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Computer simulations of the ordering in a hybrid cylindrical film of nematic liquid crystals
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We present an investigation of the ordering in a nematic liquid-crystal film confined between two cylindrical
surfaces with antagonistic (radial and planar) anchoring alignments. A Monte Carlo study of a Lebwohl-Lasher
model with suitable boundary conditions has been performed to calculate the ordering and the molecular
organization for different film thicknesses. The simulation results are compared with some theoretical predictions
obtained with the elastic continuum approach. The agreement between theory and simulation is improved as the
thickness decreases.
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I. INTRODUCTION

The study of confined nematic systems has attracted and is
attracting a great deal of interest both from the theoretical
and experimental point of view [1]. In the last few years
we have employed Monte Carlo computer simulations to
investigate at a microscopic level some of these systems [2].
In particular, we have studied different geometries, such as
droplets, cylinders, and films for various boundary conditions,
anchoring strengths, external fields, etc. We have shown
that this computational approach is very useful not only in
determining the thermodynamic observables of the system
but also the molecular organization that results from the
competition of the above mentioned conditions. On the other
hand, the continuum elastic theory has been a useful tool
for investigating some phenomena in nonplanar geometry, in
which unusual consequences have been found [3–10]. Here
we have started to combine the simulation and continuum
theory approaches to investigate the problem of nematics
confined between concentric cylindrical surfaces [11,12].
Even though the model, described in the next section, is
very simple, we have shown that it is sufficient to describe
adequately systems where experimental results are available,
as it proved possible for spherical Polymer Dispersed Liquid
Crystals (PDLC) droplets [13–15] and thin films [16–18].
The model has also been used to study a nematic confined
into a cylindrical pore [19,20] for which experimental studies
exist [21]. The aim of the present work is to study the effect
on molecular organization of antagonist boundaries on the two
cylindrical surfaces and of exchanging the inside and outside
anchoring conditions. We confirm, as possibly expected, that
the distortions can be strongly different even for a simple
switch of the boundary conditions, and that they tend to be
more similar as the cylindrical film thickness decreases. After
a brief description of the simulation model, we present some
Monte Carlo results obtained for some thickness values. Then
a simple elastic model is developed and used to compare the
analytical predictions with the simulation results.

II. SIMULATION MODEL

The cylindrical film model sample S used in simulations is
obtained carving two concentric cylinders from a cubic lattice
with spins at lattice points interacting with the Lebwohl-Lasher

(LL) potential [22] [Eq. (1)]. The cylindrical shell obtained has
outer and inner diameters r2 and r1, respectively, and a height
of m lattice layers. This model is well known for reproducing
the main orientational features of nematic liquid crystals. The
surface effects of the inner and outer surfaces are modeled with
two external layers of “ghost” spins, Gin and Gout, with fixed
orientations chosen to mimic the desired boundary conditions.
The boundary layers act on the inside particles according to
the simple pair interaction:

Ui,j = −εij J

[
3

2
(ui · uj )2 − 1

2

]
,

for i ∈ S, j ∈ Gin or j ∈ Gout, (1)

where εij = ε, with ε > 0 for nearest neighbors i and j , and 0
otherwise; ui and uj are the orientations of the spins at sites i

and j , respectively; and J denotes the relative strength of the
coupling between a “nematic” and a surface spin compared
to that between two nematic spins. Thus, when J = 1 the
interaction between two neighbors, one on the surface of
the nematic film and one belonging to the outside matrix,
is the same as that between two liquid-crystal spins, while
at the other extreme J = 0 would correspond to a film in a
vacuum. Here we assume for simplicity J = 1.

In the present paper we have considered the following two
different boundary conditions at the interfaces (see Fig. 1):

(i) R-Z-BC. This type has radial boundary conditions
(homeotropic, RBC) at the outer surface, that are imposed
by orienting the spins in the outside aligning layer normally
to the local surface and pointing towards the center of the
cylinder while the vertical orientation at the inner surface is
implemented with spins all aligned along Z (ZBC).

(ii) Z-R-BC. The alignments at the surfaces are inverted
with respect the previous case, i.e., ZBC at the outer surface
and RBC at the inner surface.

For each of these cases we have performed a simulation
deep in the nematic phase at a reduced temperature T ∗ = 0.2,
where T ∗ = kT /ε and k is the Boltzmann constant. We recall
that in the bulk the nematic-isotropic phase transition occurs
at a temperature T ∗ = 1.1232 [23] and that at T ∗ = 0.2 the
orientational order 〈P2〉λ, obtained from diagonalization of
the ordering matrix [2], is ≈0.99. To examine the ordering
inside the cylindrical film, various second rank order param-
eters have been calculated for the systems investigated. We
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FIG. 1. Schematic representation of the cylindrical film geometry
with the two boundary conditions studied.

notice that the ordinary second rank order parameter 〈P2〉λ
is not always appropriate as it quantifies the nematic order
with respect to an hypothetical global director which may not
exist as such in the present nonspatially uniform geometry.
However, Monte Carlo (MC) simulations offer the possibility
of evaluating some other order parameters more appropriate
to each special case. For example, it is more useful to define a
configurational order parameter, 〈P2〉C , which tends to one for
a configuration perfectly ordered according to the idealized
structure induced by the boundary conditions used (Fig. 1).
Thus

〈P2〉C = 1

N

N∑
i=1

P2(ui · ci), (2)

where ci is a unit vector representing the ideal orientation at
site i and N is the number of particles.

For example in the case of alignment along Z, we
can consider the order parameter 〈P2〉Z with ci = z which
corresponds to a perfect order when all the molecules are
oriented along the axis of the cylinder, i.e., z. Alternatively,
if we want to observe the deviation from a perfect radial
organization, we can consider a radial order parameter 〈P2〉r
which is one where all the spins are oriented along the local
radius ri , i.e., ci = ri , and would vanish when we have a
perfectly aligned or completely random system.

III. SIMULATION

We have simulated various film thicknesses keeping the
outer cylinder radius r2 = 21 constant and varying the inner
radius r1 from 1 to 18; the details of the systems used are

TABLE I. Data of the simulated cylindrical films. r1 is the inner
radius; NLC , NS1, and NS2 are the number of nematic particles, and
the number of spins belonging to surfaces S1 and S2 respectively.

r1 1 2 4 6 8 10 12 14 16 18

NLC 10208 10144 9824 9344 8576 7712 6656 5312 3744 2080
NS1 32 64 160 224 352 384 544 736 800 800
NS2 928 928 928 928 928 928 928 928 928 928

reported in Table I. The height of the sample was 8 nematic
layers, and periodic boundary conditions were employed in
this vertical direction. We have then investigated the behavior
of the various order parameters across the sample with the
aim of assessing the molecular organization inside the cylinder
film. The starting configurations of the systems were chosen to
be completely aligned along the Z direction, and the updating
of the spin orientations proceeded according to the classic
Metropolis Monte Carlo procedure [24]. In MC simulations
the calculation of the order parameters across the sample can
be performed by dividing the sample in concentric cylindrical
shells and calculating the relevant quantities in each region
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FIG. 2. Order parameters 〈P2〉λ (triangles), 〈P2〉r (circles), and
〈P2〉Z (squares) in the R-Z-BC case starting from the inner surface.
The results are for two different radii of the inner cylinder, i.e., r1 = 5
(top) and and r1 = 11 (bottom), while the radius of the outer cylinder
is r2 = 21. The values of 〈P2〉λ (triangles) and 〈P2〉Z (squares) are
perfectly superimposed for low r
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FIG. 3. Order parameters 〈P2〉λ (triangles), 〈P2〉r (circles), and
〈P2〉Z (squares) in the Z-R-BC case starting from the inner surface.
The results are for two different radii of the inner cylinder, i.e., r1 = 5
(top) and and r1 = 11 (bottom), while the radius of the outer cylinder
is r2 = 21.

so as to have the variation of the ordering on going from the
center to the border of the system. As an example, the behavior
of 〈P2〉λ, 〈P2〉r , and 〈P2〉Z with respect to the distance from
the inner to the outer surface for two different radii of the inner
cylinder are reported in Fig. 2 for the R-Z-BC and in Fig. 3 for
the Z-R-BC cases. It is clear from the plots in Fig. 2 that the
radial order parameter has an opposite behavior in comparison
with the 〈P2〉Z which is maximum at the inner surface and
about −0.5 at the outer boundary where the molecules are
orthogonally oriented with respect to the Z direction. The
standard nematic order parameter calculated with respect to
the preferred direction of the layer starts from one close
to the inner surface and after decreasing to a minimum
close to the center of the film increases up to an average value
which is the limit for a two dimensional (2D) random system.
The different thicknesses of the cylindrical film do not seem
to affect the behavior of the three order parameters.

Inverting the alignments at the cylindrical surfaces, the
ordering inside the sample becomes very different when the
thickness of the film increases. For larger thicknesses, keeping
constant r2 = 21 and decreasing r1, we can observe that the
influence of the aligning feature of the LL potential and
the ordering along Z induced by the outer surface overcome
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FIG. 4. Order parameters 〈P2〉Z vs 〈P2〉r for the R-Z-BC case
(top) and Z-R-BC case (bottom) for the various values of r1 (symbols
as in Figs. 7 and 8). The deviation from the straight line in the
Z-R-BC case for the thicker film is clear for data corresponding to the
following inner radii: r1 = 1 (crosses), r1 = 2 (squares), and r1 = 3
(circles).

the effect of the smaller number of radial particles located at
the inner surface. This might be seen in Fig. 4 where 〈P2〉Z
is plotted against 〈P2〉r for the various values of r1 in the two
cases R-Z-BC and Z-R-BC. In the first case [Fig. 4(a)] all the
data points lie on a straight line 〈P2〉Z = −〈P2〉r + 1/2, while
for the Z-R-BC case [Fig. 4(b)] there are strong deviations
from this line for the smaller inner radius r1 corresponding to
a larger film thickness. We can say that when the cylindrical
film thickness is sufficiently small, the behavior is similar to
that of a planar film for which there are no differences in
exchanging the alignment at the surfaces. This is true also for
the R-Z-BC case for all the thickness because the alignment
along Z of a few molecules at the inner surface is sufficient,
together with the aligning properties of the potential, to induce
the ordering along Z of the sample up to the middle layers. On
the contrary, a small number of molecules radially oriented
at the inner surface (Z-R-BC case) does not influence the
sample. These observations are more apparent by plotting
together the two order parameters for the two cases for the
different film thicknesses (Fig. 5).

To have an immediate qualitative view of the ordering of
the system, we have plotted representative snapshots of the
samples where each spin is given a color coding according to
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FIG. 5. Order parameters 〈P2〉Z and 〈P2〉r for the the Z-R-BC
(empty symbols) and the R-Z-BC (full symbols) cases for the different
film thicknesses with r1 = 1,2,4,6,8,10,12,14,16,18.

its values of the alignment along the Z direction (cyano). The
snapshots for some selected inner radius and for the two cases
examined are presented in Figs. 6(a) and 6(b).

IV. ELASTIC THEORY

The deformations found with the Monte Carlo simulations
can be analyzed in the Frank elastic theory context [25,26].
Because of the boundary conditions used in the simulations,
the nematic director can be written just as �n = sin φr̂ + cos φẑ,
with φ the angle between �n and ẑ. Since the cylinder is
supposed to be homogeneous in θ and z, it is possible to
assume that φ changes only with respect to the radial variable.
As the simulations were performed with fixed molecules
on the cylinder surface, this allows us to assume strong

FIG. 6. (Color) Snapshots obtained by Monte Carlo simulations
for the (a) R-Z-BC case and (b) Z-R-BC case for different radii of the
inner cylinder, i.e., r1 = 4,10,16 (from left to right).

anchoring with φ(r1) = �1 and φ(r2) = �2, for �1,2 = π/2
and �2,1 = 0 according to the situation considered.

From the elastic point of view, the Lebwohl-Lasher po-
tential corresponds to one elastic constant approximation
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FIG. 7. Order parameters 〈P2〉r and 〈P2〉Z vs distance start-
ing from the inner surface for the R-Z-BC case. The various
curves refer to the different radii of the inner cylinder, i.e.,
r1 = 1,2,4,6,8,10,12,14,16,18. The radius of the outer cylinder is
r2 = 21. The continuous lines are the elastic theory predictions while
the points are the MC results.
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FIG. 8. Order parameters 〈P2〉r and 〈P2〉Z vs the distance
starting from the inner surface for the Z-R-BC case. The various
curves refer to the different radii of the inner cylinder, i.e., r1 =
1,2,4,6,8,10,12,14,16,18. The radius of the outer cylinder is r2 = 21.
The continuous lines are the elastic theory predictions while the points
are the MC results.

(K11 = K22 = K33 = K), and the free energy density is given
as

fEL = K

2
[( �∇ · �n)2 + ( �∇ × �n)2]. (3)

For the geometry we are considering here, the free energy
per unit area can be written as

F = πK

∫ r2

r1

(
sin2 φ(r)

r2
+

[
dφ

dr

]2 )
rdr, (4)

and has to be minimized according to the variational principle,
thus leading us to search for the solutions of the nonlinear
differential equation

d2φ

dr2
+ 1

r

dφ

dr
− sin 2φ

2r2
= 0. (5)

By integrating Eq. (5) it yields∫ φ(r)

φ(r1)

dξ√
ζ − cos2 ξ

= ln

[
r

r1

]
, (6)

where ζ is an integration constant to be determined by
imposing the boundary conditions. Thus, the solution φ(r)
can be numerically obtained from Eq. (6).

FIG. 9. Optical images (top view) as obtained by Monte Carlo
simulations for the R-Z-BC case and different radii of the inner
cylinder, i.e., r1 = 2,4,6,8,10,12,14,16 (from top left to bottom
right).

In order to compare the simulation data with the predictions
of the elastic theory, we define the order parameter with respect
to the radial direction as

〈P2〉Er (r) = 3
2 cos2 φ(r) − 1

2 , (7)

and the order parameter with respect to z in the form

〈P2〉EZ (r) = 3

2
cos2

[
π

2
− φ(r)

]
− 1

2
= −〈P2〉r (r) + 1

2
. (8)

These quantities are plotted together with the simulation data
for comparison of both procedures in Figs. 7 and 8. The elastic
theory predictions are in good agreement with the simulation
data for the smaller thicknesses (high values of r1) for which
the results of the two approaches are indeed very similar. Even
though the profiles of the simulation data and of the theoretical
curve have some similarities, for larger thicknesses, there are
also some deviations between the results. This can be probably
due to the fact that the LL potential is a nearest neighbor one
and the boundary conditions effects propagate up to 1-2 lattice
spacing. Then, for the larger thicknesses, at the middle of the
cylindrical film, the aligning effect of the potential overcomes
the surface effects.

V. POLARIZED MICROSCOPY OPTICAL IMAGES

To qualitatively appreciate the differences between the two
cases studied here, we have also simulated the polarizing mi-
croscopy textures which have proved useful to investigate other
confined nematic systems, such as droplets [13–15], planar

FIG. 10. Optical images (top view) as obtained by Monte Carlo
simulations for the Z-R-BC case and different radii of the inner
cylinder, i.e., r1 = 2,4,6,8,10,12,14,16 (from top left to bottom
right).
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FIG. 11. Lateral views of the optical images as obtained by Monte
Carlo simulations for the two boundary cases and different radii
of the inner cylinder, i.e., r1 = 2,4,6,8,14,18 (from the top to the
bottom).

films, and twisted nematic display cells [16–18]. The textures
were simulated by means of a Muller matrix approach [27],

assuming, as usual, that the molecular domains represented
by the spins act as optical retarders on the light propagating
through the sample [28]. The following parameters were
employed for computing the optical textures: film thickness
d = 5.3 μm, ordinary and extraordinary refractive indices
no = 1.5 and ne = 1.66, respectively, and light wavelength
λ0 = 545 nm [29,30]. The results are presented in Figs. 9 (top
views), 10 (top views), and 11 (lateral views). Also from these
images it is clear that no appreciable differences can be seen
between the two boundary cases for the smaller thicknesses,
while the optical patterns are different and distinguishable for
the thicker film.

VI. CONCLUSIONS

We have studied a nematic confined between concentric
cylindrical surfaces with different alignments. We have tackled
the problem by means of Monte Carlo simulations of a
simple lattice spin model and elastic theory. The simulation
results of the ordering inside the cylindrical film are in a
fair agreement with the analytical predictions for the various
film thicknesses. The agreement between the simulations and
the theory improves as the thickness decreases. In the theory
we have neglected any possible spatial dependence of the
elastic constant. This approximation works well when the
separation between the cylinders is small. In addition, we
remark that the order parameter obtained from the simulation
varies with the position inside the film, while the one
intervening in the spatial dependence of the elastic constant
is essentially unchangeable [25]. We have also switched the
surface alignments (firstly radial at the outer surface and
aligned along Z at the inner surface, and secondly the opposite
boundary ordering), and the results are indistinguishable for
the cases when the film is sufficiently thin. These results are
also confirmed by the elastic theory. To have a qualitative
view, which can be eventually observed in real experiments,
we have simulated the optical images as obtained by polarizing
microscopy.
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