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Bidirectional motion of motor assemblies and the weak-noise escape problem
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We present a detailed calculation that enables us to estimate the reversal time of a molecular motor assembly
that displays bidirectional motion in the limit of weak noise. We derive a Fokker-Planck equation by taking a
large volume expansion of a master equation, and we consider a simple choice of transition rates that enables us
to reduce the number of variables to 2. We use the Wentzell-Freidlin theory to define an effective nonequilibrium
potential and analytically estimate the reversal time. We also present the results of stochastic simulations that
match very well our simulation results.
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I. INTRODUCTION

Molecular motors are proteins that convert chemical energy
into mechanical work to generate motion along and forces
on the filaments of the cytoskeleton [1]. The motion of
most individual molecular motors is directional. A typical
example is the motion of kinesin motors along microtubule
filaments. Groups of motors can display more complex motion:
one sometimes observes alternating phases with velocities
in opposite directions [see an example in Fig. 5(a)]; such a
motion is called bidirectional. Bidirectional motion has been
experimentally observed in microtubule-based motor systems
[2], in actin-based myosin motor assays [3,4], and even with
DNA-interacting motors [5]. In all these situations, groups of
motors with opposite polarities presumably interact to form a
“tug-of-war” situation. Several functions have been proposed
for bidirectional motion [2]: it enables an object to explore
space efficiently and to be able to change direction without
having to recruit new elements or build a new complex.

In order for bidirectional motion to appear, the two groups
of motors must interact to “coordinate” their action and avoid
to block each other. Coordination can appear via regulatory
proteins that possibly inactivate one group of motors while
the other is active [6,7]. However, some experiments done
with a minimal number of components [3,4] indicate that a
coordination complex is not always required. In fact, from
the theoretical point of view, “coordination” appears naturally
as a collective effect [8,9]. The motors interact indirectly
because they are attached to and are acting on the same rigid
object. In various theories of motor assemblies, this leads
to a motor force at low velocity equivalent to a negative
friction. In the symmetric case where the filament is not
polar and where an isolated motor would simply diffuse,
the state with vanishing velocity is unstable, and two stable
states with opposite velocities exist [10–13]. The system is
therefore bistable, and the presence of noise induces transitions
between the two metastable states, which can be interpreted
as bidirectional motion. Bidirectional motion occurs under
conditions of constant external force, in contradistinction
with another collective effect, spontaneous oscillations, which
occur when the external force is elastic and in the limit of
vanishing noise [14,15]. Spontaneous oscillations have been
observed recently in vitro [16]. Bidirectional motion might

therefore be a reminiscence of the oscillatory instability that
potentially plays a role in the oscillations of cardiac sarcomeres
[17] or the beating of flagella [18].

The key quantity that controls bidirectional motion is the
reversal time: it plays the same role as the run length for a
single processive motor. In the case of an asymmetric system
with two different groups of motors, one can define two
reversal times (one for each direction), their relative values
being responsible for the global motion of the motor assembly.
Here, we focus on symmetric apolar motors, but our methods
can be applied to asymmetric systems as well. In the past,
bidirectional motion has been studied by integrating a master
equation in a simple model where the motors share the load [9],
or by using stochastic simulations [8,19]. In the limit of a
large number N of motors, the mean reversal time increases
as trev ∼ eN . This Arrhenius-like behavior can be understood
by comparing the motor assembly to a particle diffusing in
a bistable potential. The particle escapes a metastable state
within a time proportional to a Boltzmann factor, the noise
intensity being proportional to temperature. For the motor
assembly, the noise intensity is inversely proportional to the
number of motors, leading to an exponential variation in
N of the reversal time. However, this picture holds only
for equilibrium systems where one can define a potential.
Recently [20], we introduced an approach that enabled us
to calculate analytically the reversal time by making use of
the Wentzell-Freidlin theory [21] to define an effective energy
barrier.

The present paper aims at giving a complete and detailed
description of the calculation of the reversal time announced
in Ref. [20]. The outline of this paper is as follows. In the
first part, we obtain a Fokker-Planck equation that describes a
motor assembly within the so called rigid two-state model of
motor assemblies of Ref. [10]. This equation is obtained by
performing a “large volume” expansion of a master equation.
We then use an approximation that enables us to reduce the
number of relevant variables, and make the link between
bidirectional motion and the weak-noise escape problem in
a system lacking detailed balance. In the second section,
we recall the hypotheses of the Wentzell-Freidlin theory
[21] that provides the definition of an effective potential for
nonequilibrium system and of the Maier-Stein theory [22] that
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enables an analytical determination of the reversal time. After
calculating the reversal time in the case of bidirectional motion,
we check the validity of our results by comparing them with
stochastic simulations. In some parts of the paper, we use
existing theories, and we briefly remind in each case their
hypotheses and their main results.

II. FOKKER-PLANCK EQUATION DESCRIBING
MOTOR ASSEMBLIES

A. General case

As a first step, we describe a motor assembly by the rigid
two-state model of Ref. [10]. Other theories of molecular
motor assemblies that show dynamic instabilities [9,11,12]
could possibly be studied using the same approach. The
rigid two-state model is sketched in Fig. 1. The motors are
represented as particles rigidly attached to a common rigid
backbone. Each particle can be found in two states, in which
it interacts with the filament. We consider here that one of the
states is a “weakly bound” state, where there is no interaction
with the filament. In the other state, the interaction potential
W (x) is a periodic function of the coordinate x along the
filament with a period � of the order of a monomer size
of the filament, reflecting the filament periodicity. A motor
switches between the two states with transition rates ωon(x)
and ωoff(x), which are also periodic in x. A key point is that the
motor assembly is a nonequilibrium system for which detailed
balance is not satisfied (ωoff/ωon �= eW/kBT ).

We work in the reference frame of the backbone, where
the positions z of the motors are fixed. The position zα of
a motor α is related to its coordinate along the filament xα

by zα = xα + X(t), where X(t) is the filament position at
time t (see Fig. 1). Note that, due to the periodicity of the
system, x and z are defined only modulo �, and we can always
choose them in the interval [0,�[. In an experiment, the motors

FIG. 1. (a) Sketch of the rigid two state model with a sinusoidal
potential. (b) Shape of the transition rates in the uniform rate
approximation.

are either regularly spaced with a period incommensurate to
the filament period (as in muscles) or uniformly distributed
(as in a motility assay). The random positions of the motors
introduces then a quenched disorder. We simplify this situation
by assuming that the motors are positioned on m sites i =
1 . . . m whose coordinates along the backbone are zi = i�,
where � = �/m is the distance between two sites. Each site
contains an equal number of motors N/m. All the motors at
a given site are not physically at the same place, since all
positions on the filament separated by an integer number of
periods are equivalent. Let us call ni the number of motors
attached at a given site i (or, more precisely the number
of motors whose positions are of the type zi + k�, with k

integer). Between two events of attachment or detachment,
the ni remain constant and the filament position X(t) evolves
according to the force balance equation NλẊ = ∑

i W
′(zi −

X)ni , in which the total friction force is equilibrated by the
force exerted by the motors, λ being the drag coefficient
per motor. We define the quantity P ({ni}i=1...m,X,t), which
represents the joint probability that ni motors are attached
at each site i and that the filament is at position X at time
t . The evolution of this probability is governed by a master
equation:

∂P

∂t
= − ∂

∂X

[
m∑

i=1

W ′(zi − X)ni

λN
P

]

+
m∑

i=1

ωoff(zi − X)(E+
i − 1)niP

+
m∑

i=1

ωon(zi − X)(E−
i − 1)

(
N

m
− ni

)
P, (1)

where we have kept the notations of Ref. [23] by denoting
by E+

i and E−
i the “attachment” (creation) and “detachment”

(destruction) operators at site i. These operators are defined
by their action on any function f ({ni}) by

E±
i f ({nj }) = f (. . . ,ni−1,ni ± 1,ni+1, . . .). (2)

The advection term (∂XẊP ) in the master equation (1) comes
from the force balance equation, which defines the fila-
ment motion between two transition events Ẋ = ∑

i W
′(zi −

X)ni/(λN). The thermal noise on the filament is neglected
as we have omitted any second order derivative terms in X.
This is justified by earlier studies that show that thermal noise
has little influence on the reversal time [8]. The omission of
thermal noise also enables us to focus on the stochasticity
associated to binding and unbinding events. The second line
of the master equation (1) indicates that, during a time �t , the
probability that a motor at site i detaches is ωoff(zi − X)ni�t .
For �t → 0, the probability that at least two transition events
occur during �t is of order �t2 and is neglected. This is a
typical approximation for one step processes [23]. Note also
that we have written Eq. (1) in the reference frame of the
backbone, where the motors do not move. Consequently, there
is no exchange of motors between different sites. The motors
interact only indirectly through their combined action on the
filament position X.

We now transform the master equation (1) into a Fokker-
Planck equation by taking the limit of a large number of
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motors N � 1. To do this, we follow the large volume
expansion method proposed by Van Kampen [23]. This method
has already been applied to another model of molecular
motors [19]. We assume that the number of motors N/m on

each site tends to infinity, which enables us to approximate
P ({ni}) by a continuous function of ni . The operators E±

i

are approximated by E±
i � 1 ± ∂ni

+ 1/2∂2
ni

, and the master
equation (1) becomes

∂P

∂t
= − ∂

∂X

[
m∑

i=1

W ′(zi − X)ni

λN
P

]
+

m∑
i=1

∂

∂ni

{[
ωoff(zi − X)ni − ωon(zi − X)

(
N

m
− ni

)]
P

}

+ 1

2

m∑
i=1

∂2

∂n2
i

{[
ωoff(zi − X)ni + ωon(zi − X)

(
N

m
− ni

)]
P

}
. (3)

We introduce the motor density at site i: ρi = nim/(N�) =
ni/(N�), which is defined such that

∑
i ρi� is the fraction

of attached motors on the filament. In the limit of a large
number of sites (m � 1, or equivalently � � �), we can
adopt a continuous description: ρi � ρ(zi). We identify the
functional derivatives by using the following formulas:

1

�

∂f

∂ρi

� δf

δρ(zi)
;

1

�2

∂2f

∂ρi∂ρj

� δ2f

δρ(zi)δρ(zj )
. (4)

The equation for the probability P ([ρ(z)],X,t) that the density
of motors is ρ(z), and that the filament position is X at time t ,
is then

∂P

∂t
= − ∂

∂X
v(X,[ρ])P +

∫ �

0
dz

δ

δρ(z)
AP

+ 1

2N

∫ �

0
dz

∫ �

0
dy δ(z − y)

δ2

δρ(z)δρ(y)
BP (5)

with

v(X,[ρ]) = λ−1
∫ �

0
dxW ′(z − X)ρ(z), (6)

A = ωoff(z − X)ρ(z) − ωon(z − X)[1/� − ρ(z)], (7)

B = ωoff(z − X)ρ(z) + ωon(z − X)[1/� − ρ(z)]. (8)

Further simplification can be made by changing reference
frame: we let ρ̃(x) = ρ(x − X) and still use the notation ρ

instead of ρ̃. Equation (5) becomes, in the new reference frame,

∂P

∂t
([ρ(x)],X,t)) = − ∂

∂X
v[ρ]P +

∫ �

0
dx

δ

δρ(x)
ÃP

+ 1

2N

∫ �

0
dx

∫ �

0
dy δ(x − y)

δ2

δρ(x)δρ(y)
B̃P (9)

with

v[ρ] = λ−1
∫ �

0
dxW ′(x)ρ(x), (10)

Ã = ωoff(x)ρ(x) − ωon(x)[1/� − ρ(x)] − v[ρ]∂xρ, (11)

B̃ = ωoff(x)ρ(x) + ωon(x)[1/� − ρ(x)]. (12)

Noting that v no longer depends on X, one can integrate Eq. (9)
over X to give the probability that the density is ρ(x) at t :

∂P

∂t
([ρ(x)],t) =

∫ �

0
dx

δ

δρ(x)
ÃP

+ 1

2N

∫ �

0
dx

∫ �

0
dy δ(x − y)

δ2

δρ(x)δρ(y)
B̃P . (13)

At this stage, we have obtained a Fokker-Planck equation for
P ([ρ(x)],t), where ρ(x) is the motor density in the reference
frame of the filament. This equation is valid for any choice of
potential and transition rates. We remind of the hypotheses for
the validity of Eq. (13): the thermal noise is neglected (this
enables us to eliminate the variable X), and the number of
motors at each site is large. Note that the diffusion term (12)
is directly proportional to N−1: we recover the fact that the
limit of vanishing noise corresponds to the limit of large N .
The macroscopic equation in this limit is simply ρ̇ = −Ã.

B. Fokker-Planck equation in the case of the uniform
rate hypothesis

The functional Fokker-Planck equation (13) is valid for any
choice of transition rates, but its study is difficult in the general
case. We decide to study a particular choice of transition rates,
the “uniform rate hypothesis”, in which the transition rates and
the potential are given by⎧⎪⎨

⎪⎩
W (x) = U [1 − cos(2πx/�)],

ωon(x) = ω[η − αcos(2πx/�)],

ωoff(x) = ω[1 − η + αcos(2πx/�)].

(14)

These rates are represented on Fig. 1(b). The uniform rate
hypothesis is known to keep the essential properties of motor
assemblies in the case of vanishing noise [24]. The potential is
sinusoidal with amplitude 2U , and the sum of transition rates
is uniform: this is the key hypothesis that simplifies further
calculations. The inverse ω−1 of the sum of the transition rates
is a characteristic transition time of the order of 10 ms. The
parameter η is the fraction of bound motors averaged over x,
and is sometimes called the duty ratio:

η = 1

�

∫ �

0
dx

ωon(x)

ωon(x) + ωoff(x)
. (15)
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T. GUÉRIN, J. PROST, AND J.-F. JOANNY PHYSICAL REVIEW E 84, 041901 (2011)

The variable α represents the amplitude of variation of the
transition rates. The uniform rate approximation can be seen
as an approximation where only the first Fourier mode of the
transition rates is considered [24]. The amplitude of the Fourier
modes of the transition rates decreases with the index of the
mode, and the simplest choice is to keep only the first mode.
We expect that the uniform rate approximation is suitable only
for regular and weakly varying transition rates. For this reason,
we only focus on the case of small α in this paper. We have
chosen symmetric transition rates to represent the case of a
tug-of-war situation that satisfies a “left-right” symmetry. We
have checked that, for the uniform rate approximation, the
situation where two motor assemblies with opposite polarities
are present is equivalent to the symmetric problem that we are
considering here. In order to simplify, we set from now on the
units of length, time, and energy so that ω = � = λ = 1. The
remaining dimensionless parameters of the theory are η, α, N ,
and a dimensionless parameter γ defined by

γ = 2π2Uα

�2ωλ
= ξa

Nλ
. (16)

The dimensionless parameter γ represents the ratio of the
active friction ξa generated by the motors at low velocity and
the passive friction Nλ [24]. In the absence of noise, a motor
assembly undergoes a dynamical phase transition at the critical
value γ = 1. If γ > 1, the state where the filament does not
move is unstable: bidirectional motion occurs as a result of
the stochastic transitions between the two metastable states of
positive and negative velocities.

We now use the fact that ρ(x) is periodic and introduce its
Fourier coefficients defined by

ρ(x) = α

∞∑
n=0

[ancos(2πnx) + bnsin(2πnx)]. (17)

In this definition, we have arbitrarily introduced a factor α to
simplify the following mathematical expressions. The filament
velocity is given by v = 2πγ b1 [Eq. (10)], and the dynamical
system that describes the evolution of the various modes in
the absence of noise is obtained by injecting Eq. (17) into the
macroscopic equation ρ̇ = −Ã [see Eq. (11)]:

ȧ0 = −(a0 − η/α), (18)

ȧ1 = −(
a1 + 1 − γ b2

1

)
, (19)

ḃ1 = −(b1 + γ b1a1), (20)

and, for n � 2,(
ȧn

ḃn

)
=

(−1 nγ b1

−nγ b1 −1

)
·
(

an

bn

)
. (21)

Equations (19) and (20) for the first mode (a1,b1) form a
closed system: the evolution of this mode does not depend
on the the evolution of the other modes. The nonlinear terms
b2

1,a1b1 leave the possibility that several fixed points exist
for this dynamical system. According to Eq. (18), the mode
a0 simply relaxes to its equilibrium value. The other modes
n � 2 relax to 0 faster than the unit time ω−1, because the
matrix appearing in Eq. (21) has a trace −2 and a determinant
larger than 1. A weak-noise expansion for these modes simply
describes their Gaussian fluctuations around their equilibrium

values [23] (see Appendix A). Hence one can integrate over
the modes n � 2 and n = 0 to obtain an effective Fokker-
Planck equation for only the components of the first mode, that
we now note a = a1 and b = b1, and that we consider as the
components of a vector 
y = (b,a). (Note that for convenience
we chose that the variable a is the second coordinate of the
vector 
y.) We obtain at lowest order in α

∂tP = −
∇ · (
uP ) + D/(2N )∇2P, (22)

where 
∇ = (∂b,∂a) is the nabla vector in the two dimensional
space (b,a), and where the effective diffusion coefficient is

D = 4η(1 − η)

α2
. (23)

This diffusion coefficient is therefore proportional to the
variance of a two-state variable, and to the inverse of α2: the
noise is less intense if the amplitude variation of the transition
rates is increased. In Eq. (22), the “force” field 
u = (ub,ua) is
deduced from Eqs. (19) and (20):

ub = −(b + γ ab); ua = −(a + 1 − γ b2). (24)

In the absence of noise, the system follows the trajectories
ḃ = ub,ȧ = ua . These flow lines are represented in Fig. 2 for
γ = 2.3. One distinguishes two stable fixed points F+ and F−,
and one hyperbolic unstable point H that lies on the vertical
separatrix line of equation b = 0 at the frontier between the
two attraction domains �+ and �−. A simple analysis of the
equations (ub = 0,ua = 0) reveals that bistability occurs as
soon as γ > 1, i.e., above the dynamical instability threshold.
As b is proportional to the filament velocity v, point H

corresponds physically to the state where the filament does
not move. This point is stable when γ < 1; at the critical value
γ = 1 there is an exchange of stability and a spontaneous

FIG. 2. (Color online) Top: Flow lines (solutions of the determin-
istic equation 
̇y = 
u) for γ = 2.3. Bottom: sketch of the structure of
the velocity field.
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symmetry breaking: H becomes unstable and the filament
velocity becomes either positive or negative. If the system is
bistable (γ > 1), in the presence of weak noise, the “particle”
spends most of the time close to the stable points. Sometimes
fluctuations bring it close to the separatrix, where it falls
into the other attraction domain. Such events correspond
to a motion reversal of the motor assembly and naturally
gives rise to bidirectional motion. One could think that a
straightforward application of the classical Kramer’s rate
theory would enable the calculation of the reversal time,
which depends exponentially on the “energy” barrier to reach
the separatrix. However, the curl of the force field does not
vanish ( 
∇ × 
u = ∂aub − ∂bua �= 0); consequently there exists
no potential V such that 
u = −
∇V . The fact that the detailed
balance condition is not satisfied is not surprising, as molecular
motor assemblies are out of equilibrium systems. In the next
sections, we show that it is possible to use the Wentzell-Freidlin
theory to define an effective out-of-equilibrium potential and
calculate the mean reversal time.

III. REVERSAL TIME IN THE WEAK-NOISE LIMIT

The estimation of the reversal time in the limit of weak
noise is done in two steps. The first step consists in defining
an effective potential by using the Wentzell-Fredlin theory
[21], providing an appropriate estimation of the stationary
solution of the Fokker-Planck equation (22). The next step
consists of deducing the actual time-dependent solution of the
Fokker-Planck equation and the reversal time. This step has
been carried out in Ref. [22]. Then, we apply these theories
to our molecular motors problems. In order to provide a
complete demonstration of our expressions of the reversal time
of motor assemblies, we choose to briefly describe the theories
of Refs. [21,22]. The symmetry properties of our model enable
a simpler analysis than in these references, and our analysis
also reveals the reason why the estimation of the reversal time
is numerically difficult in a certain range of parameters.

A. Definition of an effective potential

An effective “quasipotential” S(
y) can be defined by
assuming that the stationary solution PS of the Fokker-Planck
equation (22) can be approximated in the limit of weak noise
N � 1 by

PS(
y) = K(
y) exp[−NS(
y)/D]. (25)

Inserting this WKB ansatz into Eq. (22) and expanding at
lowest order in 1/N gives an equation of the form H(
y, 
∇S) =
0, which can be interpreted as a Hamilton-Jacobi equation,
S being the classical action and H the “Wentzell-Freidlin
Hamiltonian” [21]:

H(
y, 
p) = 
u · 
p + 
p 2/2. (26)

The momentum 
p is related to the action by 
p = 
∇S.
Hamilton’s equations associated with this Hamiltonian are


̇y = 
∇
pH; (27)


̇p = −
∇
yH. (28)

The solutions of this dynamical system (27) that have
zero energy define trajectories that minimize the action and

therefore maximize the probability PS : these trajectories are
the most likely paths. Among them, one finds the flow lines
or anti-instantons that follow the flow. The other trajectories
are the instantons: they are the most likely escape trajectories
and go against the flow. These trajectories can also be obtained
from the method of characteristics, and are called characteristic
lines. The instantons have the following physical meaning: If
a particle is observed at a point M far from a stable state,
it is highly likely to have come from this stable point by
following the most likely trajectory that reaches M [25]. These
trajectories are analogous of the classical trajectories obtained
from the WKB approximation of the Schrödinger equation in
quantum mechanics. The action S can be calculated along each
instanton by using the relation

Ṡ = 
̇y · 
p. (29)

Here, the notation Ṡ represents the derivative of S with respect
to the “time,” which parametrizes the characteristic lines. The
action S increases along each instanton and is a measure of
the difficulty to reach a point by using fluctuations. The most
likely paths emanating from the fixed point F+ are shown in
Fig. 3, where one observes that the point of the separatrix
that has minimal action is the hyperbolic point H . This
point is therefore the easiest point to reach on the separatrix,
and one defines the most probable exit path (MPEP) as the
instanton that joins the stable fixed point F+ and the hyperbolic
point H .

A precise estimation of the stationary distribution PS

requires the knowledge of the prefactor K . This prefactor
can also be computed along the most likely trajectories, as
it follows a transport equation:

K̇ = −( 
∇ · 
u + ∇2S/2)K. (30)

Equation (30) is obtained by inserting the WKB ansatz (25)
into Eq. (22) and by expanding to second order in 1/N . The
integration of this transport equation requires the knowledge
of the trace of the Hessian matrix, whose components are

FIG. 3. (Color online) Most likely paths corresponding to the flow
field represented in Fig. 2 for γ = 2.3. The value of the action S along
each trajectory is represented by an arbitrary color and intensity code.
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S,ij = ∂i∂jS. This Hessian matrix can also be computed along
the instantons as it follows a matrix Riccati equation [22]:

Ṡ,ik = −S,ij S,jk − S,ij ∂kuj − S,jk∂iuj − ∂i∂kujpj . (31)

The stationary probability in the limit of weak noise can be
estimated by the integration of Eqs. (27) and (29)–(31) along
the most likely paths that emanate from the fixed point F+.
These trajectories emanate from the stable point F+ when the
“time” t → −∞. In practice, one generates a trajectory by
choosing an initial point at a small distance 
dy from F+. The
initial value for the momentum is p

(0)
i = S

(0)
,ij dyj , where S(0)

is the Hessian matrix at F+. Its inverse matrix C = [S(0)]−1

satisfies a linear equation that is deduced from Eq. (31) at times
t → −∞:

Ckj∂kui + Cik∂kuj + δij = 0. (32)

Note that Cij is proportional to the correlation matrix
〈�yi�yj 〉, and that it can also be deduced from the study of
the small Gaussian fluctuations around the fixed point F+ [23].

The hyperbolic point H plays a key role in the escape
problem and it is therefore important to determine the
properties of the action in the vicinity of H . The behavior
of the action is determined in Ref. [22] but we propose here
an alternative simplified proof that exploits the fact that the
eigenvectors of the flow near the hyperbolic point H are
perpendicular in our problem. We note �a = a − aH ,�b =
b − bH and we introduce the stable (λa < 0) and unstable
(λb > 0) eigenvalues of the flow at the hyperbolic point: the
linearized flow near H is (ub,ua) = (λb�b,λa�a). A key
parameter is the ratio μ of these eigenvalues:

μ = |λa|
λb

. (33)

In our problem, μ = 1/(γ − 1). In the vicinity of H , the
Hamiltonian can be approximated by

H � (
p2

a + p2
b

)
/2 − |λa|(�a)pa + λb(�b)pb ≡ H0. (34)

Hamilton’s equations (27) associated to the quadratic Hamil-
tonian H0 form a four-dimensional linear dynamical system,
whose eigenvalues are ±|λa|, ± λb and whose solutions are of
the type ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�b = c1e
λbt + c3e

−λbt ,

�a = c2e
−|λa |t + c4e

|λa |t ,
pb = −2c3λbe

−λbt ,

pa = 2c4|λa|e|λa |t ,

(35)

where {c1,c2,c3,c4} are real numbers. Hence each set of four
coefficients {c1,c2,c3,c4} defines a Hamiltonian trajectory in
the vicinity of the saddle point. In fact, the most likely
paths can be described by only two coefficients: one can
always set the origin of the time such that c2 = 1, and the
conditionH0 = 0 imposes c4 = −c1c3/μ

2. The most probable
exit path is the particular trajectory that reaches H , and is
associated to coefficients such that c1 = c4 = 0 so that there
is no divergence for t → ∞. We note B = c3, the value of
the remaining coefficient: B is a geometrical parameter that
characterizes the most probable exit path. This path has the
equation �b ∼ B(�a)1/μ: it is tangent to the separatrix if

μ < 1 (as can be seen in Fig. 3) and normal to the separatrix
if μ > 1.

The trajectories on each side of the most probable exit
path are perturbations of this path, and are associated to the
coefficients c1 = ε (and therefore c4 = −εc3/μ

2), with ε � 1.
We make the further assumption that the coefficient c3 can
be approximated by its value for the most likely exit path
(c3 � B). Then, the perturbations of the most probable exit
path are described by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�b = εeλbt + Be−λbt ,

�a = e−|λa |t + B(ε/μ2)e|λa |t ,
pb = −2Bλbe

−λbt ,

pa = 2B(ε/μ2)|λa|e|λa |t .

(36)

Eliminating the time t and the coefficient ε leads to

pa = 2|λa|
[
�a −

( −pb

2Bλb

)μ]
, (37)

�b + pb

2λb

+ μpa(−pb)μ−1

(2Bλb)μ
= 0. (38)

We can combine these equations to form an equation that
implicitly defines pb(�a,�b):

�b + pb

2λb

+ 2μ|λa|
[
�a(−pb)μ−1

(2Bλb)μ
− (−pb)2μ−1

(2Bλb)2μ

]
= 0.

(39)

The solutions of Eq. (39) have to be discussed according to the
value of μ. If μ > 1, the term (−pb)2μ−1 is small compared to
|pb| for pb → 0. Assuming also that �a(−pb)μ−1 � |pb|, we
obtain pb = −2λb�b. Inserting into Eq. (37) leads to pa �
2|λa|�a, and the action reads

S � SH − λb(�b)2 + |λa|(�a)2 (μ > 1), (40)

where we have noted SH , the value of the action S at H .
The condition of validity of this results �a(−pb)μ−1 � |pb|
leads to �a � (�b)2−μ, which is satisfied along the most
probable exit path [for which �a ∼ (�b)μ]. The equation
�a = (�b)2−μ defines a curve that looks like a hyperbola
if μ > 2 or a parabola if μ < 2. Consequently, for μ > 2 one
can define a vicinity of H for which the expression (40) is
valid. In the opposite case μ < 2, the expression (40) is valid
around the most probable exit path, but only in a strip that
becomes narrower and narrower upon the approach of H [26].

In the opposite case μ < 1, the term proportional to
(−pb) can be neglected in Eq. (39). Assuming also that
�b � (−pb)μ−1�a, we obtain pb = −2Bλb(�a)1/μ. From
Eq. (38), one deduces the value of pa , and an integration gives
the value of S:

S � SH − 2λbB(�a)1/μ�b + λbB
2(�a)2/μ(μ < 1). (41)

The condition of validity of this equation �b � (−pb)μ−1�a

leads to �b � (�a)2−1/μ and is satisfied along the most
probable exit path. The curve �b = (�a)2−1/μ is of hyperbolic
type if μ < 1/2. In this case, the simplified expression (41) for
the action is valid for any direction at the vicinity of the saddle
point. However, if μ ∈ [1/2,1], then the expression (41) is
valid only in a strip that becomes narrower upon approaching
the point H . The expressions (40) and (41) have been derived
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in Ref. [22], but the importance of the range μ ∈ [1/2; 2] for
their validity condition had not been recognized.

B. Estimation of the reversal time

The definition of the effective potential S can be used to
calculate the mean escape time in the weak-noise limit. The
mean first escape time is evaluated as twice the inverse of the
smallest eigenvalue λ1 of the Fokker-Planck equation (22) with
an absorbing boundary condition at the separatrix P1(a,b =
0) = 0 [22]. Once the eigenfunction P1 is known, the mean
reversal time can be deduced by calculating the diffusive flux
along the separatrix:

2t−1
rev = λ1 = D

2N

∫ +∞
−∞ da ∂bP1|(a,0)∫

�+
P1(a,b)

. (42)

The eigenfunction P1(
y) associated with λ1 is almost equal
to the stationary distribution in the majority of the attraction
domain and can be evaluated by using the WKB approximation
(25), except in a boundary layer near the separatrix where
one has to use asymptotic expansions in order to take into
account the absorbing boundary condition. The solution P1

inside the boundary layer must be matched with the WKB
ansatz ∼exp(−S) far from the hyperbolic point. Equations (40)
and (41) that give the action in the vicinity of H suggest that
the expressions for the reversal time should be very different
in the two regimes μ > 1 or μ < 1. The calculation is made in
Ref. [22] and also given in Appendix B. If μ > 1, the reversal
time follows an Eyring-like formula [22]:

2t−1
rev = λ1 = K(H )

2πμ1/2

√
det[S,ij (F+)]e−SH N/D. (43)

The reversal time therefore follows an Arrhenius law with
a pre-exponential factor depending on the curvatures of the
potential S at the hyperbolic and stable points.

The opposite case (μ < 1, or γ > 2) is less similar to an
equilibrium problem: the most likely escape path is tangent to
the separatrix (see Fig. 3) and the effective potential is singular
at H [Eq. (41)]. The prefactor K tends to 0 when approaching
the hyperbolic point and the Eyring formula (43) is incorrect.
However, the mean escape time still follows an Arrhenius law
with a finite pre-exponential factor:

2t−1
rev = lim

a,b→aH ,bH

μ(a − aH )K

2π (b − bH )

√
det[S,ij (F+)]e−SH N/D. (44)

In this equation, the limit must be taken along the most
probable exit path. Equations (43) and (44) are derived in
Ref. [22], but we have corrected factors of 2.

We now apply the general theory to the particular case of
motor assemblies, for which the reversal time can be written
as

trev = 1

ωh(γ )
eNSH (γ )/D. (45)

The dimensionless functions SH (γ ) and h(γ ) can be computed
by numerically evaluating all quantities appearing in Eqs. (43)
and (44). They are shown in Fig. 4. An interesting result is that
the effective potential barrier SH reaches a maximum value at
γ � 3. Noting that one must have α2 < η(1 − η) so that the
transition rates remain positive, the characteristic number of

FIG. 4. (Color online) Circles: functions SH (γ ) (left) and h(γ )
(right) defined in the text in Eq. (45). Red continuous lines: analytic
estimations of h and SH close to the dynamic phase transition
threshold γ → 1 [SH (γ ) � (γ − 1)2/2 and h(γ ) � (γ − 1)/(π

√
2);

see text].

motors N0 required to observe bidirectional motion (defined
by trev ∼eN/N0 ) is always larger than N0 > 4/[max SH ] � 60.
One of our results is therefore that bidirectional motion cannot
be observed for a small number of motors within the rigid two-
state model and our hypothesis of small noise. This prediction
is to be compared to the small number of motors required for
bidirectional motion in other models [9].

In Fig. 4, we do not give values of the prefactor h for γ ∈
[3/2; 3] (or μ ∈ [1/2; 2]). In this range of parameters, we were
not able to determine with reasonable accuracy the limiting
behavior of the prefactor K upon approaching the hyperbolic
point H . This might be due to numerical uncertainties,
although we used a symplectic numerical integration scheme
that efficiently conserves the energy [27]. However, we rather
believe that the numerical difficulties in the range μ ∈ [1/2; 2]
arise from the fact that the simplified expressions for the action
(40), (41) are valid only in a very narrow strip around the most
likely exit path. As this strip becomes infinitely narrow in
the vicinity of the hyperbolic point H , the slightest numerical
uncertainty on the location of the most likely exit path leads to
a wrong estimation of the behavior of the action of the Hessian
matrix and therefore of the prefactor K . In Fig. 4, one observes,
however, that the two pieces of the function h(γ ) are likely to
be joined by a smooth curve that does not present singularities.

We also obtained asymptotic expressions for SH and h when
γ is close to its critical value 1 (see Appendix C for details).
In this limit, the problem can be reduced to a one-dimensional
problem and the first escape time can be calculated using
the equilibrium Kramer’s rate theory. We find SH (γ ) �
(γ − 1)2/2 and h(γ ) � (γ − 1)/(π

√
2). These asymptotics

are plotted with dotted lines in Fig. 4. In this limit, the
effective potential barrier vanishes at the dynamic transition
threshold, SH → 0, whereas the characteristic time scale near
the transition diverges: it is the phenomenon of critical slowing
down that is characteristic of second order phase transitions.
At fixed value of N , however, the weak-noise approximation
does not hold infinitely close to threshold, and a detailed study
of the joined limits N → ∞ and γ → 1 would require a more
accurate expansion scheme of the master equation [28].

C. Comparison with the results of stochastic simulations

In order to check the validity of our theoretical expression
for the reversal time, we have performed stochastic simulations
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of a motor assembly. Our simulations are similar to those
of Ref. [8], but we chose transition rates that correspond
to the uniform rate approximation in order to be able to
directly compare theory and simulations. The motors have
periodic positions on the backbone. Our simulations therefore
do not give any information on disorder effects that could
arise if the position of the motors were random. We adapted
the Gillespie algorithm [29] to our system, in order to generate
exact solutions of the master equation (1). Briefly, given one
configuration of attached/detached motors, one computes the
deterministic trajectory X(t) of the filament that would occur
if there were no transition event. From this trajectory X(t),
one deduces the effective time dependent transition rates seen
by each motor, (ωon(xi − X(t))) or (ωoff(xi − X(t))). Then a
set of N random numbers is generated to decide which of
the N motors is the first to change its state. The state of this
motor is modified, and the algorithm is run again to decide
for the next transition event. This general exact algorithm can
be simplified into a faster algorithm for large N by assuming
that X remains almost constant between two transition events,
so that the transition rate seen by each motor is no longer
time dependent. This simplification is justified since the time
between two transition events scales as ω−1/N and is small
compared to the characteristic time scale of the evolution of
X, which remains of order λ/(U/�2). We have checked that
for large N the two algorithms give the same results.

Typical examples of simulations are presented in Fig. 5.
Bidirectional motion is clearly observed: the filament stochas-

FIG. 5. (Color online) Typical simulation results. (a) Example of
trace of filament position X(t). (b) Trace of the filament velocity
v(t) (blue continuous line). The horizontal dashed red lines are
the theoretical steady state velocity deduced from the positions
of the fixed points F+ and F−. (c) Two-peak velocity histogram.
(d) Distribution of reversal times (histogram), compared to an
exponential distribution whose mean is the theoretical reversal time
of Eq. (45) (red continuous line). Parameter values: α = 0.2,η = 0.5,

γ = 3,N = 1000 motors disposed on 20 sites.

FIG. 6. (Color online) Comparison between the reversal time
predicted using the WKB approximation (lines) and the results of
simulations (γ = 1.3: circles; γ = 2: diamonds; γ = 3.7: squares;
γ = 5.5: triangles). For γ = 2, we tried a guess for the value of
h(γ = 2) = 0.125 that would be on the curve h(γ ) of Fig. 4 if this
function were defined everywhere. Parameters: α = 1/8,η = 0.5.

tically alternates between phases of backward and forward
motion [Fig. 5(a)], and one observes the corresponding
reversals events in the velocity signal [Fig. 5(b)]. As a result,
the velocity histogram displays two distinct peaks [Fig. 5(c)].
The reversal events can be detected on the signal averaged over
a window of size ∼ω−1. It can be seen in Fig. 5(d) that the
distribution of the first passage time is close to an exponential
distribution, as expected from the theory, and there is a good
agreement between the theoretical predicted distribution and
the distribution measured from simulations. This agreement
holds for a wide range of parameters, as the theory correctly
predicts the first passage time for several values of γ and
N : in Fig. 6, the theoretical curves pass in the middle of the
simulation points without any fitting parameter. We conclude
that our theoretical work provides a precise estimation for the
reversal time in the limit of weak noise.

IV. CONCLUDING REMARKS

Our study shows that the picture one should have in
mind for bidirectional motion is that of an optimal path
in the parameter space leading the system from a stable
point to a hyperbolic saddle point. The reversal time is
proportional to the exponential of an effective energy barrier,
which measures the difficulty to reach the saddle point
using stochastic fluctuations due to binding and unbinding
of motors by following the optimal path. The optimal path
is calculated by solving Hamilton’s classical equation of
motion associated with the Wentzell-Freidlin Hamiltonian.
The expressions for the reversal time are very similar to
that of an equilibrium system if one takes into account an
effective diffusion coefficient proportional to N−1 and the
variance η(1 − η) of a two-state stochastic variable. The
presence of the dynamical phase transition has a strong effect
on the effective diffusion coefficient of the motor assembly.
Below the transition (γ < 1), the diffusion coefficient of
the motor assembly is Deff ∼ �2ω/

√
N ; the only effect of

adding a motor is just the reduction of noise. However,
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above the transition, the diffusion coefficient observed at
time scales larger than trev becomes Deff ∼ (�ω)2trev ∼ eN/N0 .
In this regime, motors act in a very cooperative way: an
addition of a motor drastically increases the effective diffusion
coefficient, and enables the assembly to “explore” the space
very efficiently in both the right and left directions. This
phenomenon has been called enhanced diffusion [30]. Our
theory could easily be extended to the case of asymmetric
motors, and to that of a constant external force. We expect
an exponential dependence of the reversal time with the
external force, as in the case of equilibrium problems,
and as observed in experiments on the F tsK motor [5].
Such a strong dependence of the reversal time with the
parameter values could be used for regulation in real motor
systems.

Our theory could be applied to more realistic models of
molecular motors. Functional Fokker-Planck equations such
as Eq. (13) could be derived for a large class of kinetic models
involving continuous variables, such as the crossbridge model
[12]. If the model can be described by a dynamical system
in the absence of noise, then one expects to be able to derive
a formula for the reversal time akin to Eq. (45). Therefore
one expects that our theory could be applied to models for
myosins in the “mean field approximation” [19] and models of
kinesins and dyneins [9,30,31]. Such analytical formulas could
help the comparison to experiments and the characteristics
of macroscopic motion of motor assemblies as a function of
microscopic parameters. Such theories should therefore be
useful to understand the mechanisms of regulation that play a
role in bidirectional motion.

We observe in Fig. 3 that the most likely paths can cross
themselves, forming a line delimiting a forbidden region that
cannot be reached by any most likely path. Such a line is an
example of a caustic line, and cannot appear in a problem
where the detailed balance condition is satisfied. It is known
that the WKB approximation breaks down when a caustic line
is encountered: the Hessian matrix diverges and therefore the
prefactor K is no longer defined. As the caustic line does
not appear inside the domain �+, it has no influence on the
reversal time, which follows an Arrhenius-like law. Deviations
from Arrhenius behavior have been observed, for example,
if the most likely path joins an unstable point rather than a
hyperbolic point [32], or when the optimal path bifurcates
into three optimal paths leading to the saddle point [33], or
when the separatrix is a limit cycle [34]. However, none of
these situations is found here. It is also known that caustics
can emanate from a saddle point [35]. We do not know if
this fact can have consequences on the kinetics of reversal
events. These deviations could be important to explain the
experimental results of Ref. [4], where the Arrhenius law
is not observed, although it has been suggested that this
observation might come from an effect of disorder in the motor
polarities.

APPENDIX A: FOKKER-PLANCK EQUATION
FOR THE FOURIER MODES OF THE DENSITY

We describe here how to obtain an effective Fokker-Planck
equation for the variables (b,a). The Fokker-Planck equation

for P ({bn,an},t) can be written as

∂P

∂t
({bn,an},t) = −

∑
n

(
∂

∂bn

ḃnP + ∂

∂an

ȧnP

)

+ 1

2N

∑
n,m

(
∂2gss

nmP

∂bn∂bm

+ 2
∂2gsc

nmP

∂bn∂am

+ ∂2gcc
nmP

∂an∂am

)
, (A1)

where the coefficients gnm are functions of {bj ,aj } and can be
determined from Eq. (13). In general, a weak-noise expansion
of the Fokker-Planck equations around a fixed point is made
by approximating the flow by its value linearized around the
fixed point, and by approximating the diffusion matrix by its
value at the fixed point [23]. Doing this approximation for the
modes n = 0 and n � 2 leads to a Fokker-Planck equation that
can be integrated over theses modes, leading to a simplified
Fokker-Planck equation for P (b1,a1,t):

P (b1,a1,t) =
∫

da0

∏
n�2

dbndanP ({bj ,aj },t),

∂P

∂t
(a1,b1,t) = − ∂

∂b1
ḃ1P − ∂

∂a1
ȧ1P (A2)

+ 1

2N

(
∂2

∂b2
1

gss
11P + ∂2

∂b1∂a1
2gsc

11P + ∂2

∂a2
1

gcc
11P

)
.

Hence only the three coefficients gcc
11,g

cs
11,g

ss
11 need to be

calculated. We first focus on the calculation of gcc
11. Let us

consider a functional f ([ρ(x)]), which is also a function
of the Fourier coefficients {aj ,bj }): f ([ρ]) = f̄ ({an,bn}).
Considering that a modification of δan of a mode leads to
a change of the density of δρ = αδancos(2πnx), we have

∂f̄

∂an

= α

∫ 1

0
dx

δf

δρ(x)
cos(2πnx). (A3)

Writing a similar equation for bn and using the inversion
formulas for Fourier series leads to

δf

δρ(x)
= 2

α

∑
n

[
cos(2πnx)

∂f̄

∂an

+ sin(2πnx)
∂f̄

∂bn

]
. (A4)

A similar expression for the second order derivatives is

δ2f

δρ(x)δρ(y)
= 4

α2

∑
n,m

cos(2πnx)cos(2πmy)
∂2f̄

∂an∂am

+ 8

α2

∑
n,m

cos(2πnx)sin(2πmy)
∂2f̄

∂an∂bm

+ 4

α2

∑
n,m

sin(2πnx)sin(2πmy)
∂2f̄

∂bn∂bm

.

(A5)

Injecting Eq. (A4) into the functional Fokker-Planck equation
(13) leads to the identification of the convective terms.
Injecting Eq. (A5) into Eq. (13) leads to the identification
of the coefficients of the diffusion matrix. In particular, we
have

gcc
11 = 4

α2

∫ 1

0
dx{[ωoff(x) − ωon(x)]ρ + ωon(x)}[cos(2πx)]2,

(A6)
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where ρ must be expressed as a function of the {ai,bi}: ρ =
η + α[a1cos(2πx) + b1sin(2πx)], and ωoff and ωon must be
replaced by their values Eq. (14). Keeping only the terms that
have nonzero contribution in the integral (A6) leads to

gcc
11 = 8

α2

∫ 1

0
dx[η(1 − η)cos2(2πx) + a1α

2cos4(2πx)]

= 4η(1 − η)/α2 + 3a1. (A7)

The other coefficients are calculated with the same procedure;
we find

gsc
11 = b1, (A8)

gss
11 = 4η(1 − η)/α2 + a1. (A9)

The diffusion matrix still depends on the value of (a1,b1).
However, at lowest order in α, we obtain constant diffusion
coefficients, with gcc

11 = 4η(1 − η)/α2 = gss
11, gsc

11 = 0, and
one obtains Eq. (23). Thus for α → 0, Eq. (A2) is equivalent
to Eq. (22).

APPENDIX B: DERIVATION OF THE EXPRESSIONS
FOR THE REVERSAL TIME

In this appendix, we briefly derive the Eqs. (43) and
(44). A detailed calculation can be found in Ref. [22]. The
solution P1 � PS = Ke−NS/D is a correct approximation of
the solution of the Fokker-Planck equation in the domain �+,
but does not satisfy the absorbing boundary conditions on the
separatrix P1(0,a) = 0. Hence there exists a boundary layer
near the separatrix. As the action is minimal close to the saddle
point, it is enough to consider asymptotic expansions close to
the saddle point rather than close to the separatrix. Inside the
boundary layer, P1 follows a Fokker-Planck equation where
the flow has been linearized:

0 = − ∂

∂b
λb�bP + ∂

∂a
|λa|�aP + D

2N

(
∂2

∂a2
+ ∂2

∂b2

)
P.

(B1)

The behavior of P1 outside the boundary layer must be
consistent with the WKB approximation: from Eqs. (40) and
(41), we have

P1 ∼
{

e−[λb(�b)2−|λa |(�a)2]N/D if μ > 1,

e−[−2λbB(�a)1/μ�b+λbB
2(�a)2/μ]N/D if μ < 1.

(B2)

If μ > 1, solutions for P1 can be found by using a method
of variable separation [P1(a,b) = g(a)f (b)]:

P1 = 2K(H )

√
λbN

πD
e−(SH +|λa |�a2)N/D

∫ �b

0
db1e

λbN(�b2−b2
1)/D.

(B3)

This equation shows that the size of the boundary layer is of the
order of N−1/2, as in the case of an equilibrium system. In the
opposite case μ < 1, the shape of S far from the boundary layer
suggests that the length scale for the variable a in the boundary
layer is ∼N−μ/2 instead of N−1/2. Defining ã = �aNμ/2 and
b̃ = �bN1/2 leads at lowest order in N :

D

2λb

∂2

∂b̃2
P − ∂

∂b̃
(b̃P ) + μ

∂

∂ã
(ãP ) = 0. (B4)

The solution of this equation that satisfies the boundary
conditions (B2) is

P1(a,b) = 2C(�a)1/μ−1e−[SH +B2(�a)2/μλb]D/N

× sinh[2B�b(�a)1/μλbN/D], (B5)

where we came back to the original variables (a,b). Hence
K vanishes in the vicinity of the saddle point and varies as
K ∼ C(�a)1/μ−1.

Equations (B3) and (B5) characterize the density P1 in the
boundary layer. The reversal time can be estimated from P1

by calculating the flux along the separatrix:

2t−1
rev = λ1 = D

2N

∫ +∞
−∞ da ∂bP1|(a,0)∫

�+
P1(a,b)

. (B6)

Inserting Eqs. (B3) and (B5) into Eq. (B6) leads to the
estimations (43) and (44) for the reversal time.

APPENDIX C: REVERSAL TIME IN THE VICINITY
OF THE DYNAMICAL PHASE TRANSITION

When the system is close to the dynamical phase transition
(γ → 1), an expression of the reversal time can be obtained
explicitly. In this case, the dimensionless filament velocity b

plays the role of an order parameter associated to a second
order phase transition. One therefore expects that b is a slow
variable and that the time scales can be separated. We define
ã = a + 1 and b̃ = b, so that the hyperbolic point is now at
the axis origin. In these variables, the macroscopic equations
become {

˙̃a � −(ã − b̃2),
˙̃b � (−1 + γ )b̃ − ãb̃,

(C1)

where we have simplified for γ → 1. The nontrivial fixed
points are b̃± ∼ ±√

γ − 1, ã± = γ − 1, which suggests the
rescaling ā = ã/(γ − 1), b̄ = b̃/

√
γ − 1. In these variables,

the dynamical system is{
˙̄a = −ā + b̄2,

˙̄b = (γ − 1)b̄(1 − ā).
(C2)

We deduce that the dynamics for b̄ is much slower than the
dynamics of ā for γ → 1. The adiabatic approximation ā � b̄2

is therefore appropriate. After elimination of ā, the Fokker-
Planck equation for the variable b̄ reads

∂P

∂t
= − ∂

∂b̄
(γ − 1)b̄(1 − b̄2)P + D

2N (γ − 1)

∂2

∂b̄2
P. (C3)

This equation is a diffusion equation for a particle submitted
to the external effective potential U (b̄) = −(b̄2/2 − b̄4/4)
(γ − 1). The potential possesses two minima (in b̄ = ±1)
and one maximum (b̄ = 0). A straightforward application of
Kramer’s formula leads to the following expression for the
reversal time in the limit γ → 1:

trev = π
√

2

(γ − 1)
eN(γ−1)2/2D. (C4)

A simple comparison with Eq. (45) gives the asymptotic
behaviors of h and SH for γ → 1: g(γ ) � (γ − 1)2/2 and
h(γ ) � (γ − 1)/(π

√
2).

041901-10



BIDIRECTIONAL MOTION OF MOTOR ASSEMBLIES AND . . . PHYSICAL REVIEW E 84, 041901 (2011)

[1] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton
(Sinauer Associates, Inc., Sunderland, 2001).

[2] M. A. Welte, Curr. Biol. 14, R525 (2004).
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[14] F. Jülicher and J. Prost, Phys. Rev. Lett. 78, 4510 (1997).
[15] C. J. Brokaw, Proc. Natl. Acad. Sci. USA 72, 3102

(1975).
[16] P.-Y. Plaçais, M. Balland, T. Guérin, J.-F. Joanny, and P. Martin,
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