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Coil-bridge transition and Monte Carlo simulation of a stretched polymer
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The structure of the system consisting of a grafted self-avoiding polymer chain attracted to the surface layer
of a flat wall at a distance away by a short-ranged force is investigated. A first-order transition is determined
between the coil state at a low attraction energy and the bridge state at a high attraction energy. The transition
properties of the system are obtained by a Monte Carlo simulation, which uses the inverse density of states as
the transition weight and is reweighted back to a canonical ensemble. The determination of the density of states
follows a revised Wang-Landau procedure in which the center-of-mass distance from the grafted site is used as
the variable. Scaling arguments are also given for the observed numerical results.
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I. INTRODUCTION

Consider a polymer that has one terminal end grafted
to a fixed site in space and is otherwise unconstrained.
At a distance H away is an attractive potential well with
magnitude u, adjacent to a hard wall (see Fig. 1). An interesting
case is the system where H is greater than the radius of
gyration of the grafted polymer—the polymer needs to be
in an extended conformation to reach the attractive surface,
which is not desirable by the conformation entropy of a free
polymer. At a large u, the polymer forms an extended state
[Fig. 1(b)] where the stem portion of the polymer is greatly
stretched from a coil state and the other portion is located
near the attractive wall surface. Leermakers and Gorbunov
called this transition the coil-bridge transition and worked out
a scaling theory based on the Gaussian statistics of the polymer
conformation [1]. In the present paper, the properties of the
coil-to-bridge transition of a polymer chain that incorporates
more realistic physical features, such as the excluded-volume
effect between monomers and finite chain extensibility, are
considered.

Experimentally, the dependence of the phase diagram
[Fig. 1(c)] on H can be probed by moving either the flat surface
or the grafting point. With a relatively strong reduced binding
energy βu, where β = 1/kBT with kB being the Boltzmann
constant and T the temperature, one can access the bridge state
by varying H , crossing the coil-bridge transition boundary.
This can be done similar to, for example, atomic force
microscopy experiments that manipulate a single polymer
chain [2–7]. Most of these experiments focused on the elastic
properties of a polymer after the chain has already been
adsorbed or attached to the surface of two separating or
approaching surfaces. There is a need for direct experimental
investigation of the coil-bridge transition near the vicinity of
the transition. One of the interesting results from the scaling
prediction is that at the transition, the fraction of monomers
attracted to the surface is directly related to the universal
scaling exponent for the radius of gyration, for a system where
H is much less than the polymer contour length.

This paper serves two purposes: illustrating the first-order
coil-bridge transition and introducing a Monte Carlo procedure
suitable for studying a highly stretched polymer system. Using
Monte Carlo simulation results (Sec. III A) and scaling theories

(Appendixes), we describe the basic conformational properties
of the system and determine the phase diagram. The fraction of
monomers adsorbed to the surface area jumps discontinuously
at the coil-bridge transition. Accompanying the first-order
transition, a free energy barrier, caused by stretching the
polymer over the region, needs to be overcome, as discussed
in Sec. III. If the jump is large, one would expect a hysteresis
effect in a real system: crossing the phase boundary by varying
H from the high end and from the low end produces apparently
different transition points. These properties can be contrasted
to the findings from a recent Monte Carlo simulation on a very
similar system by Bhattacharya and coworkers, where a phase
diagram similar to Fig. 1(c) was drawn and the transition was
considered “pseudo” continuous [8].

The encountered difficulty of using a normal Monte Carlo
procedure in systems with conformational free-energy traps
separated by a high barrier is well known; one needs to
resort to other Monte Carlo tricks to faithfully map out the
distribution functions of an appropriate order parameter [9,10].
Take the current system for example. There is a high entropic
cost to stretch the free end of the polymer to the vicinity
of the attracting wall surface—this particular conformation
is an intermediate state, which must be experienced by the
polymer in the simulation before the adsorption takes place.
Associated with the intermediate state is a free-energy barrier,
of the magnitude βEb ∼ (H/Rg)5/2 (see Sec. III C) estimated
from a scaling argument [11], where Rg is the radius of
gyration of a free polymer. Because we are mostly interested
in the parameter regime H/Rg � 1, in a normal Monte
Carlo simulation, the occurrence of such a conformation is
exponentially rare.

Recent years have witnessed a rapid growth in Monte Carlo
simulations that use non-Boltzmann transitional probabilities,
which enable better sampling of the low-energy area of a rough
energy landscape. One particularly useful technique is the
Wang-Landau method that yields the density of state for a
given energy in a high precision; the inverse of the resulting
density of state can then be used as a transitional probability
in a Monte Carlo simulation, which allows a random walk of
the simulated system in the energy space and overcomes the
free-energy barrier problem. The success of the Wang-Landau
method is well documented in the literature [12,13].
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FIG. 1. (Color online) Snapshots of the simulated system in a
(a) coil (desorbed) or (b) bridge (adsorbed) state, and the expected
phase diagram (c). Circles (red) in (a) and (b) represent a self-avoiding
polymer and the black circle a fixed terminal monomer at the origin.
The dark shaded area (deep blue) represents a hard wall, and a light
shaded region (light blue) indicates an attractive potential well of
force range a, inside of which a monomer loses an energy u. The
example shown in (a) and (b) has a ceiling-height/polymer-length
ratio H/Na = 0.6 and number of polymer bonds N = 64.

A naive application of the Wang-Landau method to the
current simulation system would be using the total adsorption
energy as the weight variable. This, however, does not solve
our problem, as the difficulty we have is mostly caused by
the conformation entropy. In this paper, we propose to use
the z coordinate of the center of mass of the polymer, Z,
as the weighting variable (see Sec. II A). The two concerned
states, a coil state and a perfect bridge, separately correspond to
Z = 0 and Z = Zm, where the latter corresponds to a perfect,
T-shaped bridge conformation. The location of the free-energy
barrier is approximately at Z = H/2, also well characterized
by Z. Once the density of state of Z is determined, the
simulated system conducts a random walk in the Z space,
yielding adequate statistics covering the entire Z region. On
the basis of the collected statistics, we can either deduce the
thermal average that entails the inclusion of a canonical weight
in the simulation measurement (see Secs. II B and III A), or use
the resulting Z-dependent free energy that directly displays
the double-well structure expected in a first-order transition
(see Secs. III B and III C).

II. MODEL AND SIMULATION

A. Determination of the density of state

A self-avoiding polymer was modeled as a three-
dimensional chain of N bonds each having length a, with
the first monomer fixed to the origin. Every monomer has a
hard-sphere diameter d = 0.9a. At a Monte Carlo (MC) trial,
a randomly selected monomer was rotated about the vector
connecting the two adjacent monomers along the chain, subject
to the excluded-volume conditions between the monomers as
well as between the selected monomer and the flat hard wall at
z = H . The acceptance of such an attempt was evaluated based
on the Metropolis algorithm [14] for the statistical weight
W (Z) = 1/g(Z) where Z is the z coordinate of the center of
mass of the entire polymer chain and g(Z) is its density of
states. Note that at this stage, the effect of the potential well
near the wall does not enter into a simulation attempt; but it
will be considered in the measurement formalism as described
in the next section.

Consider a system with specified N and H . The deter-
mination of g(Z) exactly followed the prescription given by
Wang and Landau, except for the usage of Z as the reference
parameter, not energy as in their original work [12]. The range
of variation for the center-of-mass coordinate Z was assumed
to be within [0,Zm] where Zm corresponds to a perfect bridge
state; in such a state, the stem segment of the polymer is
straight, lying along the positive z axis, and all other monomers
are located at z = H − a/2 inside the potential well [light
shaded (light blue) area in Fig. 1]. The Z range was evenly
divided into m = 1000 bins, where the function g(Z) for
the ith bin is represented by a variable gi(i = 1,2,3, . . . ,m).
An initial guess, ln gi = 1 for all i, was made to start the
g(Z)-determination process, together with a step size h = 1 to
be used below.

The next step was to run a MC simulation segment such that
the array ln gi was updated at every Monte Carlo attempt, by
ln gi ← h + ln gi , once the polymer’s center-of-mass settled
in the ith bin. A new approximation for the Monte Carlo weight
W (Z) = 1/g(Z) was then obtained for that bin. The histogram
for the number of times that a bin was visited, Ki , was collected
from this MC segment. A simulation segment was terminated
when the maximal relative difference |Ki − K̄|/K̄ , where K̄

is the average of all Ki , is less than 20%. The step size h was
then multiplied by 1/2 and a new MC simulation segment was
conducted by using the new h.

Thus, every new MC segment had a new h which was half
of what was used in the previous segment. The iteration of MC
segments was considered convergent after h became smaller
than 10−8. An approximation for ln g(Z) was then obtained.
Examples of ln g(Z) are plotted as functions of Z in the upper
panels of Fig. 2, for a few selected values of N and H . In each
case, ten independent estimates for ln g(Z) were obtained;
based on these, the relative error �g(Z)/g(Z) for g(Z), or the
absolute error �[ln g(Z)] for ln g(Z), was estimated, shown in
the lower panels of Fig. 2.

B. Production run

The measurements in a canonical ensemble [N,H,βu] were
obtained from the production run by including the Boltzmann
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FIG. 2. (Color online) Density of states g(Z) as a function of the polymer’s center-of-mass height Z in a logarithmic plot (upper panels)
and its relative error �g/g = �[ln g(Z)] (lower panels), for (a) N = 16, (b) N = 32, (c) N = 64, (d) N = 128, and (e) N = 256, produced
from the Wang-Landau Monte Carlo determination. In each g(Z) plot, from left to right, example curves correspond to H/a = 0.3 (red), 0.5
(green), and 0.7 (blue). In all plots, g(Z) has been normalized by a constant such that g(0) = 1.

factor in the measurement. In this paper, a symbol with an
overbar, A(βu), denotes the average of a physical quantity A

in a canonical ensemble,

A(βu) =
∫

d(·)A(·) exp[−βuV (·)]∫
d(·) exp[−βuV (·)] , (1)

where the abbreviation (·) is used for all variables that describe
the positions of all movable monomers of the grafted polymer.
The reduced total potential energy was calculated from

V (·) =
N+1∑
i=1

v(zi), (2)

where v(zi) is the reduced potential energy experienced by the
ith monomer having the Cartesian coordinates (xi,yi,zi),

v(zi) =
⎧⎨
⎩

−1 if H − a < zi � H,

∞ if H < zi,

0 otherwise.
(3)

The potential-well depth u has been factored out explicitly in
these expressions to demonstrate the scaling of variables.

For any given polymer configuration described by the
coordinates (·) we can define the z coordinate of the center
of mass

ζ (·) = 1

N + 1

N+1∑
i=0

zi . (4)

In fact, during a MC production run, the measured histogram
of visited Z is related to

H (Z) =
∫

d(·)W [ζ (·)]δ[Z − ζ (·)], (5)

where δ is Dirac’s delta function. Because the density of states
for Z is defined by

g(Z) =
∫

d(·)δ[Z − ζ (·)], (6)

in a production run where W (ζ ) = 1/g(ζ ) is used as a
statistical weight, H (Z) reaches a Z-independent constant
after adequate statistics. The advantage of using 1/g(ζ ) as the
transition probability in a MC simulation is that the simulated
polymer goes through coil (low Z) and stretching (high Z)
states multiple times within a production run.

We can then rewrite Eq. (1) as

A(βu) =
∫ zm

0 dZg(Z)〈A(Z,βu)〉∫ zm

0 dZg(Z)〈Q(Z,βu)〉 , (7)

where

〈A(Z,βu)〉 ≡
∫

d(·)W [ζ (·)]A(·) exp[−βuV (·)]δ[Z − ζ (·)]∫
d(·)W [ζ (·)]δ[Z − ζ (·)] ,

(8)

and

〈Q(Z,βu)〉 ≡
∫

d(·)W [ζ (·)] exp[−βuV (·)]δ[Z − ζ (·)]∫
d(·)W [ζ (·)]δ[Z − ζ (·)] .

(9)

In a production run, the left-hand side of Eq. (8) was
collected in a two-dimensional array, one of the index dealing
with the bin number for Z and the other for a set of
prespecified values βu. For a given set, Z and βu, the value
〈A(Z,βu)〉 was derived from a simple algebraic average of
all measured A(·) exp[−βuV (·)]. The average 〈Q(Z,βu)〉 was
obtained similarly, but now only the factor exp[−βuV (·)] was
measured.
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FIG. 3. (Color online) Simulation results for the fraction of monomers near the wall l̄/(N + 1) [plots (a)–(e)], fraction of monomers inside
the potential well n̄/(N + 1) [(f)–(j)], and the free-energy difference per bond by using the coil state as the reference β�F/N [(k)–(o)],
as functions of the reduced adsorption energy βu. Each curve in these plots corresponds to a specific ratio between the grafting-point to
wall-surface distance H and the total polymer contour length Na: right triangles and the underlying curves (orange) represent H/Na = 0.7,
down triangles and the underlying curves (brown) H/Na = 0.6, left triangles and the underlying curves (purple) H/Na = 0.5, up triangles
and the underlying curves (blue) H/Na = 0.4, diamonds and the underlying curves (green) H/Na = 0.3, squares and the underlying curves
(red) H/Na = 0.2, and circles and the underlying curves (black) H/Na = 0.1. Curves were produced from production runs based on the
thermal-average formalism defined in Eq. (7); symbols were produced from the Z-dependent energy analysis introduced in Sec. III B. Filled
symbols indicate the location of the projected coil-bridge transition.

It is possible to directly probe the free energy of the
system from this Monte Carlo method. Within a constant (β-
independent) prefactor the partition function can be calculated,

Q(βu) =
∫ Zm

0
dZg(Z)〈Q(Z,βu)〉. (10)

The free-energy difference of the system, in reference to the
free energy in a desorbed state (βu = 0), is defined by

β�F (βu) = − ln[Q(βu)/Q(0)]. (11)

Hence, for a given system (that is, a given set of N

and H/Na), the entire βu dependence of a measurable in
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the [N,H,βu] ensemble can be obtained within one single
production. In this work, a Monte Carlo step (MCS) is defined
as N MC trials; a production run consisted of 109 MCS and
was split among multiple processors for parallel computation.
The production run was approximately 102 longer than needed;
107 was actually adequate for producing a reasonably accurate
A, which is presented in the next section, represented by thick
curves in the plots. A well characterization of the Z-dependent
free energy (see Sec. III B), which is a better tool for analyzing
the first-order nature of the coil-bridge transition, requires
more statistics to fill the multiple bins dividing the Z variable
(which is the reason for 102 times more statistics); a data point
produced from this analysis is represented by a symbol in the
plots.

III. SIMULATION RESULTS

A. Thermal average

Within the present model, any thermal average of a
physical quantity depends on three parameters: the number
of monomers in a chain N + 1, the distance between the
grafted end and the attractive surface reduced by the total
polymer length H/Na, and the magnitude of the potential well
reduced by a β factor βu. The calculated physical properties
are shown by smooth curves behind symbols in Fig. 3, where
each value of H/Na is represented by a different color. The
figure displays three physical measurements as functions of
βu: the average fraction of monomers near the adsorption
surface l̄/(N + 1), the average fraction of monomers that are
inside the potential well n̄/(N + 1), and the total free energy
calculated based on Eq. (11). For a given configuration, the
number of stem monomers m was measured by counting the
monomers from the grafted end to the first adsorbed monomer;
then, l was deduced from l = N + 1 − m.

A typical curve in Fig. 3 starts from 0, corresponding to
the coil state in the low-βu region where no monomer-surface
contact is made, smoothly increases in a transitional region,
and approaches a plateau [in plots (a)–(j)] or a straight
line [in plots (k)–(o)], corresponding to the bridge state in
the high-βu region. Because of the finite-size effects, we
cannot distinctively observe the abrupt jump predicted in
the Appendixes for a first-order phase transition, from the
smoothly varying curves in plots (a)–(j). One useful feature is
that the transition region narrows as we examine the sequence
of plots from low N to high N . In the current free-energy plots,
(k)–(o), the portion of curves in the transition region is blocked
by symbols; an enlarged version of these plots shows smoothly
varying curves, which is different from the expectation that at
the first-order transition, two branches of free energy cross
each other by straight lines.

In a recent Monte Carlo simulation where the Boltzmann
weight was directly used, curves similar to plots in Figs. 3(f)–
3(i) were obtained. The smoothness of these curves has
made Bhattacharya and coworkers to claim that the transition
is “pseudo” continuous [8], rather than discontinuous. As
demonstrated in the next section, the first-order nature can
be readily extracted from the current Monte Carlo simulation
that uses an inverse density of state as a simulation weight.
The results are demonstrated in the plots by symbols.

B. Z-dependent free energy

The Z-dependent partition function 〈Q(Z,βu)〉 defined
in Eq. (9) carries the physical meaning of (un-normalized)
probability of finding the z coordinate of the polymer’s center
of mass in the immediate region about Z. The corresponding
free-energy difference can be defined as

β�F (Z,βu) = − ln[〈Q(Z,βu)〉/〈Q(0,βu)〉], (12)

which is a function of both Z and βu. In a coil state, we expect
that on average the center of mass of the polymer coincides
with the grafting site, hence βF (Z,βu) has a minimum at
Z = 0. On the other hand in a bridge state, the polymer is
stretched, hence we expect to see a free-energy minimum at a
relatively large Z. From the examination of the Z-dependent
free energy βF (Z,βu) emerges an in-depth tool for analyzing
the first-order nature of the coil-bridge transition.

Figure 4 shows examples of numerical results of
β�F (Z,βu) for N = 64. At a lower βu, when the system
is in a coil state, there is a global minimum at Z∗ = 0 (upper
curves); at a higher βu when the system is in a bridge state,
there is a global minimum at a large Z∗/H (lower curves). The
location of the minimum is normally greater than 1/2 in Z/H ;
in a strongly stretched polymer, as the segment near the free
end of the polymer reaches the adsorbing surface, the center
of mass is slightly above the halfway of the entire stretch.

Our identification of the location of minimum Z∗ for a
given βu allows us to define the measurement of a physical
property, represented in Eq. (8), at the minimum,

A∗(βu) ≡ 〈A(Z∗,βu)〉. (13)

The numerical determination of l∗(βu) and n∗(βu), together
with the free-energy minimum,

�F ∗(βu) ≡ F (Z∗,βu), (14)
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FIG. 4. (Color online) Reduced free energy β�F (Z,βu) as a
function of the polymer’s center-of-mass height Z for N = 64
in three cases: (a) [H/Na = 0.3,βub = 0.77], (b) [H/Na = 0.5,

βub = 0.2], and (c) [H/Na = 0.7,βub = 5.6]. In each plot, three
curves are generated, corresponding to βu = 0.75βub, βub, and
1.25βub, from top (green), middle (black), to bottom (blue), respec-
tively. Here, βub is the reduced transition energy of the first-order
coil-bridge transition. An energy barrier height E∗

b is indicated in
plot (b).
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are represented in Fig. 3 by various open symbols overlaying
the curves. In parameter regions where the Z-dependent free
energy has a sharp minimum, l∗, n∗, and F ∗ all agree well with
the thermal average l̄, n̄, and F represented by the underlying
curves in the figure. This usually happens in a “deep” coil or
“deep” bridge state, far away from the coil-bridge transition
region. Near the transition point where fluctuations about the
free-energy minimum are significant, the difference between
l∗ and l̄ (the deviation of symbols from curves) is visible in
the plots.

C. Transition point

The number of monomers near the adsorbing surface, l∗,
has a value l∗ = 0 in the coil state and makes a jump to a finite
value l∗b in the bridge state at a reduced transition adsorption
energy, βub. This is shown in Figs. 3(a)–3(e) by filled symbols
at the transition. Any physical property in a bridge state at the
coil-bridge transition is denoted by a subscript b in this paper.

The data for l∗b , together with the error bars estimated
from ten separate runs, is plotted in Fig. 5(a) as a function
of H/Na. The second row of Table I summarizes results from
simple scaling theories, presented in the Appendixes for an
N → ∞ system. We see that l∗b/N is a universal constant
in the H/aNν 
 1 region. A Gaussian-chain model predicts
a universal value 1/2, but a self-avoiding-chain model, which
the current simulation should follow, predicts a universal value
indicated by the long-dashed line in the plot. These scaling
predictions are valid in the parameter region H � Na, where
the effects of the finite extension of a polymer chain (Na) are
not considered. Symbols in Fig. 5(a) represent the simulation
results and are classified according to the extent of stretching:
filled symbols are for extended systems (H/Na = 0.6, 0.7),
shaded symbols for relatively less extended systems (H/Na =
0.4, 0.5), and open symbols are closer to the H � Na limit
(H/Na � 0.3).

The circles (N = 256) approach the long-dashed line in
the small H/Na regime, but the agreement is not completely
satisfactory. Note that even the largest-N system simulated in
this work has only approximately l∗b ∼ 30%N ∼ 75 monomers
in the vicinity of the adsorbing surface. For such a low l∗, the
validity of the scaling form for the adsorption free energy
assumed in Appendix A, i.e., the second term in Eq. (A1),
is undoubtedly questionable [15,16]. The universal scaling-
theory predication in Eq. (A5), lb/N = 0.411, is valid when
the following conditions are simultaneously met:

Nν � H/a � N. (15)

While the scaling-theory prediction is produced from well-
grounded and well-tested pieces of free-energy contributions,
it remains to be tested directly by computer simulations of a
much larger-N system that meet these requirements, for the
coil-bridge transition.

Another important feature of the data in Fig. 5(a) is that
l∗b/(N + 1) starts to decrease as H/Na becomes relatively
large (e.g., see filled symbols in the plot). In this case, the free
energy of the stretched segment does not follow the Pincus
scaling and the data points move away from the expected
universal line. In Appendix B, using a qualitative expression
for the free energy, we predict how lb/N varies as a function of
H/Na near the full-stretching limit. We can see a reasonable
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FIG. 5. (Color online) Numerical results for (a) the fraction of
monomers near the adsorbing surface at the coil-bridge transition
point l∗b , (b) the energy barrier between the coil and bridge states
at the transition E∗

b , and (c) the phase boundary described by
the reduced energy βu∗

b, as functions of H/a and N . Circles,
squares, diamonds, up triangles, and down triangles represent N =
256,128,64,32, and 16, respectively. Every data point carries an
error bar that was estimated from the analysis of the Z-dependent
free-energy curves from ten independent production runs. The dotted
and long-dashed lines in (a) indicate universal values predicted from
a Gaussian and self-avoiding-chain model (Table I). The dot-dashed
curve indicates the qualitative behavior in the asymptotic region,
H/Na � 1 (Table I). The straight line in (b) represents a slope of
q = 1/(1 − ν), expected from a scaling theory. Data points are further
classified: filled symbols for H/Na = 0.7,0.6; shaded symbols for
H/Na = 0.5,0.4; and open symbols for H/Na � 0.3.

agreement between the filled data and the dot-dashed curve
representing the function in Eq. (B4).
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TABLE I. Fraction of monomers near the adsorption wall, lb/N , and the reduced adsorption temperature τb at the coil-bridge transition
point. The results are produced from the scaling theories in Appendixes.

Gaussian Self-avoiding

Weak stretching Pincus regime Almost fully stretched
[ν = φ = 1/2,q = 2] [ν = 0.589,q = 2] [ν = 0.589,q = 1/(1 − ν)]

lb(H/a,N )/N = 1/2 = 0.459 = 0.411 = (1 − H/Na)/(1 + H/Na)
τb(H/a,N ) ∝ H/Na ∝ [(H/Nνa)2/N ]φ ∝ (H/Na)qφ = (4H/Na)φ/(1 − H/Na)2φ

At the coil-bridge transition, a polymer needs to overcome
the entropic penalty of stretching, in order to make an extended
configuration reaching the adsorption surface. This penalty is
reflected by a free-energy barrier E∗

b , an example of which is
indicated in Fig. 4(b). On the basis of the Pincus scaling for a
stretched polymer [11], we expect

βE∗
b ∼ (H/Nνa)q, (16)

where q = 1/(1 − ν) and ν = 0.589 is the scaling exponent for
the radius of gyration of a free self-avoiding polymer. Symbols
in Fig. 5(b) summarize E∗

b observed for various N and H/Na.
The above scaling expectation is plotted in the background
as a straight line in a double-logarithmic plot, with the slope
reflecting the exponent q. Although a direct agreement is not
visible, we can observe an asymptotic behavior. From open
triangles and diamonds, to open squares and circles (increasing
N ), the slope q is asymptotically approached.

Finally, we return to the phase diagram illustrated in
Fig. 1(c). The simulation result for the reduced transition
energy βu∗

b, determined from the locations of discontinuous
jumps presented in Figs. 3(a)–3(j), is plotted as a function of
H/Na in Fig. 5(c). Focusing on circles in the plot (N = 256),
we can see that qualitatively the data agrees with the general
trend of the long-dashed curve in the expected phase diagram
[Fig. 1(c)]. According to the analysis in Appendix A, the
phase boundary in the small H/Na region of Fig. 1(c) can
be represented by a power-law exponent qφ; the curve in
Fig. 1(c) was produced by using φ = 0.5 [15]. A higher value
of φ [16] would produce an even stronger scaling exponent
qφ. As a function of H/Na, the open circles in Fig. 5(c),
however, do not vary as strongly as the expected power law.
Another feature in Fig. 5(c) is the presence of N dependence
of the phase boundary, whereas according to the analysis in the
Appendixes, such dependence should be very weak, if there is
any. We attribute these differences to the relatively short chains
(up to N = 256) simulated in this work—these systems have
not reached the asymptotic regimes described by the scaling
theory.

IV. SUMMARY

In summary, Monte Carlo simulations that follow a
transition probability proportional to the inverse density of
states have been employed to study the coil-bridge transition
of a grafted self-avoiding polymer. The density of states
was determined by an implementation of the Wang-Landau
algorithm, in terms of the distance between the center of mass

from the grafting point. The usage of such a weight in the
Monte Carlo simulations is shown to be an effective tool that
determines the large first-order transition gap between the coil
and bridge states at the transition point. The numerical results
have been analyzed in light of the scaling arguments presented
as Appendixes.
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APPENDIX A: SCALING THEORY: WEAKLY
OR STRONGLY STRETCHED POLYMER

The components of a scaling theory for the current problem
can be readily quoted from the literature. A typical bridge
conformation contains two segments of the polymer chain,
both assumed long: the stem portion of the polymer that has
m monomers and is stretched, and a polymer segment of
l = N − m monomers (N,l,m 
 1) that is confined near the
attractive wall and forms excursion loops. The free energy of
the polymer chain, F (m), can then be written in terms of basic
parameters in the system,

βF (m) = C0

(
H/a

mν

)q

− (N − m)|τ |1/φ, (A1)

where ν is the gyration exponent [17], C0 a proportionality
constant, and τ = β(u − uc) the reduced energy difference.

The first term describes the entropic penalty of stretching
a polymer of length ma over a distance H . For a Gaussian
chain, the gyration exponent ν = 1/2 and q = 2 [17]; for a
self-avoiding chain, the universal gyration exponent has the
value [17,18]

ν = 0.589, (A2)

and in the weakly stretched polymer regime, q = 2 [19].
However, q is not always 2. For a strongly stretched polymer,
Pincus has shown that q = p/ν, where p is a scaling exponent
[11],

p = ν/(1 − ν). (A3)

A basic assumption in writing down the scaling form for the
first term in Eq. (A1), even in the strongly stretched polymer
regime, is that H � ma < Na [11]. The case of H � Na

corresponds to an almost fully stretched polymer and will be
examined in Appendix B.

The second term is written for a large free polymer segment
adsorbed to the surface of a flat wall near the reduced
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adsorption energy βuc. The universal crossover exponent φ

has the value 1/2 based on a simple mean-field type argument
that assumes a uniform monomer density distribution near the
surface [17,20]. More accurate theories indicate a different
value [20,21]. However, according to a recent Monte Carlo
simulation conducted by Metzger et al., φ = 0.50 ± 0.02 [15];
on the other hand according to a recent analysis performed by
Descas et al., φ = 0.59 [16]. The effects of φ on the scaling
prediction for the coil-bridge transition will be described
below.

From the minimization condition dF/dm = 0, a relation-
ship between τ and the optimal m can be established,

|τ |1/φ = C0qν
(H/a)q

mqν+1
. (A4)

Substituting the relation to the free-energy expression in
Eq. (A1) and requiring that the free energy vanishes at the
coil-bridge transition yield a simple estimate for the transition
point. Denoting l as the number of monomers in the adsorption
segment, l ≡ N − m, we have

lb

N
= 1

1 + qν
(A5)

at the transition point. Hence, as long as the scaling terms
in Eq. (A1) are valid, at the coil-bridge transition, the ratio
lb/N turns out to be a universal constant independent of φ

and H/Na; this is a strong statement. Eliminating lb/N from
Eq. (A4) yields the relationship between τ , H , and N at the
transition,

τb
1/φ ∝ (H/a)q

N1+qν
, (A6)

a power law depending on φ, N , and H/a.
In a Gaussian-chain model, which has q = 2 and ν = 1/2,

according to Eq. (A5) the ratio lb/N = 1/2; as well, if we
adopt φ = 1/2, then the phase boundary becomes τb ∝ H/Na.
Both expressions return to the prediction made earlier by
Leermakers and Gorbunov [1], and are summarized in the
second column of Table I.

In a model where the excluded-volume effects are consid-
ered, ν = 0.589. In the regime of a weakly stretched polymer,
q = 2, we have lb/N = 0.459 and τb ∝ [(H/a)2/N1+2ν]φ . In
the regime of a strongly stretched polymer (Pincus regime),
q = 1/(1 − ν), we have

lb/N = 0.411, (A7)

which is plotted as a long-dashed line in Fig. 5(a). As well, we
can express the phase boundary by a power law,

τb ≡ βub − βuc ∝ (H/Na)qφ. (A8)

The segment labeled “Pincus regime” in the phase diagram,
Fig. 1(c), illustrates βub following this power law, where it

is further assumed that βuc = 0.45 (which is approximately
the critical u estimated from a surface adsorption simulation,
not presented here). The third and fourth columns in Table I
summarize these expressions.

APPENDIX B: SCALING THEORY: ALMOST FULLY
STRETCHED POLYMER

In the scaling analysis presented in Appendix A, the validity
of the first term in Eq. (A1) depends on the assumption that the
stretching distance H is much smaller than the total contour
length ma [11],

H � ma. (B1)

Unfortunately some data points presented in this work cor-
respond to a ratio H/Na that falls outside this inequality.
The question then becomes: in the parameter regime where
the polymer stem is almost fully stretched, what qualitative
behavior do we expect to see at the coil-bridge transition?

To answer this question, we must realize that in an almost
fully extended configuration, the excluded-volume interaction
between the monomers has little effect and can be neglected.
The first term in Eq. (A1) can then be replaced by the entropic
penalty for a strongly stretched wormlike chain [22],

βF (m) = m

1 − H/ma
− (N − m)|τ |1/φ. (B2)

Minimizing F (m) with respect to m yields a new relationship
between τ and m,

|τ |1/φ = 2H/ma − 1

(1 − H/ma)2
. (B3)

This relationship, together with the requirement that at the
coil-bridge transition the free energy must vanish, yields

lb

N
= 1 − H/Na

1 + H/Na
, (B4)

a result that now depends on H/Na. The prediction for the
phase boundary becomes

|τb|1/φ = 4H/N

(1 − H/Na)2
(B5)

after Eq. (B4) is substituted back to Eq. (B3). Both expressions
are summarized in the last column of Table I.

This prediction for lb/N , as H/Na asymptotically ap-
proaches 1, is plotted as a dot-dashed curve in Fig. 5(a). The
qualitative estimate for the phase boundary, Eq. (B5), is also
plotted in Fig. 1(c). Together with the prediction that lb/N

is a constant discussed in Appendix A, which is valid for
weak H/Na, the overall H/Na dependence of lb/N starts to
emerge. Indeed, the results from the Monte Carlo simulations
in this work qualitatively agree with the predicted tendencies.
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