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Orientational ordering transitions of semiflexible polymers in thin films: A Monte Carlo simulation
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Athermal solutions (from dilute to concentrated) of semiflexible macromolecules confined in a film of thickness
D between two hard walls are studied by means of grand-canonical lattice Monte Carlo simulation using the bond
fluctuation model. This system exhibits two phase transitions as a function of the thickness of the film and polymer
volume fraction. One of them is the bulk isotropic-nematic first-order transition, which ends in a critical point on
decreasing the film thickness. The chemical potential at this transition decreases with decreasing film thickness
(“capillary nematization”). The other transition is a continuous (or very weakly first-order) transition in the layers
adjacent to the hard planar walls from the disordered phase, where the bond vectors of the macromolecules show
local ordering (i.e., “preferential orientation” along the x or y axes of the simple cubic lattice, but no long-range
orientational order occurs), to a quasi-two-dimensional nematic phase (with the director at each wall being
oriented along either the x or y axis), while the bulk of the film is still disordered. When the chemical potential
or monomer density increase, respectively, the thickness of these surface-induced nematic layers grows, causing
the disappearance of the disordered region in the center of the film.
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I. INTRODUCTION

Solutions of semiflexible polymers under good solvent
conditions are known to exhibit a phase transition from an
isotropic state to a nematic phase when the concentration
and/or the polymer chain length sufficiently increase [1–23].
This transition is entropically driven as in standard lyotropic
liquid-crystalline systems, which can be modelled as systems
of hard rods or hard spherocylinders, for instance [24–26].
While for such standard liquid-crystalline systems the effect
of surfaces and confinement on nematic order has already
been extensively studied [27–43], the effect of walls on the
orientational ordering of semiflexible macromolecules has
been much less considered [44–49]. There has been a lot of
work on the behavior of flexible polymers under confinement
[50], but this is not our focus here. While early Monte Carlo
work [44,46] mostly was concerned with investigating the
local packing of the polymers near the walls, Chen et al.
[45,48] proposed phase diagrams for the formation of nematic
wetting layers at hard walls and for “capillary nematization”
[32,33], analogously to “capillary condensation” [51,52] of
undersaturated vapor in thin slit pores, a solution may exhibit
nematic order in a capillary for conditions where it still would
be isotropic in the bulk. However, the theory by Chen et al.
[45,48] is a simple mean-field theory, inspired by Onsager’s
theory [24] for infinitely thin needles, based on the wormlike
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chain model [53–55], and, hence, neglects excluded volume
effects [56].

Apart from the fact that mean-field theories in general are
often inaccurate descriptions of order-disorder phenomena in
particular at low dimensionality [57], for nematic systems
there is an interesting complication due to the tensor character
of the nematic order parameter [25]: While the order in a
bulk of a nematic has uniaxial character, it is biaxial at
the surface [58]. As a consequence, when in an isotropic
fluid a nanoscopically thin nematic precursor layer forms
near a wall (analogous to precursors of fluid wetting layers
[57,59–61] of undersaturated vapor in contact with a wall), it
has biaxial rather than uniaxial order. In addition, due to long
wavelength fluctuations long-range nematic order in d = 2
dimensions should not exist, one expects an algebraic decay
of orientational correlation functions and a Kosterlitz-Thouless
type transition [62] to the isotropic phase [63–65]. However,
the character of the nematic-isotropic transition in d = 2
dimensions is still not fully understood [66]. This d = 2 limit,
however, is pertinent to our system when the bulk system is
confined between two walls. Moreover, the character of the
phase diagram that one expects for simple lattice models for
liquid crystals confined in thin film geometry is debated. For
the ordinary Lebwohl-Lasher model [67] there is evidence
that the nematic-isotropic transition stays first order up to a
minimum number nmin of lattice planes, while for n < nmin

there is no transition whatsoever [68]. For a generalized
Lebwohl-Lasher model, Fish and Vink [69] found that for
some choices of parameters in the Hamiltonian there is a
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continuous transition of Kosterlitz-Thouless type for n < nmin,
down to the two-dimensional case (n = 1), while for other
choices the transition stays first order throughout. On the basis
of this evidence, they argue that the phase diagram of confined
liquid-crystalline films is essentially nonuniversal.

The surface-induced ordering at the interface between a
wall and a solution of semiflexible macromolecules clearly
involves an interplay between the effects that the wall has
on the conformations of the polymer chains [44] and the
local changes in the various order parameters (local monomer
density and the orientational order parameters). The situation
of “complete wetting” [59–61], where a layer of nematic
phase grows to macroscopic thickness on approaching phase
coexistence in the semi-infinite system, is reminiscent of
surface-induced ordering phenomena [70,71]. In the latter
case, “critical exponents” can be introduced [70] to describe
these phenomena, and it is of interest to apply this point of
view to the surface-induced nematic order as well.

In the present paper, we wish to contribute toward a better
understanding of these problems by grand-canonical Monte
Carlo simulation of a lattice model for confined athermal
solutions of semiflexible macromolecules. In previous work,
the isotropic-nematic phase transition in the bulk has been
carefully characterized [20,23], and the limit of extremely
dilute solutions interacting with a wall (with attractive in-
teraction between the wall and the monomeric units) has been
studied [72]. The present simulations will focus on rather thick
films confined by purely repulsive impenetrable flat walls, and
following our work on bulk solutions of semiflexible polymers
we treat a single chain length, N = 20. Thus, the variables of
the problem are the chemical potential μ and the thickness
D of the films. Thicknesses D = 50, 100, and 150 lattice
spacings are chosen. The model and the simulation method
will be briefly characterized in Sec. II, where also the quantities
that will be recorded are defined. Section III describes our
numerical results in detail, while Sec. IV gives a brief summary
and discusses the relation to pertinent theoretical work.

II. REMARKS ON THE MODEL
AND SIMULATION ASPECTS

As in our previous work on semiflexible macromolecules
in bulk solution [20,23,73], we work with the bond fluctuation
model [74] on the simple cubic lattice. The only interactions
between the monomeric units are excluded volume interac-
tions, while chain stiffness is controlled by an additional
bending energy term, Ubend. Each effective monomeric unit in
this model is represented by an elementary cube of the lattice.
Monomer coordinates are coordinates of the front-bottom-left
corner of this cube. The other seven sites at the corners
of this cube are blocked from further occupation, realizing,
thus, the excluded volume interaction. Taking the lattice
spacing a ≡ 1 as the unit of length, the minimal distance
between any two monomeric units is equal to 2, and the
bond vectors connecting two consecutive monomeric units
along the chain are taken from the set {(±2,0,0), (±2,±1,0),
(±2,±1,±1), (±2,±2,±1), (±3,0,0), (±3,±1,0)}, including
also all permutations between these coordinates. Altogether
108 different bond vectors occur, leading to 87 different angles
between successive bonds. To describe variable chain stiffness,

an intramolecular bending potential depending on the angle ϑ

between two successive bond vectors along the chain is used:

Ubend = −f cos ϑ(1 + c cos ϑ), (1)

and the parameters in Eq. (1) were chosen as f = 8.0 (note
the convention putting kBT equal to unity) and c = 0.03. For
this choice of parameters the isotropic to nematic transition in
the bulk has already been carefully studied [23], and we need a
precise knowledge about the bulk transition as a reference for
our confined system. The constant c is physically insignificant
and is kept here for the sake of comparison to earlier papers
[13,20,23,75], while it is the parameter f that corresponds to
the bending rigidity in the Kratky-Porod model [53].

Monte Carlo simulations are carried out in the grand-
canonical (μV T ) ensemble, which has the advantage that
long-range fluctuations of the monomer density can relax
rather fast. However, the difficult aspect of this ensemble
in the context of Monte Carlo simulations of systems of
chain molecules is the need of moves attempting to insert
(or remove) a whole chain in the system, without violating
the excluded volume constraint. As described in our earlier
work [20,23], this difficulty is overcome by implementation of
the configurational bias method [76,77]. In the configurational
bias moves, one needs to utilize a biased chain insertion
method to let a polymer “grow” successively into the system.
At each step all possible 108 bond vectors having their origin
at the current effective monomeric unit are examined, and a
position for inserting the next monomeric unit along the chain
is chosen, respecting the excluded volume condition, and using
the Boltzmann weight calculated from the intramolecular
energy, Eq. (1). The statistical weight of the generated polymer
configuration hence is easily calculated recursively, and thus
the bias can be accounted for in the acceptance probability for
the move. In the following, one Monte Carlo step (MCS) is
composed of one configurational bias move plus, additionally,
either one attempt to perform a local random hopping move
for all effective monomeric units in the system or one attempt
of a slithering-snake move per chain.

The simulated system had the shape of a L × L × D box,
with hard impenetrable walls at z = 0 and z = D + 1, while
periodic boundary conditions were used in x and y directions.
As already mentioned in Sec. I, the chain length was equal
to N = 20 monomeric units, in accord with our previous
studies [20,23]. Because our potential Eq. (1) does not depend
on the bond length, the equilibrium length of a free single
chain totally elongated along one of the coordinate axes lies
between 40 and 60. In our present simulations of confined
solutions we have considered the film thicknesses D = 50,
100, and 150, so the smallest box width used here is of the order
of a totally elongated chain. In order to check for finite-size
effects, particularly in the vicinity of continuous transitions,
we used several values of the linear dimension L along the
walls, namely L = 60, 80, and 100.

In case first-order transitions are detected, the quantitative
analysis of the simulations is hampered by hysteresis effects
[20,23]. As explained in our earlier work [23], the most
efficient recipe to cope with this problem is the application
of straightforward thermodynamic integration methods. We
refer to Ref. [23] for implementation details.
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The chemical potential per chain μ was chosen in the
range between −195 and −150 (in units of kBT ), leading
to values of polymer volume fraction φ in the range from 0.0
up to 0.55, and it is important to distinguish between average
volume fraction in the whole box and the value of the “bulk”
volume fraction in the center of the box (provided a plateau
is formed in the density profile in the middle of the box),
which then can be compared to the “equivalent bulk density”
(defined via the chemical potential and the bulk equation
of state).

The total simulation time was typically between 107 and
2 × 107 MCS. The relaxation time in the most extreme cases
(i.e., largest boxes in the vicinity of the isotropic-nematic
transition) was about 5 × 106 MCS; however, this is only
the nonequilibrium relaxation time in the transition region.
This value characterizes the time needed for the systems to
relax from a nonequilibrium state to an equilibrium one in a
situation where there exist multiple states with similar free
energy, especially taking into account that for the nematic
phase the equilibrium state is degenerated due to multidomain
structures that are discussed in more detail in subsection III B
below.

We now turn to the quantities that are analyzed in the
simulations. In a thin film as studied here, it is natural to
calculate profiles of all collective variables (e.g., polymer
volume fraction φ and eigenvalues S1, S2, S3 of the tensor
characterizing the nematic order) as a function of the z

coordinate across the film, i.e., we record φ(z), S1(z), S2(z),
S3(z). At this point, we recall that the tensor characterizing the
nematic order is defined in terms of unit vectors �ei along the
bonds connecting monomeric units i and i + 1. In the bulk,
for a system of N chains each having N effective monomeric
units and hence N − 1 bonds, this order-parameter tensor is

Qαβ = 1

N (N − 1)

N (N−1)∑

i=1

1

2

(
3eα

i e
β

i − δαβ

)
, (2)

where α, β denote the Cartesian components.
The largest eigenvalue of this tensor S1 is a good order

parameter for characterizing the isotropic-nematic transition,
while the combination of the second and the third eigenvalues
P = S2 − S3 is known to be a good order parameter for
transitions between uniaxial and biaxial phases (for a thorough
discussion of the definition of order and biaxiality, see
Ref. [78]). We give here a qualitative discussion of the main
aspects of these order parameters only. In the bulk nematic
phases all molecules show preferential alignment along one
direction (the “director”), while the order of the system is
rotationally invariant in the plane perpendicular to the director.
Thus, in the bulk the nematic ordering is uniaxial. However,
when we consider a nematic-isotropic interface, the elongated
molecules align parallel to the interface: Then the direction
perpendicular to the nematic director but also parallel to the
interface clearly is not equivalent to the direction normal to
the director and also perpendicular to the interface. Thus,
in the interface (or at a hard wall) the nematic ordering has
biaxial character. Of course, one should also keep in mind that
in our lattice model preferred orientations of the (stretched)
polymer chains and hence of the director occur along the x, y,
or z axis of the simple cubic lattice only, unlike a nematic

fluid in continuum space where the director can point in
any direction. Likewise, when we consider surface-induced
local order in a plane (or thin layer) adjacent to the wall,
there are only two preferred orientations of the director,
along the x axis or along the y axis. Thus, we expect that
the order-disorder transition in such a layer corresponds to
the Ising universality class rather than the XY class (which
would possibly lead to a Kosterlitz-Thouless-type transition,
as discussed in the Introduction) that applies when the director
can align uniformly along any direction in the xy plane. These
considerations should be kept in mind for the interpretation of
our numerical results.

We have used two different averaging procedures in
our simulations; we call them averaging over profiles and
averaging over the whole sample. Averaging over profiles
means that the average values of density, 〈φ〉, and orientational
order parameters, 〈S1〉, 〈S2〉, 〈S3〉, were calculated as the mean
values of their z profiles, φ(z), S1(z), S2(z), S3(z), respectively.
This procedure has been used preferentially. The profiles of
the orientational order parameters S1(z), S2(z), S3(z) were
obtained in the following way: We calculated the orientational
tensor Qαβ in each z layer separately, then we performed the
time averaging of all these tensors Qαβ(z) (also separately),
and at the end of the simulation run we calculated their
eigenvalues. Averaging over profiles decreases the fluctuations
of orientational order parameters in the isotropic phase in a
system of finite size, but, on the other hand, it can lead to
some artifacts when multiple nematic domains are observed
in the system (such cases have been identified and corrected
for possible artifacts). Averaging over the whole sample means
that the average values φ̄, S̄1, S̄2, S̄3 were obtained in the course
of usual time averaging of φ, S1, S2, S3 calculated for the
whole system. These quantities analyze excess properties of
the confined system without referring explicitly to the internal
spatial structure of the film.

In our simulations, we have recorded also standard single-
chain characteristics such as the mean-square end-to-end
distance Re and the mean-square gyration radius Rg of the
chains (and their components along the z axis and in the xy

plane, i.e., perpendicular and parallel to the walls, as well as
z profiles of all these quantities). The distribution of positions
of the chain ends along the z axis has been sampled as well
(cf. Ref. [79]). All these quantities depend on the polymer vol-
ume fraction φ = 8NNa3/V in the system. The average was
taken over all chains and all sampled system configurations. A
detailed discussion of these properties, including the interplay
of chain conformations and nematic order, will be the topic of
a separate publication.

III. RESULTS AND DISCUSSION

A. Profiles of the density and orientational order parameters

1. Snapshots

To help in the visualization of the different phenomena
that occur in our system we start with some snapshots (Fig. 1)
presenting the two-dimensional xz maps for profiles of the
orientational nematic order parameter S1. Hard walls are on
the left and right side of the box, and the z axis is directed
from the left to the right. In this figure we are using colors
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FIG. 1. (Color online) Snapshots of the simulation box of size
D = 150 and L|| = 80 for different μ values: μ = −180 (a), −171
(b), −166.4 (c), and −155 (d). The color code is explained in the text.
The starting configuration was an empty box (for μ = −166.4) and
an isotropic solution with average volume fraction φ = 0.3 (for the
other three values of μ).

(grayscale) to represent the local orientation of bond vectors
between monomeric units along the chain. Red (dark gray),
green (light gray), and blue (middle gray) colors correspond
to the orientation of bond vectors along the x, y, and z axes,
respectively [80]. Green (light gray) and red (dark gray)
regions indicate nematic domains oriented parallel to the
walls. A blue (middle gray) region (i.e., a nematic domain

with director oriented perpendicular to the walls) is never
found, as expected for our model.

The profiles are shown for four different values of the
chemical potential, i.e., for four different average densities
(our conclusions below are based on the whole set of snapshots
for all simulated values of μ, but only four of them are shown,
which are typical for all possible regimes). The starting
configuration was either an empty box (for μ = −166.4) or an
isotropic solution with average volume fraction φ = 0.3 (for
the other three values of μ). This means that depending on
the value of the chemical potential the system can either stay
isotropic if the average density (or the density in the central
part of the simulation box for the case it is wide enough)
lies below the isotropic-nematic transition threshold or it will
jump into a nematic state after some equilibration time if
the average density exceeds this threshold. Such procedure
simulates the transition from isotropic to nematic state on
increasing the density in the system, and we can determine the
high-density boundary of the hysteresis region as the value of
the chemical potential at which this jump from the isotropic
into the nematic state occurs [20,23].

We observe three different regimes in Fig. 1. The first
regime is μ � −174 [a typical snapshot is shown for
μ = −180 in Fig. 1(a)], where there is no nematic ordering
whatsoever in the system (neither near the walls nor in the
bulk). However, some enhanced local orientation at the walls
has already started—a formation of clusters of the oriented
phase (nematic fluctuations) at the walls is well visible. Almost
no points of perpendicular orientation (blue or middle gray)
are observed at the walls. Larger domains of green (light
gray) and red (dark gray) color are formed at the walls, i.e.,
these domains are oriented parallel to the walls (along x and
y axes) but without any preferred orientation in the plane.
For μ = −180 the polymer volume fraction in the center of
the box is around φ ≈ 0.15 (for comparison, the coexisting
densities of the transition in the bulk [23] are φiso ≈ 0.30 and
φnem ≈ 0.32, and the chemical potential at the transition is
μbulk

trans ≈ −166±0.5), while there is a depletion layer at the
wall where the volume fraction is around φ ≈ 0.1 (see Fig. 2).
However, even in the limit of highly dilute solutions those
chains, which have their center of mass close to the walls have
to be oriented parallel to the walls.

The second regime is −174 � μ � −166.4 [two typical
snapshots are shown for μ = −171 and μ = −166.4 in
Figs. 1(b) and 1(c)] where there exists pronounced nematic or-
dering near the walls, but the solution stays isotropic in the cen-
ter of the box. In Fig. 1(b) thin domains with nematic ordering
(one preferred orientation, biaxially) are formed at the walls.
The two domains at both walls are both oriented along the x di-
rection, but this occurs statistically, they could be oriented also
along different directions parallel to the wall as in Fig. 1(c). In
Fig. 1(c) we observe two large nematic domains at both walls,
although with different orientation, and significantly less blue
(middle gray) color in the center of the box, where pronounced
domains parallel to x and y axes are also formed. This lack of
orientation along the z axis shows that in this system bulklike
behavior is no longer observed, not even in the center of
the box. This system is in a state just shortly before it jumps to
the nematic state, and this happens quite fast if we increase the
chemical potential to the value μ = −166.3. Therefore, our
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FIG. 2. (Color online) Monomer density (volume fraction)
profiles for the box D = 150, L = 100 and different values of the
chemical potential μ: −162, −166, −167.3, −167.4, −170, −172,
−173, −174, −176, −180 (from top to bottom). Note that in this
figure (and the following ones) the profiles exhibit mirror symmetry
with respect to the midplane, and, hence, only the left half of the
system is shown. The density values of the isotropic and nematic
phases at the coexistence in the bulk are indicated by two horizontal
lines. The isotropic-nematic transition in the bulk [23] takes place at
μbulk

trans ≈ −166.

estimation of the high-density boundary of the isotropic-
nematic transition region is μ = −166.4 for this film
thickness.

In the third regime, μ � −166.3, the whole system is
orientationally ordered and it can be either in a monodomain
or in a multidomain configuration. Note that this value of
the chemical potential is very close to our estimate for the
nematic ordering transition in the bulk. A typical snapshot of a
multidomain configuration is shown in Fig. 1(d) for the value
μ = −155, which is actually quite far beyond the isotropic-
nematic transition point. We would like to emphasize here
again that this configuration was obtained from an isotropic
state after equilibration at the value of μ quoted above, i.e.,
without any annealing procedure by means of gradual increas-
ing the chemical potential. Such multidomain configurations
differ in their free energy only very slightly from the ground
state, which is a pure, nematic monodomain configuration.
Thus, in our simulation, the system is presumably kinetically
trapped in a multidomain state with protracted relaxation.
This problem has been already discussed in our paper on the
isotropic-nematic transition in the bulk for this model [20]. We
will not investigate this problem here, and we will consider
both multidomain and monodomain configurations as the
nematic phase. However, for a quantitative analysis of global
nematic order parameters, multidomain configurations will be
excluded as discussed below.

To simulate the opposite process of a transition from
the nematic to the isotropic state we start with a nematic
configuration of the system, e.g., a perfectly ordered dense
nematic configuration, and decrease the value of the chemical
potential until the system jumps into the disordered, isotropic
state. This allows us to determine the low-density boundary of

the hysteresis region. The results of corresponding simulation
runs are discussed below.

2. Dependence of density and orientational order-parameter
profiles on the chemical potential

Polymer density profiles (actually, polymer volume fraction
profiles) and profiles of the three orientational order parameters
(three eigenvalues of the orientational tensor) are shown for
box size D = 150, L = 100 in Figs. 2 and 3 for different values
of the chemical potential μ (indicated in the legends). We

(a)

(b)

(c)

FIG. 3. (Color online) Orientational order parameter profiles
S1(z) (a), S2(z) (b), S3(z) (c) for the box D = 150, L = 100 and
different μ values shown in the legend. The horizontal line in the
figure (a) indicates the value of the nematic order parameter at the
transition in the bulk, Sbulk

1,trans ≈ 0.68.
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have verified that the profiles for the boxes of the same width
D = 150 but with different size in the direction parallel to the
walls, L = 60 and 80, are very similar to those presented here.

We have checked all profiles for symmetry relative to the
center of the box, and we have found reasonable agreement
between both parts of the profiles. All profiles have been
averaged relative to the center of the box, and only one half of
the box is shown in all figures displaying profiles. All profiles
have been obtained in the course of an equilibration process at
each particular μ value starting from a nematic monodomain
configuration. This means that we can determine here actually
a lower boundary of the isotropic-nematic hysteresis region.

For all average densities there is a wide plateau formed in
the center of the box indicating that the box width D = 150 is
large enough to allow for a bulk region to be formed (Fig. 2).
The width of this bulk region seems to be about 100 lattice sites,
although we will see below that it is actually narrower because
the influence of the wall on the orientation of the polymer
bonds is much more pronounced and longer ranged than the
influence on the density of monomeric units. At low values of
the chemical potential, μ � −176, there is a depletion layer at
the walls. As an analysis of the snapshots shows, in this region
there nevertheless already occur nematic domains at the
walls, as mentioned above. At μ = −176 the polymer volume
fraction in the center of the box is about φcenter ≈ 0.2. At the
values of the chemical potential larger than μ = −174 there
is always some enhancement of polymer density at the walls.
In this region μ � −174, strong wall-induced orientational
order occurs (see Figs. 1 and 3). Up to the value μ = −167.4
a polymer layer with higher concentration has developed at
both walls, and its width reaches about 20 lattice spacings
at μ = −167.4. Although the difference in volume fraction
values between the walls and the center is not large, it is still
very significant because these values lie in the vicinity of the
bulk isotropic-nematic coexistence densities. Between μ =
−167.4 and μ = −167.3 there is a well visible density jump
in the center of the box to a value above the coexistence
density. The densities of isotropic and nematic phases at
coexistence in the bulk [23], φiso ≈ 0.3 and φnem ≈ 0.32, are
indicated in Fig. 2 by two horizontal lines. One can clearly see
that the densities of the isotropic and nematic phases in the
center of the film just at the transition point in the whole film
φcenter

iso ≈ 0.29 and φcenter
nem ≈ 0.31 lie below the corresponding

densities in the bulk. On further increase of the average
density, pronounced layering starts to occur at the walls.

Now let us discuss the orientational order parameter profiles
in Fig. 3. First, we can see that for some μ values the width
of the bulk region is not larger than about 40 lattice sites.
The surface layers have larger width in comparison to the
estimate based on the density profiles. There are three types
of profiles for different intervals of the chemical potential. For
μ � −173 all three eigenvalues S1, S2, S3 are very close to zero
in the central part of the box, while at both walls pronounced
layers of a width of about 40 lattice spacings (which is
about the length of the totally elongated chain in our system)
are formed where S1 and S2 are positive and approximately
equal to each other (and their values directly at the walls are
about 0.1) and S3 is negative (about −0.2 at the wall). Such
values of these parameters would correspond to an uniaxial

ordering of bond vectors parallel to the walls (i.e., preferably
perpendicular to the z direction). For −172 � μ � −167.4 we
observe several regions in the order parameter profiles: (i) a few
strongly nematically ordered layers at the walls; (ii) a rather
broad nematically ordered region of width about 10–15 layers;
(iii) an even broader uniaxially ordered region of width about
25−30 layers [note that S2(z) is negative in region (ii) and
positive in region (iii)]; (iv) an isotropic region in the center
of the box. The isotropic-nematic transition in the whole
film occurs at μ

(D=150)
trans ≈ −167.3 when the nematic order

parameter in the center of the box, S1(z = 75), jumps from
a very small value about 0.01 at μ = −167.4 to a value of
about 0.625 at μ = −167.3. These values of the nematic
order parameter at coexistence should be compared with those
obtained for our model in the bulk, which were approximately
equal to 0.01 and 0.68, respectively [23]. In the nematic film,
the ordering at the walls is slightly more pronounced than that
in the center of the film.

Profiles of the biaxiality order parameter P = S2 − S3 for
several different values of μ for the box D = 150, L = 100 are
shown in Fig. 4. We expect P to be zero inside well-developed
nematic domains (and in the isotropic phase, of course) but
nonzero at the location of interfaces. It is helpful to look also
at the snapshots of the typical configurations shown in Fig. 1
[snapshots for μ = −186 and μ = −174 look quite similar
to that at μ = −180 shown in Fig. 1(a)]. Upon increasing
μ a layer with high values of P starts to form at the wall,
i.e., a surface induced quasi-two-dimensional orientational
order adjacent to the walls occurs, and then the isotropic-
nematic interface starts to separate (to depin) from the wall
moving toward the center of the box. It disappears abruptly
between μ = −167.4 and −167.3 when it meets the second
interface that is moving toward the center from the other wall.
When “capillary nematization” occurs, the isotropic domain in
the center vanishes when the two nematic-isotropic interfaces
meet and annihilate each other, and then also P disappears.

Let us now turn to a discussion of finite-width effects
on these transitions. The volume fraction profiles for the

FIG. 4. (Color online) Profiles of the biaxiality parameter P =
S2 − S3 for different values of μ (indicated in the legend). Simulation
runs were performed in the box of sizes D = 150 and L = 100
starting from a nematic configuration. For explanation see the text.
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D = 50 box are similar to those for D = 150, i.e., they show
a pronounced plateau in the center of the box and first a
depletion, then an increase, and, finally, some layering at
the walls with increasing chemical potential (not shown). The
order parameter profiles for a box of size D = 50 are shown in
Fig. 5. This box is thin enough so the chains feel the presence of
the walls in the center of the box even in a very dilute solution
and stay always oriented (at least slightly) parallel to the
walls. In a very dilute solution the values of the orientational
order parameters in the center of the box are S1 ≈ S2 ≈ 0.1

(a)

(b)

(c)

FIG. 5. (Color online) Orientational order parameter profiles
S1(z) (a), S2(z) (b), S3(z) (c) for the box D = 50, L = 100 and
different values of the chemical potential μ: −162, −166, −168,
−169, −169.5, −170, −172.5, −173, −180 (from top to bottom in
S1 and vice versa in S2 and S3). The horizontal line at Sbulk

1,trans ≈ 0.68
in the S1(z) plot (a) indicates the value of the nematic order parameter
at the transition in the bulk.

and S3 ≈ −0.2, i.e., the system has uniaxial orientational
symmetry parallel to the walls even in the center of the box
(while it is increasing near the walls). With increasing the
concentration of chains, we find the transition to the nematic
state first at the walls and then also in the center of the box
(e.g., S2 ≈ S3 ≈ −0.4 and S1 ≈ 0.8 for μ = −162). Note that
due to this surface-induced nematic order caused by the walls
throughout the thin film we do not imply here by the use of
the word transition that the ordering with increasing chemical
potential is a (sharp) thermodynamic transition for small D. As
will be discussed later, the isotropic-nematic transition in the
box of width D = 50 occurs at μ(D=50)

trans ≈ −169.5 (as obtained
from histogram analysis), and at this value of the chemical
potential the nematic order parameter in the center of the box
is about S1(z = 25) ≈ 0.3, while the average nematic order
parameter is about 〈S1〉 ≈ 0.5 (this should be again compared
to the bulk values μbulk

trans ≈ −166, Sbulk
1,trans ≈ 0.68).

To summarize this section, the density profiles and profiles
of orientational order parameters in a film of quite large
thickness show three different states (depending on the average
polymer density). The first state, for μ < −174 (i.e., a very
dilute solution), is the isotropic phase with depletion at the
walls (due to purely entropic reasons) and formation of a
pronounced wide layer at the walls with preferred orientation
of chains parallel to the walls but without any preferred axis
in the planes parallel to the walls. The second state, for
−174 � μ � −167.4, is the isotropic phase with enhanced
density at the walls, again, due to purely entropic reasons, and
formation of a pronounced wide nematic layer at the walls with
preferred orientation of chains parallel to the walls and with
a preferred axis in the planes parallel to the walls. The third
state, for μ > −167.4, is the nematic phase with enhanced
density at the walls, just after the isotropic-nematic transition
took place in the whole volume of the box, and the formation
of a quite narrow nematic layer at the walls (which is only a
few lattice spacings thick) with larger values of the nematic
order parameter. For μ � −162, which we did not discuss so
far, there occurs a pronounced layering at the walls extending
over three to five layers in both the local volume fraction and
the local nematic order parameter.

B. Dependencies of average density and average orientational
order parameters on the chemical potential

We will now analyze the phase transitions underlying the
above findings using the dependence of the average density
and average order parameters on the chemical potential.
The averaging was performed over profiles (as described
in Sec. II). The dependence of the average density and
orientational order parameters S1 and P = S2 − S3 on the
chemical potential μ are shown in Fig. 6 for boxes of different
width D = 50, 100, and 150.

Simulation runs were performed at different values of the
chemical potential using a monodomain nematic configuration
as initial state. Two transitions are well visible in these
figures. First, the nematic-isotropic transition in the center
of the box occurs on decreasing the chemical potential,
i.e., decreasing density, at some point around μ ≈ −167.4.
The jump in the density is quite small, in agreement with
previous studies [1,2,24]. After this transition takes place,
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nematic order still exists in the film at both walls, and
the average biaxiality parameter P is not equal to zero
because of the presence of isotropic-nematic and nematic-wall
interfaces. Then, decreasing the chemical potential further,
the second transition takes place around μ ≈ −173, when
the nematic ordering disappears completely, being exchanged
by broad layers with planar orientation of bond vectors, so
the biaxiality parameter P becomes even larger and then

(a)

(b)

(c)

FIG. 6. (Color online) Dependencies of the average volume
fraction φ (a), and the average orientational order parameters S1

(b) and P = S2 − S3 (c) on the chemical potential μ for boxes of
different width: D = 50 (red squares), D = 100 (green circles), and
D = 150 (blue triangles). The box size parallel to the wall was
equal to L = 60. The simulation runs were performed starting from a
nematic configuration. The vertical line indicates the transition point
in the bulk μbulk

trans = −166.

disappears gradually on further decreasing the density down
to zero. The isotropic-nematic transition is very sharp in boxes
of D = 100 and D = 150 (the jumps in S1 are quite close to
each other, but a hysteresis still can be observed, see below),
while it becomes smeared out in the narrow film D = 50 (no
jumps in S1 can be observed).

The transition where long-range orientational order at the
surfaces disappears is well visible in P , slightly visible in S1,
and not visible at all in the density. This transition is also quite
sharp, and it does not show any pronounced shift of the transi-
tion point as a function of the film width, although the absolute
values of the biaxiality parameter P become larger with de-
creasing box width (since this order is merely a surface effect).

Pronounced fluctuations of S1 and P occur in the vicinity of
the surface transition [Figs. 6(b) and 6(c)]. The origin of these
strong fluctuations seems to be the fact that we average here
both S1 and P over both surfaces, which order independently:
Sometimes the directors of the nematic order at both walls
are parallel (both oriented along the x axis or both along the y

axis) and sometimes perpendicular (one along y and one along
x) to each other.

In Fig. 7 we compare the average nematic order parameter
and the average biaxiality order parameter as functions of the
chemical potential for boxes of width D = 150 but of different
size parallel to the walls L = 60, 80, and 100. We can conclude
that almost no difference can be observed in those curves, so
the size of the simulation box parallel to the walls is large
enough to avoid systematic and significant finite-size effects.

Let us now look at a hysteresis for the average nematic order
parameter 〈S1〉 that we observe at the isotropic-nematic phase
transition for boxes D = 100 and D = 150 (Fig. 8). The com-
parison of runs from the nematic to the isotropic state and from
the isotropic to the nematic state is presented here. For the runs
from the isotropic to the nematic state the fluctuations in the
nematic phase (μ � −166) due to the appearance of a multido-
main structure (see Fig. 9) would lead to systematically smaller
values of S1 rather than for states with a monodomain order.
Since these multidomain states are easily recognizable from
both snapshots as shown in Fig. 1 and from profiles (compare
Figs. 3 and 9) of S1(z), we have not included these multidomain
states in Fig. 8, because they would only confuse the picture
and are artifacts due to the necessarily insufficient equilibration
and the chosen averaging procedure. At the present moment
we can define the hysteresis regions quite accurately for films
of thickness D = 100 and 150. As regards the left (low-μ)
boundary of the hysteresis region (which is observed in Fig. 8
for N → I runs), it seems that it does not depend on the film
thickness for these boxes. At the same time, the right boundary
of the hysteresis region (for I → N runs) does depend on the
box width. The whole hysteresis region becomes smaller with
decreasing film thickness, and its right boundary is displaced
to lower values of μ, i.e., to lower (average) densities. For the
thin film with thickness D = 50 the curves are rather smooth,
no abrupt transition is visible, there is definitely no hysteresis,
and the inflection point is shifted to lower μ clearly outside
the hysteresis region for the larger D values.

Some examples of multidomain structure (which is the
origin of fluctuations in the orientational order parameter in the
nematic phase for the runs from isotropic initial configuration)
are shown in Fig. 9. Nonsymmetrized profiles S1(z) show the
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(a)

(b)

FIG. 7. (Color online) Dependencies of the average nematic
order parameter S1 (a) and biaxiality parameter S2 − S3 (b) on the
chemical potential μ for boxes of different size parallel to the wall:
L = 60 (red squares), L = 80 (green circles), and L = 100 (blue
triangles). The box width was equal to D = 150. The simulation runs
were performed starting from a nematic configuration.

presence of several domains separated by interfaces at which
S1 has much lower values. These configurations were obtained
from an initially isotropic solution at different μ values. For
μ = −161, which is not far away from the transition point, the
interface is broader, while for μ = −150 the interfaces are very
narrow. We would like to emphasize here that these profiles
demonstrate the system behavior averaged over time, in
contrast to snapshots in Fig. 1 that show only an instantaneous
picture. These profiles were our tool to determine multidomain
structures and to eliminate them from our sampling.

In Fig. 10 we present the dependencies of the polymer
volume fraction and nematic order parameter on the chemical
potential for the box D = 150, L = 100. We compare here the
dependencies of the average values 〈φ〉 and 〈S1〉 (averaged over
the spatial variation) and those of the plateau values φplateau and
S

plateau
1 (calculated by averaging over the plateau in the corre-

FIG. 8. (Color online) The average nematic order parameter 〈S1〉
plotted versus the chemical potential μ for boxes of different width:
D = 50 (red squares), D = 100 (green circles), and D = 150 (blue
triangles). The box size parallel to the wall was equal to L = 60.
A comparison of runs from the nematic to the isotropic state (full
symbols) and from the isotropic to the nematic state (open symbols)
is presented. The hysteresis region for the box of width D = 150 (at
μleft = −167.3 and μright = −166.3) is marked by two vertical lines.

sponding profiles in the central part of the film). For the film of
thickness D = 150 the width of the plateau in the center of the
box was about 30–40 layers for S1(z) profiles and about 90–100
layers for φ(z) profiles. The data for simulation runs starting
both from a nematic and from an isotropic configuration are
presented, and the presence of a hysteresis is observed. Those
data points in S1 that are due to multidomain configurations
have been identified and are not included here. This hysteresis
can be compared with that observed in the bulk: The bulk
data from our previous simulations [20] are denoted by large
open rhombs and squares and the bulk transition point μbulk

trans =
−166 is denoted by a vertical solid line. Plateau values φplateau

and S
plateau
1 lie systematically below the average values 〈φ〉 and

〈S1〉 and almost coincide with the corresponding bulk values.
The values of the chemical potential for the left, μleft ≈

−167.3, and the right, μright ≈ −166.3, boundaries of the
hysteresis region for the box of size D = 150, L = 100
(Fig. 10) obtained from the data both for S

plateau
1 and 〈S1〉

coincide very well with those obtained from the average
〈S1〉 for the box of size D = 150, L = 60 (Fig. 8). A very
narrow hysteresis is also visible for S

plateau
1 and 〈S1〉 for the

box of width D = 100 (data are not shown): μleft ≈ −167.3,
μright ≈ −167.0. For D = 50 we observe no hysteresis either
for 〈S1〉 or for Scenter

1 (the value of the nematic order parameter
at the center of the box). The left and right boundaries of the
hysteresis in the bulk (not shown here) were μ ≈ −167.5 and
μ ≈ −164, respectively [20]. Therefore, we can conclude that
the left boundaries of the hysteresis both in 〈S1〉 and S

plateau
1

coincide well with each other and with the bulk value, while
the right boundary is shifted to lower values of the average
density on decreasing the film width. Consequently, the width
of the hysteresis region becomes narrower on decreasing the
film thickness, and the middle point of the hysteresis region is
also shifted to lower values of the average density.
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(a)

(b)

FIG. 9. Profiles of the nematic order parameter S1 for values of the
chemical potential μ = −161 (a) and −150 (b), where a multidomain
structure appears, and for box of size D = 100 and L = 60. Isotropic
starting configurations were used for all these runs. Nonsymmetrized
profiles are shown here.

We expect that the bulk behavior will be observed for the
plateau values φplateau and S

plateau
1 if the box width is large

enough. However, it is not obvious whether the bulk behavior
is re-established in the center of the slit even when there is a
well defined (but narrow) plateau. It seems that for our system
the film of D = 150 is not thick enough to render the profiles
starting at the left wall and the right wall strictly noninteracting
in the center of the film, i.e., in the film D = 150 the bulk
behavior is not yet precisely reproduced in the central part of
the box, because we observe a shift of the hysteresis in the μ

dependencies of the plateau values S
plateau
1 in comparison to

the true bulk.
The capillary nematization, i.e., the shift of the isotropic-

nematic transition point �μ = μbulk
trans − μtrans(D) in the film of

finite thickness D, can be quantified using the dependencies
of the average nematic order parameter 〈S1〉 on the chemical

(a)

(b)

FIG. 10. (Color online) The average volume fraction and its
plateau value in the center of the box (a) and the average nematic
order parameter S1 and its plateau value in the center of the box
(b) plotted versus the chemical potential μ. All data for the confined
solutions are for box sizes D = 150 and L = 100. Bulk data from
previous simulations [20] are added as well. A comparison of runs
from the nematic to the isotropic state and from the isotropic to the
nematic state is presented. Symbols for different values are explained
in the legend. The vertical line indicates the nematic transition in the
bulk μbulk

trans = −166.

potential μ and taking the middle point of the hysteresis region
as an estimate of the transition point μtrans(D). One would
expect that the data for μtrans exhibit a 1/D correction.

C. On the order of the observed transitions

While it is clear from the discussed data, that the isotropic-
nematic transition in the bulk of the film is a first-order
transition for D = 100 and D = 150, it is not obvious from
Figs. 5, 6, and 8 whether the transition for D = 50 is still first
order or already continuous. Furthermore, it is not obvious
what the order of surface-ordering transition is. As discussed,
this should be a continuous transition in a continuum model,

041810-10



ORIENTATIONAL ORDERING TRANSITIONS OF . . . PHYSICAL REVIEW E 84, 041810 (2011)

(a)

(b)

(c)

FIG. 11. Time series for the orientational order parameter S1 for
the box D = 50, L = 60 at μ = −169.1 (a), −169.5 (b), −169.9 (c)
close to the isotropic-nematic transition in a rather thin film.

but we are studying a lattice model with an a priori broken
rotation invariance parallel to the walls.

To have a closer look at the order of the bulk transition
for D = 50 we are displaying in Figs. 11 and 12 time
series and probability distributions for the largest eigenvalue,
S1, of the Saupe tensor for the whole simulation box. In
Fig. 11 we are showing time series of S1 in the nematic
phase close to the transition, μ = −169.1 [Fig. 11(a)], at the
transition, μ = −169.5 [Fig. 11(b)], and in the isotropic phase,
μ = −169.9 [Fig. 11(c)]. These time series demonstrate the
quality of the sampling and multiple switches between coex-
isting states around S1 � 0.4 and 0.6 during the simulation

FIG. 12. (Color online) Non-normalized histograms of the
nematic orientational order parameter S1 for the box D = 50, L = 60
and for values of the chemical potential −170 < μ < −169.

run. The coexistence between the isotropic phase (S1 � 0.38)
and the nematic phase (S1 � 0.62) in Fig. 11(b) is better
visible when we look at the corresponding histograms for the
occurrence of specific values of S1 in these time series that are
displayed in Fig. 12. The bimodality of the distribution and the
shift of weight between the isotropic and the nematic phase as
a function of chemical potential can be clearly observed. From
the comparison with the simulation results obtained for liquid
crystal models in confinement [32,33] we would expect to see
a critical endpoint for the line of first-order phase transitions
in the bulk at a distance between the walls that is roughly
equal to the linear size of the molecules. The character of the
transition in a thin film in the off-lattice model and the bond
fluctuation model, however, differs markedly as discussed in
the Introduction. In our case, we can take the observed value
for the end-to-end distance of the chains as a measure for the
size of the molecules. For our chains it is Re ≈ 25, so D = 50
is on the order of 2Re. From this argument we would expect
the transition to be only weakly first order at best, as we seem
to observe here.

An assessment of the order of the surface transition can be
only tentative on the basis of our data. When we look at the
biaxiality parameter P displayed in Figs. 6(c) and 7(b) there
seem to occur two jumps as a function of chemical potential.
The one at the larger value of μ is due to the bulk ordering.
The one at lower value μ � −173 does not depend on D in its
location but only in its relative magnitude compared to the bulk
transition. The biaxiality parameter is sensitive to the presence
of isotropic-nematic interfaces and nematic-wall interfaces in
the system. Unfortunately, the values we can obtain in the
transition region around μ = −173 are rather noisy, so a closer
inspection of the curves in Figs. 6 and 7 gives no conclusive
evidence on the character of the transition. When we look at
the histograms of P obtained from time series similar to those
of Fig. 11 we cannot observe a clear indication of bimodality;
see Fig. 13 (we show in this figure the data for the box of
width D = 50 because the surface transition is better visible
in this case, and we have calculated the biaxiality parameter
in the left half of the box to avoid artifacts due to different
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FIG. 13. (Color online) Non-normalized histograms of S2 − S3

calculated from time series of S2 and S3 accumulated in the left half
of the box. The box size was equal to D = 50, L = 60. The runs were
performed starting from the nematic state.

orientation of the nematic director at both walls). However, the
distributions are rather broad and asymmetric, so we cannot
rule out that they are due to two strong overlapping peaks that
are only slightly separated. In conclusion, our data are at this
stage compatible with a continuous or very weakly first-order
transition at the surfaces of our system.

D. Phase diagram

The phase diagram in the variables inverse thickness of
the film, 1/D, vs. the chemical potential, μ, shows two
transitions (Fig. 14). One of them is the isotropic-nematic
first-order transition that supposedly ends up in a critical
point on decreasing the film thickness. The isotropic-nematic
transition points for the boxes of differing width D were

FIG. 14. Phase diagram in the variables inverse film width, 1/D,
vs. chemical potential, μ. N denotes the region of stability of the
nematic phase, and I denotes the region of stability of the isotropic
phase where the surfaces can be either disordered (SD, “surface
disordered”) or nematically ordered (SO, “surface ordered”).

obtained as the middle points of the hysteresis regions on the
dependencies of S1 on μ for each particular box width. The
other transition is the surface-induced orientational transition
from an essentially disordered phase (at the smallest chemical
potentials or monomer densities, respectively) to a phase where
near both walls orientational long-range order occurs, the
director being aligned either along the x direction or the y

direction of the square lattice, respectively, while the bulk of
the film remains still disordered. For thick enough films, the
ordering at both walls occurs essentially independently of each
other, and, thus, it may happen that at one wall alignment along
the x axis and at the other wall alignment along the y axis
occurs (cf. Fig. 1). Note that hard walls disfavor alignment
along the z direction, and, thus, small nonzero values of
the biaxiality order parameter P are already found in the
orientationally disordered phase right near the wall (Fig. 4).
The surface transition is characterized by a rapid rise of both S1

and P in the first few lattice places adjacent to the wall (Figs. 3
and 4). When one studies P as function of μ averaging P over
the whole film, the surface transition is marked by a maximum
of P (Figs. 6 and 7). This transition shows up in the vicinity of
both walls and its correlation length perpendicular to a wall is
about the gyration radius of a single chain. A caveat should be
added here regarding the fact that in our system the “surface
disordered” (SD) state corresponds to the uniaxial (U) ordering
at the walls in the continuum model of hard rods [32,33], while
the “surface ordered” (SO) state corresponds to the biaxial
ordering at the walls in that model.

IV. CONCLUSIONS AND OUTLOOK

In the present work, we have considered the effect of
confinement on an athermal solution of semiflexible polymers
that can undergo a transition from an isotropic phase to a
nematic phase when the monomer density increases. This
isotropic-nematic transition in the bulk has been studied in
our earlier work, by large-scale Monte Carlo simulation of
a lattice model, which allows for orientation of the nematic
director along the x, y, or z axes of the lattice, respectively. The
chosen Hamiltonian would, in principle, allow an orientation
of the director along nontrivial directions on the lattice, but,
due to entropic reasons, orientations along the lattice directions
are preferred. The confinement of such a system between two
parallel hard walls, a distance D along the z axis apart, strongly
favors the orientation of the polymers (which behave almost
like rigid rods in the ordered phase) along the x or y axes,
while an orientation of the nematic director in z direction is
strongly suppressed. Thus, hard walls act like “fields” coupling
to the nematic order parameter, favoring the orientation of the
director parallel to the wall but disfavoring the orientation
perpendicular to it.

On a qualitative level, one can expect that this model
will show an overall tendency of wall-induced nematic order,
leading in thin films to an order-disorder transition that
occurs, then, at smaller monomer densities than in the bulk:
i.e., “capillary nematization” occurs. Of course, due to the
anisotropy of the lattice our model fails to exhibit the rotation
symmetry around the z axis that a solution of semiflexible
polymers in the continuum space confined by two parallel
hard walls would exhibit.
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We find that in our model this transition from the disordered
solution toward nematic order occurs in two steps: For rather
dilute solutions, the system is disordered everywhere. When
we examine the orientations of individual bond vectors, we find
that only in the immediate vicinity of the walls bond vectors
with a z component are strongly suppressed, but apart from
this bias due to the walls, bond vector orientations are almost
uncorrelated. However, when the density of monomers (or the
chemical potential μ) increases, larger orientationally ordered
clusters appear, localized near the walls. This enhancement of
local order continues until, at μ ≈ −173, a continuous (or very
weakly first-order) transition to two-dimensional long-range
order in a thin layer adjacent to the walls occurs. The situation
is similar to complete wetting in the vicinity of the prewetting
critical point, where, on approaching the bulk transition, the
preferred (ordered) phase exhibits a rapid variation of its
thickness. Note that for large D the two surface layers are
not correlated with each other, and since the directors in both
layers can be either parallel (both oriented along the x axis or
both oriented along the y axis) or perpendicular to each other
(one director oriented along the x axis and the other along the
y axis) the correct analysis of the total order parameters S1

and P = S2 − S3 in the system is subtle. Note that (when the
total thin film develops a monodomain nematic order) only
S1 is nonzero for D → ∞, but for finite D when the system
is still disordered in the bulk but nematically ordered near the
walls, P is nonzero in the nematic-isotropic interfacial regions,
and, thus, a nonzero biaxiality order parameter exists in thin
films over a broad regime of monomer densities (or μ) as an
interfacial effect (Fig. 6). Figure 4 shows very clearly that P (z)
is largest near the wall, when the nematic-isotropic interface
is “tightly bound” to the wall, close to the transition of the
surface from a disordered to an orientationally ordered state.
When the chemical potential and monomer density increase,
the thickness of the nematically ordered surface layers grows,
the nematic-isotropic interface “unbinds” from the wall, and
P (z) now has its maximum inside the film, not near the wall.
The interfaces propagate from the walls toward the interior of
the film and start to interact for the film thickness considered
in the simulations. Eventually, the whole system can make
its transition to the uniformly ordered nematic phase, and
P (z) is very close to zero everywhere. Our results hence
confirm the interpretation of “capillary nematization” as a
consequence of a surface-induced ordering, where first a
two-dimensional transition toward an ordered surface layer
occurs, which then grows in thickness as the transition in the
bulk is approached, consistent with the general description
as an “interface unbinding” similar to the approach toward
complete wetting at vapor-to-liquid transitions. Unlike the
latter, of course, the surface does not uniquely favor one
particular value of the “order parameter,” and, thus, in our

model a (Ising-type) two-dimensional (in the sense of the
dimension of the order parameter) phase transition (breaking
the symmetry between orientational order parallel to the x

axis or the y axis) necessarily must precede the formation of a
nematic layer (that otherwise is analogous to the “wetting-like”
layer in the vapor-to-liquid transition case). Thus, it is plausible
that this “surface transition” (from the disordered to the
nematically ordered state of the surface) occurs at a chemical
potential that is independent of film thickness, D, while the
transition where nematic order spreads out in the whole film
(“capillary nematization”) strongly depends on D (and ends
at a minimal value of D, where the two ordered layers formed
at the surface transition interact immediately, leaving no space
for a well-developed disordered phase in the center of the film
and, hence, causing an immediate but gradual nematic ordering
of such an ultrathin film).

It would be very interesting to look for the phenomena as
described above in experiments on real systems. Gratifyingly,
a nematic surface transition has very recently been observed,
in a thermally driven system at a temperature where the
bulk still is isotropic [81]. This work reports the surface
transition to be clearly of first order, unlike our second-order
or only weakly first-order transition, but the difference may
be due to thermotropic effects that are completely absent in
our simulation. Of course, in real systems the director can,
furthermore, align in any direction parallel to the surface plane;
it is not restricted to the two lattice directions as in our model.
Thus, the issue of a possible Kosterlitz-Thouless transition
is not relevant for our model, while it may be relevant for
real systems. Moreover, the polymeric aspect, which is very
important in our model, is outside the scope of consideration
here. The subject of interplay between chain conformations
and nematic order will be treated in another paper. It would
be also interesting to vary the chain stiffness and to study
its influence on the properties of these systems, e.g., smaller
stiffness may give rise to an interesting interplay between
width of the ordered surface layer and the chain extension, and
we plan to consider this point in our next publications. We do
hope, however, that our model system studies will nevertheless
stimulate more experimental work on this fascinating topic of
surface-induced liquid-crystalline order.
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