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Dependence of the disorder-lamellar stability boundary of a melt of asymmetric wormlike AB
diblock copolymers on the chain rigidity
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We study the disorder-order transition boundary of wormlile AB diblock copolymers on the basis of the
wormlike chain formalism aided by a self-consistent mean-field treatment. We examine the influence of the
persistency on the phase diagram and properties of the phase transition as a function of the volume fraction,
Flory-Huggins parameter, and relative chain rigidity, covering a broad regime spanning from the Gaussian chain
to rigid rodlike chain. On the one hand, we demonstrate that the results from a Gaussian-weight-based theory
can be recovered in the long-chain limit and, on the other hand, we display that significant revisions to the phase
diagram, due to the persistency effects, exist for shorter chains. A split-step numerical algorithm is designed for
the computational task.
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I. INTRODUCTION

It is now well established experimentally that a melt
of AB diblock copolymers can phase separate into A-rich
and B-rich microdomains on a nanoscale level [1,2]. As
one of the most successful examples in polymer theory, the
self-consistent-field theory (SCFT), which originated from the
work of Edwards [3] and was developed further by Helfand
and co-workers [4–7], has predicted a phase diagram in terms
of essential parameters of the system, which divides into stable
regions for idealized AB diblock copolymer micro-structures
[8,9]; the SCFT approach has become an indispensable tool,
coupled with various experimental approaches, to explore
problems in this research area.

The basic ingredients of a SCFT for an AB diblock
copolymer melt with an A/B volume fraction f are a statistical
weight for the polymer configuration and the interaction
between the A polymer and B polymer. In most theoretical
developments so far, an Edwards weight has been employed as
the statistical weight [3,10] and the Flory-Huggins interaction
energy between A- and B-polymer components has been
adopted by assuming an phenomenological Flory-Huggins
parameter χ [11]. The Edwards weight, also known as a
Gaussian-chain (GSC) model because it includes a quadratic
Gaussian-type energy, is suitable for the description of a
flexible polymer chain that has a total polymer contour length L

and Kuhn length a [10]. According to SCFT, these ingredients
yield a theory and thus the resulting phase diagram that
depends on two simple parameters f and χL/a, where
L/a � 1 is normally assumed in the theory, for a copolymer
melt consisting of flexible AB diblock copolymers [8].

A much-less-explored theoretical system is the phase be-
havior of a wormlike AB diblock copolymer melt. A wormlike
polymer model can be used to describe a semiflexible polymer
where approximately within a segment of a persistence length
λ the polymer appears rigid. In a free space, a discrete version
of a wormlike chain (WLC) model was studied by Kratky and
Porod [12] and a continuous version was studied by Saito,
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Takahashi, and Yunoki [13]. The model is appropriate for any
ratio of L/λ: On the one hand, in free space it recovers GSC
results in the limit of L/λ � 1 where 2λ ∼ a can be identified
and, on the other hand, it crosses over to an interesting rigid
molecule limit where L/λ � 1. A SCFT for an AB diblock
copolymer melt can be formulated based on a WLC model
[8,14], which can be shown to contain three parameters f ,
χL/a, and L/a, where a is now identified with the double
persistence length a ≡ 2λ. The additional L/a dependence
gives rise to a theory that can be used to examine the effects of
persistency, which is reflected by the finite L/a ratio, on the
phase behavior of an AB diblock copolymer melt. This paper
focuses on solving such a model to determine the stability
boundary and phase behavior between a disorder phase,
where A and B components are well mixed, and a lamellar
phase, where the structure breaks up into A-rich and B-rich
domains in a layered form Eq. (1). While we consider the
full f dependence, at f = 1/2 our results agree well with the
simplest case of symmetric AB diblock copolymers recently
studied by Matsen [15]. The order-disorder phase separation
of a wormlike AB diblock copolymer was also theoretically
considered by Singh et al. [16] and Friedel et al. [17], who
have developed somewhat different theoretical tools for these
systems.

The effective Kuhn length a (or twice the persistence
length λ) is a single microscopic length scale within the STY
model, which is identified through the mean-square end-to-end
distance in the L/a � 1 limit, 〈R2〉 = La [13]. Both a and the
persistence length λ are different from the bare Kuhn length
b, a length scale that is usually attributed to a monomer-to-
monomer distance in a polymer consisting of flexible bond
segments. In the more original Saito-Takahashi-Yunoki (STY)
version where b was used together with a (large) bending
energy penalty ε for two adjacent polymer bonds, λ = βεb

[13]. The use of the length scale λ in the STY model does not
restrict us from exploring the physics of short persistent chains;
the polymer can be a few bonds long measured by a short
total polymer length L, where L/λ � 1. Both versions of the
formalism, namely, maintaining a product of two parameters
to explicitly indicate the presence of b, βεb, and using a single
effective a (or λ) without splitting βε from b, can be found in
recent theoretical treatments.
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A WLC-based SCFT differs from a GSC-based SCFT by
the additional orientational dependence, which couples with
the positional dependence usually seen in a GSC-based SCFT,
in the probability distribution function for a polymer segment.
A brief introduction of the theory can be found in Sec. II.
The orientational dependence is essential for dealing with
wormlike systems where orientational properties are the major
concern, such as in studying the thermodynamics of polymer
liquid crystals [18–21] and spatially inhomogeneous polymer
liquid-crystal systems [22–29]. The orientational dependence
is also required to render the correct physical properties for
spatially inhomogeneous wormlike polymer problems where
the positional dependence is the main concern, such as the
system examined in this work, phase separation of AB bulk
polymers [30], the wormlike chain in confinement [31–34],
the wormlike polymer adsorption problem [35,36], and the
wormlike polymer brush problem [37].

Computationally, the spatial and orientational variables in
the WLC probability function need to be simultaneously rep-
resented in numerical approaches, which can be summarized
into the following categories. (i) Both orientational and spatial
dependences are treated by finite-difference schemes [28]. In
numerical results, to achieve the same precision as those from
(ii) and (iii) below, an extremely high computational resource
is required. (ii) The orientational dependence is treated by
an expansion in terms of the spherical harmonics and the
spatial dependence by a finite-difference scheme [24,25,29].
For a sharp boundary condition and interface, this method
only works successfully with a high resolution on the spatial
variable, resulting in a high computational demand. The
intermediate and strong segregation regimes of the current
problem correspond to a relatively sharp interface [38].
(iii) Both orientational and spatial dependences are treated
by combinatorial orthonormal eigenfunctions [15]. Because
of the smoothness of the eigenfunctions used in this approach,
the number of eigenfunctions containing the spatial variables
can be significantly lower than the number of divisions in the
spatial-variable space and thus is much less computationally
demanding than the two preceding methods. For the current
problem, we adopt an extended version of (iii) in which
spherical harmonic functions and Fourier bases are used as
eigenfunctions of the orientational and spatial variables.

A key quality of an efficient and accurate numerical
algorithm for solving the resulting modified diffusion equation
from a WLC-based SCFT relies on a careful design to treat
the timelike variable together with the orientational and spatial
variables. In this paper a numerical strategy in the spirit of the
split-step algorithm is developed [39,40], which amounts to
an error corresponding to a third order in the step length of
the timelike variable with no restriction on the precision of
representing the orientational and spatial variables. This can
be compared with the Crank-Nicolson [41] method advanced
previously, which contains a numerical error of the second
order in the step length of the timelike variable and has a
concurrent requirement on the precision of the orientational
and spatial variables. In addition, a direct forward time-
difference scheme would introduce an error of the same order
as the step length in the time variable and thus requires very
small divisions [25,28]. The details of our implementation of
the split-step algorithm can be found in Sec. II B.

Our focus in this paper is a thorough study to demonstrate
the effects of persistency on the disorder-lamella transition,
which contains a one-dimensional spatial variation. The phase
diagram of semiflexible AB diblock copolymers of Gaussian
chains displays a wealth of other order structures as well,
especially in the f �= 1/2 regime [42]. A complete study of
the phase diagram of AB diblock copolymers, including cubic,
hexagonal, and gyroid structures, requires computation of the
formalism in this paper in two- and three-dimensional space,
which is a computational challenge that currently cannot be
easily attacked.

The main numerical results are given and discussed in
Sec. III; readers who do not wish to review the self-consistent
mean-field treatment and numerical approaches can directly
skip to this section.

II. THEORY

In the first part of this section we outline the self-consistent-
field theory used to treat the current problem, on the basis of
the Saito-Takahashi-Yunoki model [13] for the description of
a wormlike chain in an external field [14]. While the general
theoretical development can be found elsewhere [14], we pay
attention to the particular form used for the current system. In
the second part of this section we discuss the computational
methods used to solve the differential equation yielded by the
self-consistent-field theory.

A. Self-consistent-field theory

Consider a polymer melt of n undistinguishable AB diblock
copolymer chains occupying a volume V of an incompressible
system, each having a total contour length L and a bare
persistence length λ. The diblock copolymer is made of a
segment of A polymer of length f L connecting to a segment of
B polymer of length (1 − f )L. The parameter λ is assumed to
be the same for both A and B segments, though the theoretical
framework below can also be used for two segments having
different persistent lengths [25,26,28]. The interaction energy
per segment is assumed to have the Flory-Huggins form

βFFH = χ

∫
drφA(r)φB(r), (1)

where φA(r) and φB(r) are the volume fractions at a point
with the coordinate r. One basic assumption is that these
two functions represent the overall volume fraction variations,
already averaged over the angular dependence (see below).
This assumption was also used previously by Morse and
Fredrickson [30] and Matsen [15] for wormlike polymers.

Of central concern in the self-consistent-field theory is the
calculation of the propagator q(r,u,s), which represents the
probability of finding a polymer segment of length sL (starting
from the A terminus) with the ending monomer located at r and
the ending segment pointing at the orientation specified by a
unit vector u. The arc variable s is a label for the path location
of a polymer; our convention is that s = 0 represents the A

terminus and s = 1 the B terminus. The partition function of
a single chain Q can be calculated from

Q = (1/4πV )
∫

dr du q(r,u,1), (2)
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where a prefactor 1/4πV has been introduced to normalize
the integral. The volume fractions for components A and B

can be calculated from

φA(r) = 1

4πQ

∫
du

∫ f

0
ds q(r,u,s)q∗(r,u,s), (3)

φB(r) = 1

4πQ

∫
du

∫ 1

f

ds q(r,u,s)q∗(r,u,s), (4)

where a complementary propagator q∗(r,u,s) has been used.
This propagator represents the probability of finding a polymer
segment of length (1 − s)L (starting from the B terminus)
with the ending monomer located at r and the ending segment
pointing at the orientation specified by a unit vector −u.

There are two ways of writing down the propagator in terms
of the STY model in an external field ω(r; τ ). The integral form
of the calculation of q(r,u,s) is given by

q(r,u,s) =
∫

DrP [r; 0,s]δ(r − r(s))δ(u − u(s))

× exp

[
−

∫ s

0
dτ ω(r; τ )

]
, (5)

with the statistical weight [13]

P [r; s1,s2] ∝ δ(1 − |u(s)|) exp

[
− λ

2L

∫ s2

s1

ds

∣∣∣∣ d

ds
u(s)

∣∣∣∣
2 ]

.

(6)

The vector representing the tangent direction at s is defined
as u(s) ≡ (1/L)[dr(s)/ds], which is constrained to be a unit
vector by the delta function in Eq. (6). For the external field in
the large square bracket of Eq. (5), we have

ω(r; s) =
{
ωA(r) ≡ ω+(r) − ω−(r) if 0 � s � f ,

ωB(r) ≡ ω+(r) + ω−(r) if f < s � 1,

where ωA(r) and ωB(r) are the external fields acting on the
A and B components, respectively. The axillary fields ω±(r)
are defined above for later convenience. The results from
the calculation of the propagator depend on these two fields.
Note that if we set these fields equal to zero, we return to
the original STY problem [13], where one can show that the
bare persistence length λ is related to the Kuhn length a by

a = 2λ, (7)

from the definition of the mean-square end-to-end distance
of a long wormlike chain. In the rest of this paper, we use a

directly instead of λ, which allows us to make a comparison
with the theory based on a Gaussian-chain model, with an
understanding of the above connection.

The differential-equation form is an equivalent way of
writing down the propagator-field relationship [8]

∂

∂s
q(r,u,s) =

[
L

a
∇2

u − Lu · ∇r − ω(r; s)

]
q(r,u,s). (8)

The propagator can be determined by solving this modified
diffusion equation from a given external field ω, subject to the
initial condition q(r,u,0) = 1. Since the two termini of the AB

copolymer are distinct, we need to solve the equation

∂

∂s
q∗(r,u,s) =

[
− L

a
∇2

u − Lu · ∇r + ω(r; s)

]
q∗(r,u,s) (9)

separately from Eq. (8), with the initial condition q∗(r,u,1) =
1. These modified diffusion equations (8) and (9) are usually
computed numerically to obtain the properties of the system
instead of the direct evaluation of the propagators from the
integral in Eq. (5).

For the current system we can formally express the free-
energy difference per chain (in units of 1/β ≡ kBT ) in terms
of ω±(r) [43],

β�F ≡ βF − βF0 = − ln Q + 1

V

∫
dr

[
ω2

−(r)

(χL/a)

+ (2f − 1)ω−(r) − ω+(r)

]
, (10)

where the free energy of the disordered phase F0 =
(χL/a)f (1 − f ) is used as a reference. The functional
minimization of the free energy with respect to the two fields
ω−(r) and ω+(r) gives rise to two equations

φB(r) − φA(r) +
[

2

(χL/a)
ω−(r) + (2f − 1)

]
= 0 (11)

and

φA(r) + φB(r) − 1 = 0. (12)

These equations close the self-consistency loop for the
numerical calculation carried out in this work; in total, Eqs. (8),
(9), (3), (4), (11), and (12) are solved self-consistently for a
given set of parameters f , L/a, and χL/a. The free energy
can then be obtained from the calculation on the right-hand
side of Eq. (10).

B. Numerical approach

The computational strategy used in this work depends
on iterations that correct a previous estimate. Initially, an
approximation for the external fields ω−(r) and ω+(r) is made
that can be used to obtain q(r,u,s) and q∗(r,u,s) through
solving Eqs. (8) and (9) numerically for the entire 0 � s � 1
range. Then the density profiles for components A and B

can be computed straightforwardly from Eqs. (3) and (4).
As a naive approach the next step would be to calculate an
improved approximation for the external fields by directly
requiring that Eqs. (11) and (12) are satisfied. However, this
step is not always numerically stable and thus is not used in
the actually numerical implementation. Following the work
done by Fredrickson et al. [43], instead of taking Eqs. (11)
and (12) in their original forms, we use the effective relaxation
equations

∂

∂t
ω−(r,t) = −ξ−

{
φB(r,t) − φA(r,t)

+
[

2

(χL/a)
ω−(r,t) + (2f − 1)

]}
, (13)

∂

∂t
ω+(r,t) = ξ+[φA(r,t) + φB(r,t) − 1], (14)

in a forward-difference scheme for t with a step length �t . The
coefficients �tξ− and �tξ+ control the relaxation rate of the
convergence in solving Eqs. (13) and (14). Large relaxation
coefficients yield a faster search for the equilibrium solution,
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but are also accompanied by an undesirable instability. We
found in our calculation that for the current system an
appropriate range is 0.2 � �tξ−, �tξ+ � 0.6. The fields
ω−(r,t) and ω+(r,t), which are calculated from the relaxation
method, update once after a full calculation of q and q∗ is
done; then they are used as a new guess in Eqs. (8) and (9) for
the starting point of a new iteration.

Within this computational strategy, a crucial step is accu-
rately and efficiently carrying out the solution to Eqs. (8) and
(9). Formally, an exact expression can be obtained for Eq. (8),

q(r,u,s + �s) = exp
[
�s

(
L∇2

u + L∇r + Lω
)]

q(r,u,s), (15)

which is valid for any size of �s. The three operators appearing
in the above expression are L∇2

u ≡ (L/a)∇2
u , L∇r ≡ −Lu · ∇r,

and Lω ≡ −ωj (r), (j = A,B). Performing the Baker-
Campbell-Hausdorff operator identity twice [44],

e�sLω

e�sL∇r
e�sL∇2

u

= exp

{
�s

(
Lω + L∇r + L∇2

u
) + �s2

2

([
Lω,L∇r

]

+ [
Lω,L∇2

u
] + [

L∇r ,L∇2
u
]) + O(�s3)

}
, (16)

where [Lω,L∇r ] ≡ LωL∇r − L∇rLω represents the operator
commutator, we can obtain the solution to the propagator

q(r,u,s + �s) = e�sLω/2e�sL∇r /2e�sL∇2
u
e�sL∇r /2

× e�sLω/2q(r,u,s) + O(�s3). (17)

The advantage of using Eq. (17) is that for a small �s, terms of
order �s2 exactly cancel out and the error only amounts to an
order of �s3 and higher. This can be compared with the Crank-
Nicolson method, which is commonly used in solving modified
diffusion equations such as those in our previous works
[29,37], where a numerical error of order �s2 is intro-
duced [41]. We also note that some forward-difference-based
algorithms were previously used for the calculation of the
propagator [28,45].

To apply this method further, we need to deal with the
L operators. The spherical harmonics and Fourier bases are
the eigenfunctions of the operators L∇2

u and L∇r , respectively.
As long as the transformations connecting the variables u
and r and the expansion coefficients of spherical harmonics
and Fourier functions are provided, the split-step algorithm
is efficient for carrying out the calculations associated with
the exponential operations [39,40]; the method is known to
be unconditional stable and highly accurate, which means
that fewer expansion coefficients and a relatively large step
length �s can be taken in the actual calculation. A similar
algorithm was constructed by Tzeremes et al. [46] to solve
the modified diffusion equation previously deduced from a
Gaussian-chain model. This approach has multiple advantages
over a finite-difference scheme, which requires a more careful
division of the variable space to match the correct order in �s

in order to avoid numerical divergence.
Further simplifications can be made for the present study

of a lamellar phase, where only one spatial variable x and one
orientational variable θ (between the axis x and orientational
vector u shown in Fig. 1) are considered. For a function of x

FIG. 1. (Color online) Sketches of a lamellar morphology for the
AB diblock copolymers: Shown on the left-hand side are flexible
polymers that can be described by the Gaussian-chain formalism and
the long-chain limit of the current wormlike-chain formalism and on
the right-hand side is a rigid-chain limit that is also covered in this
work. The wormlike-chain formalism leads to a smooth crossover
between these two limits.

and the associated Fourier transformation k, we can define the
Fourier transform F̂ and the inverse Fourier transform F̂−1.
For a function of θ and its Legendre function of rank l, we
can define the Legendre transform Ŝ and the synthesis of the
Legendre transform Ŝ−1. We can then write

q(x,θ,s + �s)

≈ e−�sωj (x)/2F̂−1{e−i�sk cos θ/2F̂ [Ŝ−1(e−�s(L/a)l(l+1)

×Ŝ(F̂−1{e−i�sk cos θ/2F̂ [e−�sωj (x)/2q(x,θ,s)]}))]}. (18)

The Fourier bases used for the lamellar phase can be charac-
terized by a discrete set

km = 2πm/D, (19)

where m is an integer and D is the lamellar domain size
considered in Fig. 1. The same resolution for x as the one
used by Matsen [15] was adopted in this work. In practice,
these transformations are performed based on well-established
numerical procedures such as those given in Ref. [41]. The
truncated expansion index l and the corresponding number
of equally divided grids on polar angle θ are appropriately
adjusted according to the convergence criteria max|ωnew

± (x) −
ωold

± (x)| < 10−4. This way the free energy produced depends
on the domain size D; an additional computational task is to
search for the minimum free energy as a function of D [47].
The results reported below correspond to an optimal D after
such minimization.

III. RESULTS AND DISCUSSION

This work considers the influence of the chain persistency
on the physical properties from the disorder-lamellar stability
analysis. As discussed in the Introduction and shown exactly in
Sec. II, three independent parameters emerge to be important:
the scaled Flory-Huggins interaction parameter χL/a, the
volume fraction of the A component f , and the effective
number of Kuhn segments in a wormlike chain L/a. Note
that f and χL/a are the same combination of parameters as in
the Gaussian-chain theory for the lamellar phase; in the latter
case the parameter L/a is normally related to the number
of monomers in a typical theory and is take to be a large
number [8].
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In particular, we discuss below the numerical results from
our self-consistent-field theory in terms of a stability diagram
where the disorder-lamellar (DL) boundary divides the sta-
bility regions of the disorder and lamellar states, determined
from an examination of the free energy F = F (f,L/a,χL/a).
We also discuss the properties of the lamellar domain size
D/a ≡ D̃(f,L/a,χL/a), which was optimized to minimize
the lamellar free energy per domain. We further discuss an
interfacial width

W =
[

max

∣∣∣∣ d

dx
φA(x)

∣∣∣∣
]−1

, (20)

where the function max takes the maximum value of its argu-
ment. The rescaled interfacial width W/a ≡ W̃ (f,L/a,χL/a)
is a function of f , L/a, and χL/a as well.

A. Flexible limit: L/a � 1

Our first concern is whether the DL stability bound-
ary determined by the current WLC model would recover
what we have already known from the classical random-
phase approximation (RPA) [48] of a Gaussian-chain model
in the limit of L/a � 1. As shown in Fig. 2, the DL
boundaries (represented by symbols) determined from the
WLC model for various values of L/a have a reasonable
trend to asymptotically approach the solid curve, which was
obtained from a weak-inhomogeneity expansion based on the
assumption of a Gaussian-type statistical weight of a polymer
configuration [48]; the L/a = 100 curve (squares in Fig. 2)
from our calculation even substantially overlaps with the RPA
result.

In many wormlike-chain systems, the recovery of the
Gaussian-chain result is not a trivial notion even in the limit of
L/a � 1 and needs to be carefully justified; the magnitude of

FIG. 2. (Color online) Numerical results for the disorder-lamellar
stability boundary based on a wormlike-chain (WLC) model for
AB diblock copolymers for several selected values of L/a: 100,
20, 5, and 1, represented by squares, circles, triangles, and inverted
triangles, respectively. These results can be compared to the stability
boundary obtained from the calculation based on a random-phase
approximation of a Gaussian-chain (GSC) model, which is shown by
the solid curve. All boundaries have the characteristics of a first-order
phase transition, terminating at a second-order point represented by
the solid points at f = 1/2.

a/W , where W characterizes a typical length scale on which
the density profile varies drastically, determines whether or not
the Gaussian-chain limit is approached [34,36]. In the current
model, the spatial variation of the density profile is reflected
in the main equations (8) and (9) by the derivative term
Lu · ∇r = (L/a)(a/W ) cos θd/dx̃, where x̃ ≡ x/W . While
the L/a prefactor is comparable to the magnitude of the
first term in Eqs. (8) and (9), the magnitude of a/W is
responsible for whether or not a Gaussian-weight-based SCFT
can be recovered from a WLC-based SCFT. Indeed, taking
a simultaneous expansion of the propagator in terms of the
Legendre functions and powers of small a/W , we can show
that in the lamellar phase

χ ∼ (a/W )2

and Eqs. (8) and (9) exactly recover the counterpart diffusion
equation in a Gaussian theory for L/a � 1 [49].

This can be interpreted in a physical picture. In the
flexible polymer limit L/a � 1, each wormlike polymer has
approximately the size of the Gaussian gyration radius in
a disorder phase (aL)1/2. Approaching the DL instability
boundary from the disorder side, once the phase separation
takes place in the form of a continuous or weak first-order
transition, both the domain size D and interfacial width W are
on the order of (aL)1/2. This guarantees that the ratio a/W

is approximately a/W ∼ (a/L)1/2, which is small in the limit
of a/L � 1. For comparison, because χL/a represents the
immiscibility interaction between polymer segments A and B,
we expect that phase separation takes place when χL/a ∼ 1
or χ ∼ a/L; hence the estimate χ ∼ (a/W )2 is physically
justifiable. Numerically, Figs. 3(b) and 3(c) demonstrate how
both D/(aL)1/2 and W/(aL)1/2 in the lamellar state approach
an L/a-independent limit as L/a increases, which are results
from wormlike-polymer-based SCFT.

Because the DL stability boundary is determined from the
free energy, the approaching of the asymptotic GSC result in
Fig. 2 is the direct consequence of the asymptotic behavior of
the free energy, displayed in Fig. 3(a). For a specified value
of f and χL/a, as a function of L/a, an L/a-independent
asymptotic limit can be viewed in these plots when L/a � 1.

Within a GSC model, Leibler showed that the DL stability
boundary has the characteristics of a second-order phase
transition at f = 0.5 and a first-order phase transition for
f �= 0.5 [48]. These properties can be directly examined in
terms of the lamellar free-energy difference �F = F − F0,
where F0 is the free energy of the disordered phase, and
the inverse-scaled interfacial width (aL)1/2/W as an order
parameter that has a value of (aL)1/2/W = 0 in the disorder
phase. As a function of (χ − χDL)L/a for a given value of
f , where χDL is the value at the DL transition boundary, �F

is negative inside the lamellar region and displays quadratic
behavior near the transition point for f = 0.5 and a straight
line near the transition point for f �= 0.5, according to the
mean-field understanding of the phase-transition theory. The
solid curve in the top panel of Fig. 4(a) and the solid line in the
top panel of Fig. 5(a) are examples of these critical behaviors.
As a function of the same variable, for f = 1/2 where the
transition is second order, the order parameter in the lamellar
phase is expected to display a power law with an critical
exponent of 1/2, hence the square order parameter showing a
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FIG. 3. (Color online) (a) Lamellar free energy F (f,L/a,χL/a), (b) reduced domain size D(f,L/a,χL/a)/(aL)1/2, and (c) reduced
interfacial width W (f,L/a,χL/a)/(aL)1/2 as functions of the reduced Flory-Huggins parameter χL/a for volume fraction (I) f = 0.2,
(II) f = 0.3, (III) f = 0.4, and (IV) f = 0.5, computed from the wormlike-chain formalism. In these plots, chain sizes L/a = 100, 20, 5, and
1 are represented by squares, circles, triangles, and inverted triangles, respectively. The results from a GSC formalism, valid for L/a � 1, are
also plotted as the solid curves.

straight line [solid line in the bottom panel of Fig. 4(a)]; for
f �= 1/2 where the transition is first order, the order parameter
abruptly jumps to zero when the system goes through the
transition point from the lamellar phase [solid line in the
bottom panel of Fig. 5(a)]. The long-chain results yielded by
the WLC model, displayed in these plots by squares for L/a =
100, fully agree with these characteristics near the transitions.

B. Intermediate region: L/a ∼ 1

Moving away from the extremely large L/a region, we
start to see the effects of persistency in the stability diagram
(Fig. 2). For L/a as large as L/a = 20, the stability boundary
already moves significantly below the GSC result. The DL

stability boundaries deviate even more remarkably from the
RPA result in the smaller L/a = 5 and 1 cases. According
to this diagram, we conclude that one of the main effects of
the chain persistency is broadening of the lamellar stability
region accompanied by a lower transition χDLL/a. Physically,
a more rigid polymer chain loses less conformational entropy
in a stretched conformation in comparison with its Gaussian
counterpart of the same length. One consequence in our
system is that persistency makes it easier for the system to
phase separate (which decreases a polymer’s entropy) for the
same value of the χL/a parameter. This is the underlying
reason for the broadening of the lamellar stability region
in Fig. 2, which is similar to the observation by Friedel
et al. [17].
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(a) (b) (c) (d)

FIG. 4. (Color online) Symmetric AB diblock copolymers (f = 1/2): numerical results for the lamellar free-energy difference (top panels)
and square order parameter (bottom panels) as functions of (χ − χDL)L/a, where χDLL/a is the critical point specified by a solid symbol in
Fig. 2. We consider the properties for a GSC model for L/a � 1 [solid curve in (a)] and a WLC model for L/a = 100 (squares), 20 (circles),
5 (triangles), and 1 (inverted triangles).

Going from the flexible chain limit (large L/a) to a more
rigid molecule (small L/a), the typical domain size of the
lamella crosses over from D ∼ (aL)1/2 (Gaussian coil size) to
D ∼ L (rod size); similarly, this happens to a typical interface
width that crosses over from W ∼ (aL)1/2 to L as well. In
the intermediate region, we expect to see that both D and
W deviate significantly from these asymptotic behaviors. The
crossover can be viewed from the numerical examples shown
in Fig. 6, where we see that both D/a and W/a scale as
(L/a)1/2 in the large L/a limit and as L/a in the small L/a

limit.
In terms of a phase transition, the phase boundary at

f = 1/2 is second order according to the GSC model [48];
this second-order nature is confirmed by our calculation of
the WLC model, which is now valid for any ratio of L/a,
even in the small L/a region. The numerical evidence can be
found in four plots (L/a = 100, 20, 5, and 1) of Fig. 4 where
the order parameter (aL)1/2/W can be seen to always vary
continuously across the transition point χDL. In all these cases,
our data also demonstrate that a mean-field critical exponent
of 1/2 is followed by the order parameter in a lamellar phase
near the transition point (hence an exponent of 1 for the square
order parameter in the figure). Furthermore, in the top panels
of these plots, the lamellar free-energy difference can be seen
to connect to �F = 0 in the disorder phase by a smoothly
varying slope.

Figure 5 shows the free-energy difference and order pa-
rameter for an asymmetric case f = 0.2, which demonstrates
a different behavior. The order parameter (aL)1/2/W goes
through a finite jump and the free-energy difference displays

a straight line approaching the transition point χDL from
the lamellar phase. These are characteristics of a first-order
transition, valid for all other values of f (as long as f �= 1/2)
as well (figures not shown). The first-order jump in the order
parameter weakens and finally vanishes as f approaches 1/2.
That is, along all DL stability boundaries described in Fig. 2,
only symmetric WLC AB diblock copolymers (f = 1/2) have
a second-order transition (shown by solid symbols in the
figure).

C. Remarks

For the case of f = 1/2 (symmetric lamellar morphology),
our WLC results are in full agreement with those considered by
Matsen, after making the identification of his κ with 1/2 [15].
In Fig. 7, using solid curves we replotted Matsen’s DL stability
boundary χDL(f = 1/2,L/a)L/a and lamellar domain size
D(f = 1/2,L/a,χDLL/a)/(aL)1/2 by reading off data from
the figures of his publication. Overlapping the curves are our
results for various values of L/a. One interesting limit is
L/a → 0, the limit of a rigid rod chain. From our data in
the figure we see that χDL(f = 1/2,L/a)L/a asymptotically
approaches 6.18 ± 0.02, which agrees with Matsen’s estimate
of 6.135 [15] within the numerical error; however, both are far
lower than the values of 8.30 suggested by Singh et al. [16]
and 7.55 by Friedel et al. [17].

The WLC stability diagram presented in Fig. 2 is based
on the comparison of the free energy of two possible states
occurring in an AB diblock copolymer system: disorder and
lamellar. We use this example to demonstrate the importance
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(a) (b) (c) (d)

FIG. 5. (Color online) Example of asymmetric AB diblock copolymers (f = 0.2): numerical results for the lamellar free-energy difference
(top panels) and square order parameter (lower panels) as functions of (χ − χDL)L/a, where χDLL/a is the first-order transition point. We
consider the properties for a GSC model for L/a � 1 [solid curve in (a)] and a WLC model for L/a = 100 (squares), 20 (circles), 5 (triangles),
and 1 (inverted triangles).

of the influence of chain persistency in determining the
free energy and hence the phase diagram of AB diblock
copolymers. Extrapolating to other phases existing in this
system, we believe that the classic diblock copolymer phase
diagram [50,51] previously predicted by a GSC model must
be significantly revised after the chain rigidity is introduced.

(a)

(b)

FIG. 6. (Color online) Logarithmic plots of (a) reduced domain
size D(f,L/a,χL/a)/a and (b) interfacial width W (f,L/a,χL/a)/a
as functions of chain length L/a. Squares and circles represent
systems with fixed parameters (f = 0.5, χL/a = 20) and (f = 0.2,

χL/a = 30), respectively. Asymptotic power laws at large and small
L/a are indicated by slopes 1/2 and 1, respectively.

This is particularly so for the BCC-stable region [50,51] where
χL/a is large and the interface width is sharp. Because of a
computational limitation, we consider the stability of only the
lamellar phase in this work, using a one-dimensional spatial
variation; future work that explores full three-dimensional
mesostructures is needed to complete the WLC AB diblock
copolymer phase diagram and is more demanding in terms of
numerical computation.

FIG. 7. (Color online) Disorder-lamellar stability boundary
χDL(f = 1/2,L/a)L/a and the corresponding reduced domain size
D(f = 1/2,L/a,χDLL/a)/(aL)1/2 as functions of the chain rigidity
parameter L/a, determined from a wormlike-chain formalism. The
triangles and circles represent our numerical results for χDL and DDL,
respectively. The solid curves are plotted by using data read off from
Fig. 1 of Matsen’s work (for a comparison see Ref. [15]).
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In this and related work, there are two basic assumptions
made in the study of WLC AB diblock copolymers: the
incompressibility condition Eq. (12) and the Flory-Huggins
interaction Eq. (1). These two assumptions are identical to
those used in studying AB diblock copolymers based on a
Gaussian-chain description, where these assumptions can be
made by coarse graining over a volume scale of a3. One impor-
tant property of a wormlike chain is the angular distribution
of a chain segment; strictly speaking, we must include the
orientation dependence, beyond the position dependence, in
both Eqs. (1) and (12). It is clear that these two conditions are
incompatible with the well-known Onsager interaction [52],
which also deals with volume packing and alone can produce
orientational ordering at the length scale λ or L, whichever
is less [18,20,21], when the polymer has a thickness D. A
proper procedure for handling the orientation dependence
of the incompressibility condition and the Flory-Huggins
interaction is desirable and currently unavailable for WLC;
the development of such a theory may need the inclusion of
a solvent component in the model and yields a model that
contains D (or a/D) as an additional parameter. Nevertheless,
most current research into understanding WLC AB diblock
copolymers adopts these two assumptions [15,23,30].

In this paper we treated the persistence lengths of both
AB blocks the same. The formalism can be easily generalized
to systems with difference persistence lengths. Of particu-
lar recent interest are systems consisting of rod-coil block
copolymers, which from experiments appear to have more
complicated nanoscale structures [53,54]. The experimental
phase diagram for rod-coil block copolymers was constructed
by Olsen et al. [55–57]. Halperin made an analytical free-
energy calculation for rod-coil diblock copolymers theoreti-
cally within the scaling approach to study the phase transition
between smectic A and smectic C liquid crystals [58]. Shortly
thereafter, Williams and Fredrickson extended the theoretical
calculations to “hockey puck” micelles, where the rods are
packed axially into cylinders [59]. Matsen and Barrett used
the self-consistent mean-field theory based on the Semenov-
Vasilenko model [19] to study both smectic monolayer and
bilayer phases with the assumption that all rods perfectly

align along the same orientation [60]. Later, Pryamitsyn
and Ganesan performed a similar calculation considering
the anisotropic Maier-Saupe interaction and explored the
one- and two-dimensional spatial phase diagrams with a
variation of the volume fraction of the component coil or rod
[61]. Recently, the wormlike-chain model incorporating the
anisotropic interaction was used to study the rod-coil diblock
copolymers by Song et al. [28] on a self-consistent mean-field
level. They constructed a lamellar phase diagram consisting
of isotropic, nematic, smectic-A, and smectic-C phases. In
addition, the lattice-based mean-field simulations [62,63] were
also performed for the rod-coil system.

IV. CONCLUSION

We considered a self-consistent-field theory formalism
for the calculation of the phase behavior of AB diblock
copolymers based on a wormlike-chain model. We focused on
the discussion of the disorder-lamellar stability region in this
work. We demonstrated that numerical results from the WLC
formalism recover those from the Gaussian-chain formalism,
for all values of the AB volume ratio f , as long as L/a � 1
(the flexible limit). Significant modification of the phase
stability region needs to be made to the classical phase diagram
of AB diblock copolymers when semiflexible polymers are
considered. Although the stability boundary shifts, for the
wormlike chain model, the phase transition characteristics of
the disorder-lamellar stability boundary remain the same as
those of flexible chains: second order in the symmetric case
(f = 1/2) and first order in the asymmetric case (f �= 1/2).

A numerical method, the split-step algorithm, has been
developed to handle the computational task of this work. Due
to its superior numerical accuracy, the method can be readily
used in the study of more complicated mesostructures such as
gyroid, hexagonal, and cubic phases.
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