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We derive and analyze the dynamic equations for polar liquid crystals in two spatial dimensions in
the framework of classical dynamical density functional theory (DDFT). Translational density variations,
polarization, and quadrupolar order are used as order-parameter fields. The results are critically compared
with those obtained using the macroscopic approach of time-dependent Ginzburg-Landau (GL) equations for the
analogous order-parameter fields. We demonstrate that, for both the microscopic DDFT and the macroscopic GL
approach, the resulting dissipative dynamics can be derived from a dissipation function. We obtain microscopic
expressions for all diagonal contributions and for many of the cross-coupling terms emerging from a GL approach.
Thus, we establish a bridge between molecular correlations and macroscopic modeling for the dissipative
dynamics of polar liquid crystals.
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I. INTRODUCTION

Understanding the dynamic processes in liquid crystalline
systems from a microscopic point of view is important for
designing smart materials with novel optical and rheological
properties. In fact, the key mechanisms of optical displays and
switching devices are controlled by the dynamic response of
liquid crystals to external stimuli [1–3]. Therefore, it is highly
relevant to understand how these processes change in terms of
the molecular interactions. As a first example, the switching
dynamics of the nematic director upon a change in an external
alignment field [4,5] is one of the basic functions in optical
displays. Second, in microfluidic devices, micromixers [6] can
be tailored by the response of a liquid crystalline system to a
rotating external field.

Nonequilibrium dynamic processes in liquid crystals are
also interesting from a more fundamental point of view
since they involve a nontrivial coupling between translational
and orientational degrees of freedom. Therefore, dynamic
macroscopic Ginzburg-Landau (GL) approaches have been
applied to liquid crystalline systems in order to obtain the
basic dynamic equations on a phenomenological level. Apart
from direct computer simulations of molecular systems [7,8],
much less has been done in terms of a microscopic theory.
Such a microscopic approach, which starts from the molecular
interactions, is established by classical density functional
theory (DFT) [9–13]. DFT can be generalized toward dy-
namics for colloidal particles in solution within the so-called
dynamical density functional theory (DDFT) [14–16], which
has been proven to be a realistic microscopic description
for many phenomena, including liquid crystalline dynamics
[5,17–19].

Static DFT constitutes a framework to derive GL equations
from a microscopic level. The idea is to expand the microscopic
one-particle density in terms of order-parameter fields and
to perform a gradient expansion [20–25] of the free-energy
functional. This leads to a GL-type theory, which can also
be called a phase-field-crystal (PFC) model [24–28]. The
phenomenological coupling constants of various terms can
thereby be expressed in terms of generalized moments of
molecular correlation functions.

In this paper, we perform a similar analysis for the dynamics
of liquid crystals by using DDFT, on the one hand, and
time-dependent GL equations, on the other hand. Therefore,
we provide a microscopic basis for time-dependent GL theory
and derive microscopic expressions for most of the coupling
constants. We do this in two spatial dimensions for polar liquid
crystals by including translational density variations, polar-
ization, and quadrupolar order as the basic order-parameter
fields. We further demonstrate that the resulting dissipative
dynamics can be obtained from a dissipation function. This
DDFT result holds for constant mobilities as well as for
mobilities depending on the thermodynamic variables. Our
work opens the way to study various dynamic processes of
two-dimensional polar liquid crystals recently observed in
experiments [29–31] by further numerical solution of the
microscopically justified GL equations.

The paper is organized as follows: In Sec. II, we derive
dynamic equations for polar liquid crystals in two spatial
dimensions from DDFT. A macroscopic derivation in terms
of time-dependent GL equations and its relation to the
microscopic dynamics is presented in Sec. III. We conclude in
Sec. IV.

II. MICROSCOPIC DERIVATION OF THE DYNAMICS

Our microscopic derivation of the dynamics uses the
DDFT equation [17] for collective Brownian motion of
anisotropic symmetric colloidal particles and is thus based
on a static free-energy functional that can be derived from
static DFT. A perturbative functional, which uses molecular
fluid correlations as input, has recently been proposed in our
previous work [25] for polar liquid crystalline particles in two
spatial dimensions. In the following paragraph, we present this
functional in a modified form that is more appropriate for our
further considerations.

A. Static free-energy functional

A suitable quantity to describe the state of a system of many
interacting anisotropic particles is the one-particle density
ρ(�r,û). It is proportional to the probability density to find a
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particle with orientation û at position �r , where û = (u1,u2) =
(cos(ϕ), sin(ϕ)) is the orientational unit vector that denotes
the orientation of the symmetry axis of the respective particle
and �r = (x1,x2) is the center-of-mass position vector. In the
following, slightly different from Ref. [25], we choose the
parametrization

ρ(�r,û) = ρ̄ [1 + ψ(�r) + Pi(�r)ui + ui Qij (�r)uj ] (1)

with the mean number density ρ̄ and the dimensionless order-
parameter fields ψ(�r), Pi(�r), and Qij (�r), where Einstein’s sum
convention is used. The first of these order-parameter fields is
the reduced translational density

ψ(�r) = 1

2πρ̄

∫
S1

dû[ρ(�r,û) − ρ̄] (2)

with S1 denoting the unit circle. The field ψ(�r) measures
translational deviations of ρ(�r,û) from the mean density ρ̄.
The second order-parameter field is the polarization �P (�r). It
has the components

Pi(�r) = 1

πρ̄

∫
S1

dû ρ(�r,û)ui (3)

and describes the averaged orientation. Finally, the traceless
and symmetric nematic tensor with the components

Qij (�r) = 2

πρ̄

∫
S1

dû ρ(�r,û)

(
uiuj − 1

2
δij

)
(4)

and the Kronecker delta symbol δij describes quadrupolar
ordering. The free-energy functionalF[ρ(�r,û)] is decomposed
as

F[ρ(�r,û)] = Fid[ρ(�r,û)] + Fexc[ρ(�r,û)] (5)

into the ideal rotator gas functional

βFid[ρ(�r,û)] =
∫
A
d�r

∫
S1

dû ρ(�r,û){ln[�2ρ(�r,û)] − 1} (6)

with the inverse thermal energy β = 1/(kBT ), the two-
dimensional domainA, and the thermal de Broglie wavelength
� as well as the excess free-energy functional Fexc[ρ(�r,û)],
which in general is only known approximatively. Inserting
the parametrization (1) into Eq. (6) and performing a Taylor
expansion up to fourth order in the order-parameter fields
yields to the approximation

βFid[ρ(�r,û)] = Fid + πρ̄

∫
A
d�r fid(�r) (7)

with the local scaled ideal rotator gas free-energy density

fid(�r) = ψ

4

(
8 − 2P 2

i + 2PiQijPj − Q2
ij

)

+ψ2

4

(
4 + 2P 2

i + Q2
ij

) − ψ3

3
+ ψ4

6

+P 2
i

8

(
4 + Q2

kl

) − PiQijPj

4
+ P 2

i P 2
j

16

+Q2
ij

4
+ Q2

ijQ
2
kl

64
, (8)

where

Fid = 2πρ̄ A[ln(�2ρ̄) − 1] (9)

is an irrelevant constant and

A =
∫
A
d�r (10)

is the total area of the domain A. We further consider a
functional Taylor expansion ofFexc[ρ(�r,û)] up to second order
[32], also called Ramakrishnan-Yussouff approximation [33]

βFexc[ρ(�r,û)] = −1

2

∫
A
d�r1

∫
S1

dû1

∫
A
d�r2

∫
S1

dû2

×c(2)(�r1 − �r2,û1,û2)

×	ρ(�r1,û1)	ρ(�r2,û2), (11)

with the direct pair-correlation function [34]

c(2)(�r1,�r2,û1,û2) = c(2)(�r1 − �r2,û1,û2) (12)

and the reduced one-particle density 	ρ(�r,û) = ρ(�r,û) − ρ̄.
By performing a gradient expansion up to second order, we
obtain for the excess free-energy functional the approximation

βFexc[ρ(�r,û)] = −1

2

∫
A
d�r fexc(�r) (13)

with the local scaled excess free-energy density

fexc(�r) = A1ψ
2 + A2(∂iψ)2 + A3(∂2

k ψ)2 + B1(∂iψ)Pi

+B2Pi(∂jQij ) + B3(∂iψ)(∂jQij ) + C1P
2
i

+C2Pi(∂
2
k Pi) + C3(∂iPi)

2

+D1Q
2
ij + D2(∂jQij )2. (14)

The various coefficients are given by

A1 = 8 M0
0(1), (15)

A2 = −2 M0
0(3), (16)

A3 = 1
8 M0

0(5), (17)

B1 = 4
[
M1

−1(2) − M0
1(2)

]
, (18)

B2 = 2
[
M1

1(2) − M2
−1(2)

]
, (19)

B3 = −M2
−2(3) − M0

2(3), (20)

C1 = 4 M1
0(1), (21)

C2 = M1
0(3) − 1

2 M1
−2(3), (22)

C3 = −M1
−2(3), (23)

D1 = 2 M2
0(1), (24)

D2 = −M2
0(3) (25)

as linear combinations of the moments

Mm
l (α) = π3ρ̄2

∫ ∞

0
dR Rαc̃

(2)
l,m(R) (26)

of the Fourier coefficients

c̃
(2)
l,m(R)= 1

(2π )2

∫ 2π

0
dφR

∫ 2π

0
dφ c(2)(R,φR,φ)e−i(lφR+mφ) (27)

of the direct pair-correlation function c(2)(R,φR,φ), for which
the parametrization

c(2)(�r1 − �r2,û1,û2) ≡ c(2)(R,φR,φ) (28)

041708-2



MICROSCOPIC AND MACROSCOPIC THEORIES FOR THE . . . PHYSICAL REVIEW E 84, 041708 (2011)

with �r1 − �r2 = Rû(ϕR), ûi = û(ϕi) for i = 1,2, φR = ϕ − ϕR,
and φ = ϕ1 − ϕ2 was used. Equations (7) and (13) give a local
functional of a polar liquid crystalline system reminiscent of a
PFC model [19].

B. Dynamic equations

We now derive dynamic equations for A = R2 for the
order-parameter fields ψ(�r,t), Pi(�r,t), and Qij (�r,t) from
dynamical density functional theory. DDFT is constructed
to describe the Brownian dynamics of colloidal particles in
a viscous solvent [38,39] via a time-dependent one-particle
density field ρ(�r,û,t). This theory was recently extended to
anisotropic Brownian particles with orientational degrees of
freedom [17,40,41]. It provides as a starting point for the case
of symmetric uniaxial particles without translational-rotational
coupling in two spatial dimensions the DDFT equation [17]

∂ρ

∂t
(�r,û,t) = β �∇·

(
DT(û)ρ(�r,û,t) �∇ δF[ρ(�r,û,t)]

δρ(�r,û,t)

)

+βDR
∂

∂ϕ

(
ρ(�r,û,t)

∂

∂ϕ

δF[ρ(�r,û,t)]

δρ(�r,û,t)

)
(29)

with the translational short-time diffusion tensor

DT(û) = D‖û ⊗ û + D⊥(1 − û ⊗ û). (30)

Here, D‖ and D⊥ are the translational diffusion coefficients
for translation parallel and perpendicular to the orientation
û, respectively, DR is the rotational diffusion coefficient,
⊗ is the dyadic product, and the symbol 1 denotes the
two-dimensional unit matrix. The two terms on the right-hand
side of this DDFT equation for uniaxial particles correspond to
pure translation and pure rotation, respectively. Translational-
rotational coupling terms, which are especially relevant for
screwlike particles, do not appear in this DDFT equation.
Additional terms in the DDFT equation, which regard a
possible translational-rotational coupling, would have the
same structure as the present terms, but with only one gradient
and one angular derivative each instead of two gradients or
two angular derivatives, respectively [41].

Following the analysis of Ref. [19], the functional derivative
δF/δρ in the DDFT equation (29) has to be expressed by func-
tional derivatives of the free-energy functional with respect
to the order-parameter fields ψ(�r,t), Pi(�r,t), and Qij (�r,t)

since we parametrized the one-particle density ρ(�r,û,t) as
well as the free-energy functional F[ψ,Pi,Qij ] with these
order-parameter fields. In the following equations, a large
number of functional derivatives of the free-energy functional
appear. Therefore, we shorten the notation by defining the
conjugated order-parameter fields or thermodynamic forces


� = δF
δ


with 
 ∈ {ρ,ψ,Pi,Qij }. (31)

Using this notation, the equation

ρ� = 1

2πρ̄
ψ� + ui

πρ̄
P

�

i + uiuj

πρ̄
Q

�

ij (32)

follows by functional differentiation. When performing func-
tional derivatives with respect to Qij or Q

�

ij , one has to notice

that Qij as well as Q
�

ij are symmetric and traceless. The
interdependence of the elements of these tensors leads to more
complicated derivatives that respect the symmetry properties
of these tensors. A very useful equation in this context is

δQkl

δQij

= δQ
�

kl

δQ
�

ij

= δikδjl + δjkδil − δij δkl . (33)

Together with the parametrization (1) of the one-particle
density, the relation (32) can now be inserted into the DDFT
equation (29). The dynamic equations for the order-parameter
fields are then obtained by an orthogonal projection that
separates the evolution equations for the particular order-
parameter fields from each other. This projection is achieved
by a multiplication of Eq. (29) with 1, ui , and uiuj − δij /2,
respectively, with a subsequent integration over the orientation
û. In doing so, the translational density ψ(�r,t) appears to be
conserved, while Pi(�r,t) and Qij (�r,t) are not conserved due
to their association with orientational degrees of freedom. The
dynamic equations can thus be written in the form

ψ̇ + ∂iJ
ψ

i = 0, (34)

Ṗi + �P
i = 0, (35)

Q̇ij + �
Q
ij = 0 (36)

with 
̇ = ∂

∂t

denoting the partial time derivative of the field


 ∈ {ψ,Pi,Qij } and with the current Jψ

i and the quasicurrents
�P

i and �
Q
ij . These dissipative currents and quasicurrents are

given by the expressions

J
ψ

i = −α1[2(1 + ψ)(∂iψ
�) + Qkl(∂iQ

�

kl)] − α2Pj (∂iP
�

j ) − α3[2(1 + ψ)(∂jQ
�

ij ) + Pi(∂jP
�

j ) + Pj (∂jP
�

i ) + Qij (∂jψ
�)], (37)

�P
i = −2α1∂k[Qij (∂kP

�

j ) + Pj (∂kQ
�

ij )] − α2∂k[2(1 + ψ)(∂kP
�

i ) + Pi(∂kψ
�)]

−α3{2∂i[(1 + ψ)(∂jP
�

j )] + 2∂j [(1 + ψ)(∂iP
�

j )] + ∂i[Pj (∂jψ
�)] + ∂j [Pj (∂iψ

�)]

+ 2∂j [Pi(∂kQ
�

jk) + Qjk(∂kP
�

i )]} + α4[2(1 + ψ)P �

i + 2PjQ
�

ij − QijP
�

j ], (38)

�
Q
ij = −2α1∂k[2(1 + ψ)(∂kQ

�

ij ) + Pi(∂kP
�

j ) + Pj (∂kP
�

i ) − δijPl(∂kP
�

l ) + Qij (∂kψ
�)]

− α3

2
{4∂i[(1 + ψ)(∂jψ

�)] + 4∂j [(1 + ψ)(∂iψ
�)] − 4δij ∂l[(1 + ψ)(∂lψ

�)]

+ 4∂i[Pk(∂jP
�

k )] + 4∂j [Pk(∂iP
�

k )] − 4δij ∂l[Pk(∂lP
�

k )] + ∂i[Qkl(∂jQ
�

kl)] + ∂j [Qkl(∂iQ
�

kl)] − δij ∂l[Qkm(∂lQ
�

km)]

+ 2∂k[Qij (∂lQ
�

kl)] + 2∂k[Qkl(∂lQ
�

ij )]} + 2α4[4(1 + ψ)Q�

ij + PiP
�

j + PjP
�

i − δijPlP
�

l ], (39)
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where ∂i are the components of the gradient �∇ = (∂1,∂2). Four
positive coefficients, of which three are independent, appear
in these equations. With the abbreviation λ = πρ̄/β, they are
defined as

α1 = D‖ + D⊥
8λ

, α2 = D‖ + 3D⊥
8λ

,

(40)

α3 = D‖ − D⊥
8λ

, α4 = DR

2λ
.

Note that D‖ � D⊥ holds for all types of uniaxial particles if
the vector û for the orientation of the symmetry axis is chosen
properly [42].

At this stage, we emphasize that the DDFT approach (29)
a priori contains only three independent mobility coefficients,
namely, the two translational diffusion coefficients D‖ and
D⊥ and the rotational diffusion coefficient DR. Therefore,
all other mobility coefficients for the order-parameter fields
can be expressed in terms of these three basic coefficients.
In general, the diffusion coefficients in DDFT are always
related to translational or orientational degrees of freedom
and not to certain order parameters, which appear only
with the parametrization of the one-particle density. The
parametrization of the one-particle density (1) in turn does
not involve further dissipation coefficients. This is in sharp
contrast to GL theory, where every additional order parameter
involves at least one new dissipative coefficient, as will be
discussed in Sec. III in more detail.

Since Eqs. (37)–(39) are rather complicated, for numerical
calculations, a simpler version of these equations might
be desirable. Such a simplification is the constant-mobility
approximation (CMA), where the one-particle density in
the translational and rotational mobility terms of the DDFT
equation (29) is approximated by its mean value ρ̄:

∂ρ

∂t
(�r,û,t) = βρ̄ �∇·

(
DT(û) �∇ δF[ρ(�r,û,t)]

δρ(�r,û,t)

)
(41)

+βρ̄ DR
∂2

∂ϕ2

δF[ρ(�r,û,t)]

δρ(�r,û,t)
.

With Eq. (41) instead of the DDFT equation (29), the following
dissipative currents and quasicurrents are obtained:

J
ψ

i = −2α1(∂iψ
�) − 2α3(∂jQ

�

ij ), (42)

�P
i = −2α2(∂2

k P
�

i ) − 4α3(∂i∂jP
�

j ) + 2α4P
�

i , (43)

�
Q
ij = −4α1(∂2

k Q
�

ij ) − 2α3
[
2(∂i∂jψ

�) − δij

(
∂2
k ψ�

)]
+ 8α4Q

�

ij . (44)

For both the general Eqs. (37)–(39) and the much simpler
constant-mobility Eqs. (42)–(44), the explicit forms of the con-
jugated order-parameter fields ψ�(�r,t), P

�

i (�r,t), and Q
�

ij (�r,t)
result directly from the functional derivatives of Eqs. (7)
and (13) with respect to the order-parameter fields. These
functional derivatives are given by

1

λ

δFid

δψ
(�r,t) = 2 − P 2

i

2
+ PiQijPj

2
− Q2

ij

4

+ψ

2

(
4 + 2P 2

i + Q2
ij

) − ψ2 + 2

3
ψ3, (45)

1

λ

δFid

δPi

(�r,t) = −ψ(Pi − QijPj ) + ψ2Pi

+Pi

4

(
4 + Q2

kl

) − QijPj

2
+ PiP

2
j

4
, (46)

1

λ

δFid

δQij

(�r,t) = ψ

2

(
2PiPj − δijP

2
l − 2Qij

)

+ψ2Qij + P 2
k

2
Qij − 1

4

(
2PiPj − δijP

2
l

)

+Qij + QijQ
2
kl

8
(47)

and

−2β
δFexc

δψ
(�r,t) = 2A1ψ − 2A2

(
∂2
k ψ

) + 2A3
(
∂2
k ∂2

l ψ
)

−B1(∂iPi) − B3(∂i∂jQij ), (48)

−2β
δFexc

δPi

(�r,t) = B1(∂iψ) + B2(∂jQij ) + 2C1Pi

+2C2
(
∂2
k Pi

) − 2C3(∂i∂jPj ), (49)

−2β
δFexc

δQij

(�r,t) = −B2[∂iPj + ∂jPi − δij (∂lPl)]

−B3[2(∂i∂jψ) − δij (∂2
l ψ)] + 4D1Qij

−2D2∂k[∂iQkj + ∂jQki − δij (∂lQkl)].

(50)

C. Dissipation function

In the field of linear irreversible thermodynamics [43–45],
the dissipative parts of the currents and quasicurrents arising
in the balance equations for the thermodynamic variables
(including, for example, hydrodynamic and macroscopic
variables) can be derived from a dissipation function 
, which
is quadratic in the thermodynamic forces. Frequently, one uses
equivalently the entropy production 
/T with T denoting the
absolute temperature [43,46]. The entropy production emerges
as a source term in the balance equation

σ̇ + ∂i j
σ
i = 


T
(51)

for the entropy density σ , where �jσ is the entropy current
density. Both dissipation function and entropy production are
maximized close to local thermodynamic equilibrium and,
thus, are a useful tool in the determination of the dissipative
currents and quasicurrents. This approach has been applied
to a large number of hydrodynamic and macroscopic systems
[43–47], but is in general not applicable for active systems
and for systems driven far from equilibrium (compare, for
example, Refs. [45,47]). In this more general case, a number
of additional conditions must be satisfied [48–52] in order to
obtain a Ljapunov functional. Far away from equilibrium, the
Ljapunov functional is the analog of the dissipation function
of linear irreversible thermodynamics.

More precisely, the dissipative currents and quasicurrents
of the dynamic equations (34)–(36) (which are, in linear
irreversible thermodynamics, by construction linear in the
thermodynamic forces [43–46]) are given by the variational
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derivatives of the dissipation function with respect to the thermodynamic forces:

J
ψ

i = − δ

δ (∂iψ�)

, (52)

�P
i = δ


δP
�

i

, (53)

�
Q
ij = δ


δQ
�

ij

. (54)

The dissipation function that corresponds to the dissipative currents and quasicurrents (37)–(39) of the general phase-field-crystal
(PFC) model is found to be


(PFC) =
∫
A
d�r

{
α1{(1 + ψ)[(∂iψ

�)2 + (∂kQ
�

ij )2] + Qij (∂kψ
�)(∂kQ

�

ij ) + Qij (∂kP
�

i )(∂kP
�

j )

+2Pi(∂kP
�

j )(∂kQ
�

ij )} + α2[Pi(∂jψ
�)(∂jP

�

i ) + (1 + ψ)(∂jP
�

i )2]

+α3

[
(∂iψ

�)

(
1

2
Qij (∂jψ

�) + Pi(∂jP
�

j ) + Pj (∂jP
�

i ) + 2(1 + ψ)(∂jQ
�

ij )

)

+(1 + ψ)(∂iP
�

i )2 + (∂jP
�

i )[(1 + ψ)(∂iP
�

j ) + Qjk(∂kP
�

i ) + 2Pi(∂kQ
�

jk)]

+1

4
Qij (∂iQ

�

kl)(∂jQ
�

kl) + 1

2
Qij (∂kQ

�

ij )(∂lQ
�

kl)

]

+α4

(
(1 + ψ)[(P �

i )2 + 2(Q�

ij )2] − 1

2
QijP

�

i P
�

j + 2PiP
�

j Q
�

ij

)}
. (55)

Together with the dissipative currents and quasicurrents
(37)–(39), this dissipation function constitutes the basic result
of this paper. The dissipation function that corresponds to the
currents and quasicurrents (42)–(44) of the constant-mobility
approximation is much simpler and given by


(CMA) =
∫
A
d�r (α1[(∂iψ

�)2 + (∂kQ
�

ij )2]

+α2(∂kP
�

i )2 + α4[(P �

i )2 + 2(Q�

ij )2]

+ 2α3[(∂iψ
�)(∂jQ

�

ij ) + (∂iP
�

i )2]) . (56)

By construction, both dissipation functions (55) and (56) are
positive. This is obvious for Eq. (56), but not manifest for
Eq. (55).

III. MACROSCOPIC APPROACH:
GINZBURG-LANDAU DYNAMICS

In this section, we investigate the Ginzburg-Landau dy-
namics in the vicinity of the phase transitions isotropic to
polar nematic and isotropic to polar smectic. In analogy
to the previous section, the GL dynamics is discussed for
three types of macroscopic variables. These are the smectic
density variation ρψ , which is closely related to the complex
scalar ψ often used to describe smectic layering [53,54], the
macroscopic polarization Pi , which becomes important when
polar nematic and/or polar smectic phases are considered
[55–57], and the quadrupolar nematic order parameter Qij ,
which is characteristic of the usual nematic ordering [58,59].

We assume that the local formulation of the first law of
thermodynamics, the Gibbs-Duhem relation, is valid [44–46].

It can be written in the form

T dσ = dε − μdρ − ρψ dμψ − hP
i dPi − Qij dSij (57)

with the absolute temperature T , the entropy density σ , the
energy density ε, the chemical potential μ, the number density
ρ, the chemical potential μψ associated with the layering ρψ ,
the thermodynamic force hP

i associated with the macroscopic
polarization Pi , and the thermodynamic conjugate Sij of the
nematic order parameter Qij .

Throughout the following, we focus entirely on the dissipa-
tive dynamics of the variables associated with the additional
degrees of ordering, i. e., layering ρψ , polar order Pi ,
and quadrupolar orientational order Qij . For the associated
dynamic balance equations, we have one dynamic equation
each for every hydrodynamic or macroscopic variable. These
dynamic equations take the form of a conservation law for
conserved quantities and are of balance equation type for
hydrodynamic variables associated with spontaneously broken
continuous symmetries and for macroscopic variables such as
order parameters close to a phase transition. The dynamic
balance equations thus take the form [43,46,47,58,60,61]

ρ̇ψ + ∂iX
ψ

i = 0, (58)

Ṗi + YP
i = 0, (59)

Q̇ij + Z
Q
ij = 0. (60)

The currents and quasicurrents X
ψ

i , YP
i , and Z

Q
ij are introduced

via Eqs. (58)–(60). Further below, the dissipative part of their
structure will be determined from the dissipation function

(GL). There are no reversible currents and quasicurrents
throughout this paper since flow effects associated with a
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velocity field �v or with a density of linear momentum �g
are generally not considered for the completely overdamped
Brownian dynamics described by DDFT. We note that the
dynamic equation associated with the smectic layering is
of conservation-law type, while the equations for polar and
nonpolar orientational order are balance laws.

In the spirit of linear irreversible thermodynamics, we
expand the dissipation function 
(GL) quadratically in the
thermodynamic forces μψ , hP

i , and Sij . Those in turn have
to be determined by taking variational derivatives

μψ = δF
δρψ

, (61)

hP
i = δF

δPi

, (62)

Sij = δF
δQij

(63)

of the suitably chosen generalized potential F with respect
to the variables, where F has been discussed in detail in
Refs. [24,25].

For the dissipation function associated with the three types
of order considered here, we have to lowest order in the
gradients


(GL)
0 =

∫
A
d�r

(
1

2
γijklSij Skl + 1

2
αij (∂iμψ )(∂jμψ )

+ 1

2
bijh

P
i hP

j + βikl(∂iμψ )Skl

+ α̃P
ij (∂iμψ )hP

j + βP
iklh

P
i Skl

)
. (64)

It is usual to consider at first only the lowest-order gradient
terms in the dissipation function. Then, one inspects whether
contributions containing more gradients are physically rel-
evant. For example, one can always add a term containing
two more gradients for diagonal terms. This was done for the
diagonal term ∼γijkl in Eq. (64), which leads to a relaxation of
the nematic order parameter close to the phase transition [58],
by the term ∼γ̃ijklmn in Eq. (70) further below, which contains
two more gradients and is the dissipative analog of the gradient
energy of the order parameter Qij .

From the dissipation function (64), we obtain for the
dissipative currents and quasicurrents the expressions

X
ψ

i = − δ
(GL)
0

δ(∂iμψ )
= −αij (∂jμψ ) − α̃P

ij h
P
j − βiklSkl, (65)

YP
i = δ
(GL)

0

δhP
i

= α̃P
ij (∂jμψ ) + bijh

P
j + βP

iklSkl, (66)

Z
Q
ij = δ
(GL)

0

δSij

= (βkij + βkji − δijβkll)(∂kμψ )

+ (
βP

kij + βP
kji − δijβ

P
kll

)
hP

k

+ (γklij + γklji − δij γklmm)Skl. (67)

In a truly isotropic phase, one has only two invariants: the
Kronecker delta δij and the totally antisymmetric symbol εijk .
To preserve the symmetries of such a system, all the diagonal
terms in Eqs. (64)–(67) contribute, while all off-diagonal
coupling terms except for one (∼α̃P

ij ) vanish. Correspondingly,

the property tensors take the form

γijkl = γ (δikδjl + δjkδil) (68)

(compare also Ref. [62]), αij = αδij , and bij = bδij for the
diagonal terms, and α̃P

ij = α̃P δij for the nonvanishing off-
diagonal term.

When comparing this result to Eqs. (55) and (56), we thus
arrive at the conclusion that in a time-dependent GL approach,
we have, even to lowest order in the gradients, one diagonal
dissipative coefficient for each variable entering the dynamics.
This has to be contrasted to the DDFT approach outlined in the
last section, where one has only three independent dissipative
transport coefficients in total (even to higher order in the
gradients, compare the discussion below). In addition, we find
here one off-diagonal contribution ∼α̃P , which has no analog
in Eqs. (37)–(39). By direct comparison, we find explicitly
γ = 2α4, α = 2α1, and b = 2α4.

As always, all the dissipative transport coefficients can
depend on all scalar variables in the system including ρψ

and the temperature T . This general dependence on scalar
quantities arises partially in the general DDFT result (55)
via the factors (1 + ψ) instead of 1, when compared to the
CMA. If one allows also for a dependence on vector- and
tensor-valued variables, such as the polarization Pi and the
quadrupolar order Qij , thus giving up the assumption of strict
isotropy, the picture outlined above changes as follows: the
coupling terms between the force associated with Sij and
the forces associated with ∂iμψ and hP

i can be mediated by
the presence of a macroscopic polarization Pi . In this case, the
property tensors βikl and βP

ikl take the form

βikl = β(δikPl + δilPk),
(69)

βP
ikl = βP(δikPl + δilPk).

Thus, these dissipative cross-coupling terms can only con-
tribute in the presence of a macroscopic polarization. Further-
more, they bring along two additional dissipative coefficients
in a dynamic GL description, while this is not the case for the
DDFT [compare Eqs. (37)–(39) of Sec. II B]. Actually, there
is no analog of the contribution ∼βikl in DDFT, while for the
contribution ∼βP

ikl we find βP = α4.
One can also take into account terms containing more

gradients in the dissipation function, as it has been done in
the DDFT approach (55) and even for the CMA (56). To the
next order in the gradients, we obtain


(GL)
1 =

∫
A
d�r

(
1

2
γ̃ijklmn(∂mSij )(∂nSkl) + 1

2
b̃ijkl

(
∂kh

P
i

)(
∂lh

P
j

)

+ β̃iklm(∂iμψ )(∂mSkl) + ζ̃ P
ijk(∂iμψ )

(
∂kh

P
j

)

+ ξ̃ P
iklmn

(
∂nh

P
i

)
(∂mSkl) + β̃P

iklmhP
i (∂mSkl)

)
. (70)

In a truly isotropic phase, the following picture emerges when
Eq. (70) is analyzed: the contribution ∼γ̃ijklmn is the dissipative
analog of the gradient energy for the nematic order parameter.
It contains one independent material parameter in two spatial
dimensions and two parameters in three spatial dimensions. In
two spatial dimensions, we have γ̃ ∼α1. The tensor b̃ijkl has
two independent parameters via

b̃ijkl = b̃1δikδjl + b̃2(δij δkl + δjkδil), (71)
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while the tensor β̃iklm contains one independent parameter

β̃iklm = β̃(δikδlm + δilδkm). (72)

The same applies to the tensor β̃P
iklm:

β̃P
iklm = β̃P(δikδlm + δilδkm). (73)

All other contributions in Eq. (70) vanish in a truly isotropic
phase. Making now an explicit comparison with DDFT, we
find b̃1 = 4α3, b̃2 = α2, and β̃ = α3, while the contribution
∼β̃P has no analog in DDFT. The reason for the absence
of this term and two other terms mentioned further up in
our DDFT result (55) lies in the fact that all missing terms
contain only one gradient, while in the DDFT equation (29),
from which Eq. (55) is derived, the gradients appear only
quadratically. To obtain also the terms with only one gradient,
one would have to generalize the DDFT equation (29) by the
addition of appropriate terms that contain only one gradient
and one angular derivative. As discussed below Eq. (30),
such terms take into account a possible translational-rotational
coupling and make the DDFT equation applicable to systems
of Brownian particles with an arbitrary shape [41].

The contributions ∼ζ̃ P
ijk and ∼ξ̃ P

iklmn in Eq. (70) start to
contribute as soon as one allows a dependence of the property
tensors on the polarization Pi . These contributions can also be
associated with the general DDFT result given by Eq. (55).
We note that all the contributions found in Eq. (55) can also
be found in the dynamic GL approach when one allows for a
dependence of the property tensors on the vector- and tensor-
valued variables Pi and Qij used here. However, in contrast to
DDFT, these dependencies bring along numerous additional
independent coefficients.

Thus, we arrive at the conclusion that the DDFT
equation (29) involves three independent dissipative coeffi-
cients in both the general case and the CMA. The corre-
sponding terms obtained in the GL framework are associated
with nine independent coefficients for the analog of the CMA,
i. e., for property tensors that do not depend on the variables.
We also note that there are three cross-coupling terms [see
Eqs. (64) and (70)], which do not exist in the current DDFT
picture.

The overall picture that emerges is therefore the following.
In a dynamic GL approach, there is at least one independent
dissipative coefficient for every dissipation channel (every
order-parameter field) entering the description. In addition,
one finds frequently dissipative cross-coupling terms that
bring along further coefficients, in particular, if one considers
a dependence of the dissipative property tensors on the
macroscopic variables. This can be contrasted to the current
DDFT picture, where one has only two dissipation channels of
diagonal nature, namely, translational and rotational diffusion.
In the present version of DDFT, there are also no independent
dissipative cross-coupling terms. These observations clearly
call for a generalization of the current DDFT equation to
incorporate processes that allow for additional dissipation on
a microscopic level. Since dissipative constants appear in the
DDFT equation only as diffusion coefficients, such a gener-
alization can be obtained in two steps. First of all, terms that
take into account a possible translational-rotational coupling
and involve further diffusion coefficients should be added to

the current form of the DDFT equation [41]. In addition, a more
complicated expression for the mobility can be used [16]. This
generalized mobility depends on the order-parameter fields
and includes a number of additional dissipative constants. It
is a necessary generalization if the hydrodynamic interaction
between the colloidal particles, which is entirely neglected by
Eq. (29), shall be taken into account.

IV. CONCLUSIONS AND POSSIBLE EXTENSIONS

In conclusion, we have proposed both microscopic and
macroscopic theoretical descriptions for the dynamics of polar
liquid crystals in two spatial dimensions. The microscopic
theory is derived from DDFT, while the macroscopic formu-
lation is based on time-dependent GL theory. We have done
this by including translational density variations, polarization,
and quadrupolar order as the basic order-parameter fields.
Most but not all phenomenologically possible couplings of
GL theory occur also in the DDFT approach. These couplings
are derived from a microscopic approach, and the associated
coupling parameters can be expressed as generalized moments
of a molecular correlation function. We further demonstrated
that the whole dynamics can be obtained from a dissipation
function.

Our theoretical framework can be used for a further explo-
ration of various dynamic processes of polar liquid crystals.
This requires numerical solutions of the microscopically
justified GL equations following numerical schemes proposed
earlier [63,64].

For future work, it is challenging to construct a generalized
DDFT that explicitly contains the momentum field as appropri-
ate for molecular dynamics or systems in flow fields [65]. This
turns out to be much more difficult than the traditional DDFT
approach for simple overdamped Brownian dynamics. But, in
principle, the way of generalization was explored by Tarazona,
Marconi, and Melchionna [66–68] and by Archer [69,70] for
molecular dynamics. An alternative derivation is based on
projector techniques [71] leading to a hydrodynamical density
functional theory [16,72]. Additional dynamic expressions for
a colloidal liquid under shear flow were recently discussed in
Ref. [65]. Furthermore, a phase-field-crystal model coupled to
flow was considered by Voigt and co-workers [73] (see also
Ref. [74]). In these extensions, one will presumably obtain
nonvanishing microscopic expressions for phenomenological
dynamic terms caused by the existence of a momentum or
velocity field. These come macroscopically mainly in two
groups, namely, contributions leading to a flow alignment
associated with reversible currents coupling extensional flow
(symmetrized velocity gradients) to orientational degrees
of freedom [46,57,61,75–81] and coupling terms between
extensional flow and variations of the moduli of nematic,
smectic, and columnar order [46,58,59,61,82,83].
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[17] H. H. Wensink and H. Löwen, Phys. Rev. E 78, 031409 (2008).
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[20] H. Löwen, T. Beier, and H. Wagner, Europhys. Lett. 9, 791

(1989).
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(2007).
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