, as packing
progresses, the number of inter-residue contacts increases, and
for fairly compact globules, n becomes rather a function of the
size of the globule surface, which can be roughly estimated
by the square of the radius of gyration RG. Therefore, let
us assume that n is proportional to R2

G, and then, from
Eq. (5), one gets q = 1 + α/R2

G. The amount α is determined
by the maximum q, a specific qmax, which determines the
characteristic folding time τ = τmin; that is τ (q �= qmax) >

τmin. We tested several distinct target structures with different
topological complexities, and in all cases qmax → 1.33. This
peculiarity allowed us to write a unique expression relating
q and the instantaneous RG, valid, in principle, for all target
structures, that is,

q = 1 + 2(qmax − 1)/R2
G. (8)
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FIG. 5. (Color online) Average normalized distribution ρ of q for
four targets; 600 runs were used in each case. For the structure ID
1128 ρ is clearly monomodal, but all other cases present a multimodal
behavior. Their distribution averages 〈q〉 differ only slightly, namely,
〈q〉 � 1.15 for IDs 1128 and 866, and 〈q〉 = 1.17 for IDs 868 and
36335, but their distinct shapes reflect better the topological and
energetic landscape complexity. Note the congruence between the
values 〈q〉 (about 1.15) and the optimal values of q in Table I (ranging
from 1.1 to 1.2).

Therefore, for an extended chain, R2
G approaches to its

maximum, and so q → 1, while at the native structure RG

reaches its minimum, which in our case, a compact self-
avoiding configuration, it is min

(
R2

G

) = 2. It is interesting
to note that if n = 6 is used in Eq. (5), for the native structure,
one gets q = 1 + 2/6 = qmax. As the native structure for the
present problem is a compact 3 × 3 × 3 cube, the value n = 6,

as well the qmax = 4/3, can be fully understood if one degree of
freedom, on average, is associated with each face of the cube.

Figure 5 shows the normalized distribution of q for four
target structures. The distribution ρ for structure ID 1128 is
monomodal, but multimodal for the other three. The averages,
namely, 〈q〉 ∼= 1.15 for IDs 1128 and 866, and 〈q〉 = 1.17 for
IDs 868 and 36335, differ by less than 2%, although their distri-
bution shapes are significantly dissimilar. Such differences are
indicative of distinct kinetics: If the energy landscape is fairly
smooth and the number of topological constraints is small, then
ρ(q) tends to be monomodal. However, if many energetic traps
and topological hindrances are present, producing recurrent
wrong compact conformations, then larger values of q are
systemically visited, enlarging and producing many peaks in
the distribution curve ρ(q). The inset of Fig. 5 illustrates the
convergence between the characteristic time τvar, obtained
by using q as a dynamic variable, and τmin achieved by the
optimum fixed q = q∗. In order to minimize the uncertainties,
the results shown in Fig. 5 were obtained by using N = 600
runs for each target structure.

The three-dimensional (3D) configuration and correspond-
ing contact map of the four targets considered here are shown
in Fig. 6. The first two configurations, namely, ID 1128 and
866, present only favorable folding configurational patterns
similar to α helix and β sheet (contact maps with lines
parallel, adjacent to the secondary diagonal, and lines parallel
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FIG. 6. (Color online) 3D configurations and corresponding contact maps for the four target structure. Each structure is labeled by its ID
number (1128, 866, 868, and 36335) and the corresponding Contact Order. Chain segments that constitute folding unfavorable patterns are
highlighted by gray planes (see text).

to the principal diagonal); therefore, they present the smaller τ

(Fig. 5). Configuration ID 868 is very similar to 866; however,
because a typical unfavorable folding pattern takes part of its
structure, specifically the chain segment just above the gray
plane, its τ is about four times larger the the previous cases. The
last structure, ID 36335, is the more complex one, presenting
a mix of favorable and unfavorable configurational patterns,
easily evidenced by its contact map. Consequently, its τ is one
order of magnitude greater than the two first ones. Contact
order, as a global estimator of structural complexity, is not
sensitive to structural details. However, it is a rough estimator.

VI. FINAL COMMENTS AND CONCLUSIONS

Here we have examined the effect of local thermal fluc-
tuations on protein-folding kinetics through a coarse-grained
lattice model. The model hypothesizes that (1) the process
by which a protein folds is composed by two independent
sequential steps, namely, search and stabilization, and (2)
instructions encoded in the residues sequence provide a folding
kinetics as fast as possible. The first premise enabled us to
place emphasis on the search mechanism as a universal process
guided by the hydrophobic force, and the second was used in
order to associate the nonextensive parameter q or, in the case
of variable q, its distribution, with each native structure.

Our results, based on the comparison between two ap-
proaches, namely, nonextensive (q > 1) and conventional
statistical mechanics (q = 1), suggest that suitable thermal
fluctuations—adequately achieved only in the nonextensive
context—are important causal agents that drive the chain
through the fastest possible courses to the native conformation.
Although we have demonstrated numerically that the chain ki-
netics governed by the generalized Boltzmann factor (q > 1),
at system fixed temperature T , is fully reproduced if the

conventional Boltzmann factor is used, at temperatures T ′ > T

(Fig. 3), we argue that the two approaches, namely, (q > 1; T )
and (q = 1; T > T ′), cannot be considered equivalent.
Proteins have working markedly different temperatures among
distinct organisms, but given that the set of all proteins of any
specific organism functions optimally only in a narrow range
of temperature, this question cannot be treated as a simple
matter of reparametrization. For this specific problem, this
apparent equivalence should actually be considered an artifact
of the conventional method of statistical mechanics when
taken as statistical inference, which was originally conceived
to deal with homogeneous systems at equilibrium and in the
thermodynamic limit.

The dependence of τ on temperature, shown in Fig. 2,
has been commonly and exclusively attributed to peculiarities
of the chain sequence; sequences are usually generated and
selected for their ability to fold rapidly in a small and specific
range of temperature [45]. Under the conventional Boltzmann
perspective (q = 1), the rough nature of the energy landscapes
can trap partially folded protein in non-native local minima
for too long. However, a new scenario emerges when local
thermal fluctuations experienced by nanoscale structures are
associated with their spatial characteristics (such as size and
degrees of freedom) by means of the parameter q. Specifically,
such as chaperone-assisted folding, well-tuned thermal fluctu-
ations help to disassemble chain segments wrongly collapsed,
improving the fastness of the folding process; otherwise, using
conventional statistical mechanics, it would be achieved only
at extremely high (fatal) temperatures of the heat reservoir.
Therefore, at fixed system temperature T = 1, a specific q∗
that varies slightly around q = 1.15 depending on the native
structure, minimizes the folding characteristic time, τmin.

A more refined approach, associating a variable q with the
instantaneous degree of compactness of the globule, predicts
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a characteristic time τvar essentially the same as that obtained
by using a target-tunned parameter q∗, that is, τvar −→ τmin.

Moreover, it also reveals that the simulation evolution of differ-
ent target structures—with distinct topological complexities—
are characterized by singular distributions of q, and average
〈q〉 converging to q∗. Such distribution ρ = ρ(q), depending
on the roughness of the free-energy landscape and on the
nature and number of topological traps, can be monomodal
or multimodal, reflecting the overall complexity of the energy
landscape and topology of the native structure.

Under the present perspective, we can visualize two main
driving forces supporting a continuous process of folding
and unfolding during the search stage of the folding process:
entropic forces compacting the chain and, on the other hand,
local thermal fluctuations tending to open it. This process
continues until, eventually, the neighborhood of the native state
is reached. At this point, and only under this condition, the

native structural peculiarities and chain energetic interactions,
as encoded along the chain sequence, would be associated in a
cooperative and fully productive way, guaranteeing the overall
stability of the globule.

As a final remark we note that the present results
clearly point at possible generalizations of the multipurpose
Monte Carlo method for chains governed by complex en-
ergy landscapes: Using q as a variable self-adjusted by the
chain conformational evolution, local thermal fluctuations
can be automatically incorporate in the process, eliminating
the need to seek specific optimized values q∗ for each
case.
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