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Several experiments have reported that ferroelectric nanoparticles have drastic effects on nematic liquid
crystals—increasing the isotropic-nematic transition temperature by about 5 K, and greatly increasing the
sensitivity to applied electric fields. In a recent paper [Lopatina and Selinger, Phys. Rev. Lett. 102, 197802
(2009)], we modeled these effects through a Landau theory, based on coupled orientational order parameters for
the liquid crystal and the nanoparticles. This model has one important limitation: Like all Landau theories, it
involves an expansion of the free energy in powers of the order parameters, and hence it overestimates the order
parameters that occur in the low-temperature phase. For that reason, we now develop a new Maier-Saupe-type
model, which explicitly shows the low-temperature saturation of the order parameters. This model reduces
to the Landau theory in the limit of high temperature or weak coupling, but shows different behavior in the
opposite limit. We compare these calculations with experimental results on ferroelectric nanoparticles in liquid
crystals.
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I. INTRODUCTION

One important goal of modern liquid-crystal research is
to enhance the properties of liquid crystals through physical
methods, without the need for new chemical synthesis. One
way to achieve this goal is to put colloidal particles into
liquid crystals. If the particles have a length scale of microns,
they induce elastic distortions of the liquid crystals, and
these distortions mediate an effective interaction between
the particles. The particles may then form a periodic array,
leading to a composite material with potential applications in
photonics [1–6]. By comparison, if the particles have a length
scale of 10–100 nm, they are too small to distort the liquid
crystal. In that case, the system enters into another regime of
behavior, in which the particles function as molecular additives
to change the effective properties of the liquid-crystal host.
One particularly interesting case occurs if the particles are
ferroelectric. Experiments have shown that low concentrations
of ferroelectric Sn2P2S6 or BaTiO3 nanoparticles increase the
orientational order parameter, increase the isotropic-nematic
transition temperature, and decrease the switching voltage for
the Frederiks transition [7–14]. Thus, they provide a new
opportunity to enhance the properties of liquid crystals for
technological applications.

To make further progress with these materials, it is
essential to develop a theory for the interaction between
liquid crystals and ferroelectric nanoparticles. In previous
theoretical research, Reshetnyak et al. have developed a
theoretical approach based on electrostatics [12,13,15]. In this
theory, the key issue is how an ensemble of nanoparticles
with aligned dipole moments can polarize the liquid-crystal
molecules, hence increasing the intermolecular interaction.
This electrostatic effect enhances the isotropic-nematic transi-
tion temperature and reduces the Frederiks transition voltage.
In related research, Pereira et al. have performed molecular
dynamics simulations of ferroelectric nanoparticles immersed
in a nematic liquid crystal [16]. These simulations also
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assume that the nanoparticles are aligned, and they also find a
substantial enhancement of liquid-crystal order.

In a recent paper [17], we proposed a different type of theory
for the statistical mechanics of ferroelectric nanoparticles
in liquid crystals. In that theory, we suppose that both the
liquid crystals and the nanoparticles have distributions of
orientations, as illustrated in Fig. 1. These distributions are
characterized by two orientational order parameters, which in-
teract with each other. Using a Landau theory, we showed that
the coupling stabilizes the nematic phase. By estimating the
strength of the coupling, we calculated the enhancement in the
isotropic-nematic transition temperature. We also predicted
that the nanoparticles would greatly increase the Kerr effect,
the response of the isotropic phase to an applied electric field.

This concept of interacting order parameters for the liquid
crystal and the dopant is somewhat related to early work by
Luckhurst and collaborators [18–22], who studied orienta-
tional order in multicomponent mixtures. It has been extended
recently by Gorkunov and Osipov [23], who investigate
short-range interactions based on nanoparticle shape rather
than electrostatics.

Although our work of Ref. [17] demonstrates an important
physical mechanism for stabilizing orientational order, we
must acknowledge that it has one mathematical limitation:
Like all Landau theories, it involves an expansion of the free
energy in powers of the order parameters. This expansion is
valid when the order parameters are small, but it breaks down
when they become large. In particular, the theory allows the
order parameters to become larger than 1, which is clearly
impossible. For ferroelectric nanoparticles in a liquid crystal,
the nanoparticle order parameter is not necessarily small, even
near the isotropic-nematic transition.

The purpose of the current paper is to generalize the
previous theory by eliminating the assumption that the order
parameters are small. For this generalization, we now use a
Maier-Saupe-type theory instead of a Landau theory. We still
consider the same physical concept of coupled orientational
order parameters for the liquid crystals and the nanoparticles,
and we still use the same energy of interaction between them.
However, we now use a more general expression for the
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FIG. 1. (Color online) Schematic illustration of ferroelectric
nanoparticles suspended in a liquid crystal. The electrostatic dipole
moments of the nanoparticles have a distribution of orientations.

entropy, not a power series, which enforces the constraint that
the order parameters cannot become larger than 1. This change
allows us to avoid the potential mathematical inconsistency of
Landau theory.

Like our previous calculation, the work presented here
shows that doping liquid crystals with ferroelectric nanoparti-
cles enhances the isotropic-nematic transition temperature. In
the limit of weak coupling between the nanoparticles and the
liquid crystal, the Maier-Saupe-type theory exactly reduces to
the Landau theory. However, in the case of strong coupling, the
new theory predicts a smaller but still substantial enhancement.
Rough estimates suggest that the experimental system is in the
limit of strong coupling, so it is important to use this modified
theory. Furthermore, the work presented here also predicts the
Kerr effect as a function of applied electric field. In the limit of
low electric field, the Maier-Saupe-type theory exactly reduces
to the Landau theory. However, for larger field, the nanoparticle
order saturates and the enhanced Kerr effect is cut off.

The plan of this paper is as follows. In Sec. II we
present the formalism of Maier-Saupe theory, with interacting
orientational distributions for liquid-crystal molecules and
nanoparticles. In Sec. III we apply this formalism to calculate
the isotropic-nematic transition temperature, and determine the
enhancement due to nanoparticles. In Sec. IV we use the same
formalism to calculate the Kerr effect of induced orientational
order under an applied electric field, and investigate how this
effect depends on the magnitude of the field. Finally, in Sec. V
we discuss the main conclusions of this study.

II. OVERVIEW OF MAIER-SAUPE THEORY

In this section we introduce the free energy for a system of
liquid-crystal molecules with ferroelectric nanoparticles. To
construct the free energy, we use the fundamental equation of
mean-field theory,

F = 〈H 〉 + kBT

〈
ln

N∏
i=1

�i

〉
, (1)

where the first term is the energy, the second term is the
entropic contribution to the free energy, and the averages are
taken over the single-particle distribution function �i for each

particle i. Hence, the first step is to define the distribution
functions for liquid-crystal molecules and nanoparticles.

Liquid-crystal molecules are rod-shaped objects, with each
molecule characterized by the direction of its long axis m. In
the nematic phase, these axes are preferentially oriented along
the average director n, and hence each molecule experiences
an effective aligning potential due to its neighbors. Because
the molecules are equally likely to point along +n or −n,
the effective aligning potential is proportional to the second
Legendre polynomial P2(cos θ ), where θ is the angle between
m and n, as the leading term in a Legendre series. Hence, the
single-molecule distribution function can be written as

�LC(θ ) = exp[ULCP2(cos θ )]∫ 1
−1 d(cos θ ) exp[ULCP2(cos θ )]

. (2)

Here, ULC is a variational parameter, which is related to the
standard nematic order parameter SLC = 〈P2(cos θ )〉 by

SLC =
∫ 1
−1 d(cos θ )P2(cos θ ) exp[ULCP2(cos θ )]∫ 1

−1 d(cos θ ) exp[ULCP2(cos θ )]
. (3)

Note that ULC ranges from 0 to ∞, while SLC ranges from 0
to 1.

We can now calculate the free energy of a pure liquid-crystal
system. Maier-Saupe theory assumes that the interaction
energy between neighboring molecules i and j is proportional
to −(mi · mj )2. With the assumed distribution function, the
average interaction energy becomes

F LC
energetic = 〈H 〉 = − 1

3JNLCS2
LC, (4)

where NLC is the number of liquid-crystal molecules in the
system, and J is an energetic parameter proportional to the
interaction strength and the number of neighbors per molecule.
Furthermore, the entropic contribution to the free energy can
be written as

F LC
entropic = kBT NLC〈ln �LC〉

= kBT NLC
(
ULCSLC

− ln
[ ∫ 1

−1 d(cos θ ) exp[ULCP2(cos θ )]
])

. (5)

By combining these pieces, we obtain the total free energy of
the liquid crystal,

F

NLCkBT
= − J

3kBT
S2

LC + ULCSLC

− ln
[ ∫ 1

−1 d(cos θ ) exp[ULCP2(cos θ )]
]
. (6)

The free energy of Eq. (6) is a function of the temperature T

and the variational parameter ULC, with SLC defined implicitly
as a function of ULC through Eq. (3). By minimizing the free
energy over ULC for varying temperature, we can find the liquid
crystal has a first-order transition from the isotropic phase with
ULC = SLC = 0 to the nematic phase with

ULC = 1.95, SLC = 0.429. (7)

The numerical solution for the transition temperature in this
pure liquid crystal is

TNI = 0.147
J

kB
. (8)
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Also, we can find an analytic solution for the limit of
supercooling,

T ∗ = 2J

15kB
= 0.133

J

kB
. (9)

From experiments we know T ∗ and TNI for any particular
liquid-crystal material, so we can use Eq. (8) or (9) to determine
J for that material,

J = 6.81kBTNI. (10)

Once we add nanoparticles to the system, we get another
distribution function for the orientations of the nanoparticle
dipole moments. In the absence of an external field, the
only physical mechanism that aligns the nanoparticles is the
interaction with the liquid crystal. Hence, the effective aligning
potential on the nanoparticle dipole moments should also be
proportional to P2(cos θ ), as the leading term in a Legendre
series. However, the magnitude of the nanoparticle order may
be different from the magnitude of the liquid-crystal order.
Hence, we can write the nanoparticle distribution function as

�NP(θ ) = exp[UNPP2(cos θ )]∫ 1
−1 d(cos θ ) exp[UNPP2(cos θ )]

, (11)

where UNP is a variational parameter for the nanoparticles. The
orientational order parameter SNP of the nanoparticles can be
defined by analogy with the liquid-crystal order parameter as

SNP =
∫ 1
−1 d(cos θ )P2(cos θ ) exp[UNPP2(cos θ )]∫ 1

−1 d(cos θ ) exp[UNPP2(cos θ )]
. (12)

Just as in the liquid-crystal case, note that UNP ranges from 0
to ∞, while SNP ranges from 0 to 1.

As we discussed in our previous paper [17], the ferroelectric
nanoparticles create static electric fields, which interact with
the dielectric anisotropy of the liquid crystal. By averaging the
interaction energy over the distribution functions �LC and �NP,
we obtain

Finteraction = −KNPNNPSLCSNP. (13)

In this expression, NNP is the number of nanoparticles in the
system, and KNP is an energetic parameter representing the
strength of the interaction. For an unscreened electrostatic
interaction, we derived

KNP = ε0�εp2

180π (ε0ε)2R3
= 4πε0�εP 2R3

405(ε0ε)2
, (14)

where p, P , and R are dipole moment, polarization, and radius
of a nanoparticle, and ε and �ε are the dielectric constant and
dielectric anisotropy of the bulk liquid crystal. If the interaction
is screened by counterions, then KNP is somewhat reduced, but
it is still substantial as long as the Debye screening length is
greater than the nanoparticle radius. Hence, orientational order
of the liquid-crystal molecules tends to favor orientational
order of the nanoparticles, and vice versa.

Whenever there is an aligning effect, there must be
an entropic cost. By analogy with the entropic term for
liquid-crystal molecules, the entropic penalty for aligning the

nanoparticles is

F NP
entropic = kBT NNP〈ln �NP〉

= kBT NNP
(
UNPSNP

− ln
[ ∫ 1

−1 d(cos θ ) exp[UNPP2(cos θ )]
])

. (15)

The total free energy for liquid-crystal molecules and
nanoparticles is now the combination of Eqs. (6), (13), and
(15),

F

NLCkBT
= − J

3kBT
S2

LC − νKNP

kBT
SLCSNP

+ULCSLC + νUNPSNP

− ln
[ ∫ 1

−1 d(cos θ ) exp[ULCP2(cos θ )]
]

− ν ln
[ ∫ 1

−1 d(cos θ ) exp[UNPP2(cos θ )]
]
. (16)

Note that we have normalized this free energy by the number of
liquid-crystal molecules, not by the number of nanoparticles.
For that reason, all the nanoparticle terms in Eq. (16)
contain a factor of ν = NNP/NLC, the ratio of the number of
nanoparticles to the total number of liquid-crystal molecules.

To summarize, we have derived the free energy for the
system of ferroelectric nanoparticles suspended in a liquid
crystal. The first term represents the aligning energy favoring
orientational order of the liquid crystal, while the second term
describes the mutual aligning interaction between nanoparticle
order and liquid-crystal order. The last terms are entropic
terms that give the free-energy penalty for any liquid-crystal
or nanoparticle order. The free energy is a function of two
variational parameters, ULC and UNP, and we formulate our
problem as minimization over those quantities. Once we find
them, we can calculate the order parameters SLC and SNP using
Eqs. (3) and (12).

III. TRANSITION TEMPERATURE

Experiments show a substantial increase in the isotropic-
nematic transition temperature for liquid crystals doped with
ferroelectric nanoparticles. In order to understand this phe-
nomenon and predict how to enhance it further, we investigate
the isotropic-nematic transition using the free energy of
Eq. (16).

Two distinct limiting cases of this transition are possible.
If the nanoparticle order is small, then all of the integrals in
Eq. (16) can be expanded in Taylor series for small ULC and
UNP. The expressions for the order parameters SLC and SNP

from Eqs. (3) and (12) can also be expanded in power series
in ULC and UNP. Hence, the free energy can be expressed as a
series in ULC and UNP, or equivalently as a series in SLC and
SNP. After some algebraic transformations, we obtain

F

NLCkBT
= const. +

(
5

2
− J

3kBT

)
S2

LC + 5

2
νS2

NP

− νKNP

kBT
SNPSLC + · · · . (17)

This expression is exactly the Landau free energy as a series
in the order parameters, as discussed in our earlier paper [17].
To find the isotropic-nematic transition, we first minimize over
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SNP to obtain

SNP = KNP

5kBT
SLC. (18)

We then substitute this value into the free energy series to
obtain

F

NLCkBT
= const. +

(
5

2
− J

3kBT
− νK2

NP

10(kBT )2

)
S2

LC + · · · .
(19)

The change in the coefficient of S2
LC shows that the isotropic-

nematic transition temperature is shifted upward by

�TNI = νK2
NP

25k2
BTNI

. (20a)

In the notation of the previous paper, this shift can be written
as

�TNI = πφNPR
3

3TNIρLC

(
2�εP 2

675kBε0ε2

)2

, (20b)

where ρLC is the number of liquid-crystal molecules per
unit volume and φNP = 4

3πR3ρLCν is the volume fraction of
nanoparticles.

Note that the power-series approximation works well as
long as the energetic parameter KNP is small compared
with 5kBT . In that case the nanoparticle order parameter
SNP is small compared with SLC, which is approximately
0.429 just below the isotropic-nematic transition. However, the
approximation breaks down if KNP becomes large compared
with 5kBT , so that SNP is large compared with SLC. In the latter
case, the prediction for SNP would be greater than 0.429 on the
nematic side of the transition. It might even be greater than 1,
which would be unphysical. This unphysical prediction arises
because the power-series expansion cannot take account of the
saturation of the order parameters at low temperatures. Hence,
for large KNP we must consider a different limiting case.

In the limit of large KNP, the nanoparticle order is large; i.e.,
the variational parameter UNP approaches infinity and the order
parameter SNP approaches 1. In that case we can approximate
Eq. (12) to obtain

SNP = 1 − 1

UNP
. (21)

We can then put this approximation into the free energy of
Eq. (16), expand the nanoparticle entropic integral for large
UNP, and minimize the resulting free energy over UNP. This
calculation gives

UNP = KNP

kBT
SLC, (22a)

SNP = 1 − kBT

KNPSLC
. (22b)

Note that this calculation is self-consistent, showing large
nanoparticle order when KNP � kBT . Using Eqs. (22), we
obtain the approximate free energy of the nematic phase

F

NLCkBT
= − J

3kBT
S2

LC + ULCSLC

− ln
[ ∫ 1

−1 d(cos θ ) exp[ULCP2(cos θ )]
]

− νKNP

kBT
SLC + ν ln

(
3KNPSLC

2kBT

)
. (23)

This free energy is equivalent to the classical Maier-Saupe
free energy of Eq. (6), except for the last two terms, which
represent the energy and entropy of well-ordered nanoparticles
interacting with the liquid crystal. These terms are proportional
to the nanoparticle concentration ν = NNP/NLC, which is
small. These terms shift the nematic free energy, and hence
shift the isotropic-nematic transition temperature. To find the
value of the shift, we must minimize the free energy.

To minimize the free energy, we use perturbation theory.
For this calculation, we define the parameters

ULC = U 0
LC + �ULC, (24a)

TNI = T 0
NI + �TNI, (24b)

where U 0
LC and T 0

NI are the known results from the classical
Maier-Saupe free energy, given in Eqs. (7) and (8), and �ULC

and �TNI are perturbations due to addition of ferroelectric
nanoparticles. For low nanoparticle concentrations, these
perturbations should both be of order ν. We now expand the
free energy to lowest order in these perturbations, minimize
over �ULC, and solve for �TNI such that the isotropic and
nematic free energies are equal. The resulting shift in the
transition temperature is

�TNI = 1.03
νKNP

kB
= 1.03

φNP�εP 2

135kBρLCε0ε2
. (25)

Comparing Eqs. (20) and (25), we can see that there
are two regimes for the shift in the transition temperature.
For small interaction KNP (i.e., the Landau regime), the
shift �TNI increases as K2

NP, but for large KNP, it increases
more slowly as KNP. In both cases it is proportional to the
nanoparticle concentration ν. Equivalently, if we work at fixed
nanoparticle volume fraction φNP, our theory predicts that
�TNI will increase with the nanoparticle material polarization
P 4 and radius R3 in the weak-interaction regime, but it will
only increase as P 2 and will be independent of R in the
strong-interaction regime. (It will be independent of R as long
as the particles are small enough so that they do not distort the
liquid-crystal alignment.)

Our predictions for �TNI can be compared with the previous
predictions of Li et al. [13]. They calculated that �TNI should
increase as the volume fraction φNP and as the polarization P 2,
and should be independent of the radius R. These predictions
for the scaling agree with our predictions for the strong-
interaction regime (although not for the weak-interaction
regime). We believe that this agreement is just a coincidence,
because the theories are quite different. One way to see the
difference is through the dependence on dielectric anisotropy
�ε: They predict that �TNI should scale as (�ε)2, but we
calculate that it should scale linearly with �ε in the strong-
interaction regime. This difference arises because their model
considers one liquid-crystal molecule interacting through the
dielectric anisotropy �ε with one nanoparticle, which then
interacts through �ε with another liquid-crystal molecule,
thus giving an effective liquid-crystal interaction proportional
to (�ε)2. By comparison, in the strong-interaction regime
our model considers the direct influence of well-ordered
nanoparticles on the liquid crystal, and hence has only one
power of �ε.
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For a numerical estimate, we use typical experimental
values of the parameters φNP = 0.5%, P = 0.26 C m−2,
R = 35 nm, ρLC = 2.4 × 1027 m−3, kB = 1.38 × 10−23 J K−1,
ε0 = 8.85 × 10−12 C2 N−1 m−2, and �ε ≈ ε ≈ 10. Those
parameters imply ν = 1 × 10−8, KNP = 1 × 10−15 J, and
hence KNP/(kBT ) = 2 × 105, so the system is definitely in
the strong-interaction regime. Our prediction for the shift in
transition temperature is then

�TNI ≈ 1 K. (26)

This value is consistent with the order of magnitude that
is observed in experiments. Note that in this prediction we
are using the bulk polarization of the ferroelectric material
BaTiO3, which is P = 0.26 C m−2. In this respect, our current
estimate is different from our previous paper [17], where we
assumed P = 0.04 C m−2 because of an understanding that the
bulk polarization is reduced by surface effects in nanoparticles.
The issue of estimating the polarization of nanoparticles is
subtle, as discussed in Ref. [15].

As a final point about the phase diagram, we should mention
that the model defined by the free energy (16) can exhibit one
additional phase, between isotropic and nematic, which occurs
if the parameter KNP is sufficiently large. In this intermediate
phase, the nanoparticles have substantial orientational order
(with SNP comparable to the Maier-Saupe order parameter of
0.429), but the liquid crystal has only very slight orientational
order [with SLC of order νKNP/(kBT )]. For that reason, we
might call it a “seminematic’ phase. It is a perturbation on the
pure liquid crystal’s isotropic phase, not on the nematic phase.
The seminematic phase is probably an artifact of the mean-field
theory used here. It can only exist because the very slight order
of the liquid crystal mediates an aligning interaction between
the nanoparticles. This slight orientational order is unlikely to
persist when one includes fluctuations in the liquid crystal.

IV. KERR EFFECT

Apart from the phase diagram, another important issue is
the response of a liquid crystal to an applied electric field. In the
isotropic phase, an applied field E induces orientational order
proportional to E2, known as the Kerr effect. In most pure
liquid crystals, the Kerr effect is quite small, and can only be
observed for very large fields. However, in our previous paper,
we predicted that ferroelectric nanoparticles can enhance the
Kerr effect by several orders of magnitude. We would like
to assess how this prediction is modified by the Maier-Saupe
theory presented here.

In the presence of an electric field, ferroelectric nanoparti-
cles will have polar order along the field; i.e., the orientational
distribution function will no longer have a symmetry between
the directions +n and −n. Hence, we must change the
nanoparticle distribution of Eq. (11) to

�NP(θ ) = eUNP
1 P1(cos θ)+UNP

2 P2(cos θ)∫ 1
−1 d(cos θ )eUNP

1 P1(cos θ)+UNP
2 P2(cos θ)

. (27)

Here, UNP
1 and UNP

2 are two variational parameters, which
act as effective fields on the polar and nematic order of
the nanoparticle distribution function, as described by the

Legendre polynomials P1(cos θ ) and P2(cos θ ), respectively.
They generate polar and nematic order parameters, defined as

MNP =
∫ 1
−1 d(cos θ )P1(cos θ )eUNP

1 P1(cos θ)+UNP
2 P2(cos θ)∫ 1

−1 d(cos θ )eUNP
1 P1(cos θ)+UNP

2 P2(cos θ)
, (28a)

SNP =
∫ 1
−1 d(cos θ )P2(cos θ )eUNP

1 P1(cos θ)+UNP
2 P2(cos θ)∫ 1

−1 d(cos θ )eUNP
1 P1(cos θ)+UNP

2 P2(cos θ)
. (28b)

We still assume that the liquid-crystal distribution function is
purely nematic, not polar, as given by Eq. (2).

The applied electric field E adds two contributions to the
energy of the system,

F field
energetic = −ε0�ε

3ρLC
E2SLCNLC − pEMNPNNP. (29)

Here, the first term is the interaction of the field with the
dielectric anisotropy of the liquid crystal, and the second term
is the interaction with the dipole moments of the nanoparticles.
With these energetic terms, together with the entropy of the
distribution function, the free energy becomes

F

NLCkBT
= − J

3kBT
S2

LC−νKNP

kBT
SLCSNP

− ε0�εE2

3kBTρLC
SLC − νpE

kBT
MNP

+ULCSLC + νUNP
1 MNP + νUNP

2 SNP

− ln
[ ∫ 1

−1 d(cos θ )eULCP2(cos θ)
]

− ν ln
[∫ 1

−1 d(cos θ )eUNP
1 P1(cos θ)+UNP

2 P2(cos θ)
]
. (30)

The next step is to minimize this free energy over all
three variational parameters ULC, UNP

1 , and UNP
2 . For this

minimization, there are four distinct regimes of electric field,
as indicated in Fig. 2.

(a) If the field is sufficiently small, E � kBT/p, it induces
only slight order in the liquid-crystal and nanoparticle dis-
tributions. In that case, we can expand the free energy as a
power series in all the variational parameters. This expansion is

FIG. 2. (Color online) Four regimes of the Kerr effect, derived
from a numerical minimization of Eq. (30) with the parameters given
in the text. A log-log scale is used to show all the regimes on a single
plot.
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exactly the Landau theory presented in our previous paper [17].
We can then minimize the free energy over all the variational
parameters to obtain

SLC = E2

15kB(T − T ∗
doped)

(
ε0�ε

ρLC
+ νKNPp

2

5(kBT )2

)
, (31)

where T ∗
doped = T ∗ + �TNI is the limit of supercooling of the

nanoparticle-doped liquid crystal, combining Eqs. (9) and (20).
In this expression, the first term is the conventional Kerr effect
without nanoparticles, and the second term is an additional
contribution due to the aligning effect of the nanoparticles.
Note that both terms are proportional to E2. With the numerical
estimates presented above, the second term is several orders
of magnitude larger than the first, and hence the nanoparticles
greatly increase the Kerr effect in this regime.

(b) For larger field, in the regime kBT/p � E �
[νKNPρLC/(ε0�ε)]1/2, the nanoparticle order parameters MNP

and SNP saturate near the maximum value of 1. In that case,
we can no longer expand the free energy as a power series
in the nanoparticle parameter, but we can still expand it in
the liquid-crystal parameter. Minimizing the free energy then
gives

SLC = 1

15kB(T − T ∗)

(
ε0�εE2

ρLC
+ 3νKNP

)
. (32)

Once again, the first term is the conventional Kerr effect
without nanoparticles, and the second term is the additional
contribution from the nanoparticles, but now the second
term is independent of electric field. The second term is
still much larger than the first, and hence the Kerr effect is
approximately constant with respect to field in this regime.
Note that the plateau value SLC ≈ 3νKNP/[15kB(T − T ∗)] =
φNP�εP 2/[675ρLCε0ε

2kB(T − T ∗)] is independent of
nanoparticle radius R for fixed volume fraction φNP.

(c) For even larger field, [νKNPρLC/(ε0�ε)]1/2 � E �
[kB(T − T ∗)ρLC/(ε0�ε)]1/2, the order parameter SLC is still
given by Eq. (32), but now the first term becomes larger than
the second. In this regime, SLC again increases as E2. It is
similar to the conventional liquid-crystal Kerr effect, but with
an extra constant contribution from the nanoparticles.

(d) For the largest field, [kB(T − T ∗)ρLC/(ε0�ε)]1/2 � E,
the order parameter SLC saturates at the maximum value of 1.

To get a full picture of the behavior through all these
regimes, we minimize the free energy of Eq. (30) numerically,
using the parameters P = 0.07 C m−2, T = 330 K, T ∗ =
280 K, and other parameters as listed at the end of Sec. III.
(This reduced value of P is used to be sure that the system will
be in the true isotropic rather than the “seminematic” phase.)

The results of this calculation are shown by the black line in
Fig. 2. By comparison, the red line shows the limiting case
of regime (a), and the green line shows the approximation for
regimes (b)–(d). We see that the numerical solution overlaps
the limiting cases and connects them.

Note that the low-field regime (a) is the regime where
Landau theory is valid, and it is where the nanoparticles
give the greatest enhancement of the conventional Kerr
effect. However, this regime will be difficult to observe in
experiments, because the induced order parameter SLC is so
small, on the order of 10−4. Typical optical experiments can
only detect a birefringence corresponding to SLC on the order
of 10−2, which does not occur until regime (c), which is closer
to the conventional Kerr effect.

V. CONCLUSIONS

In our previous paper [17], we developed a Landau theory
for the statistical mechanics of ferroelectric nanoparticles
suspended in liquid crystals. This theory differs from other
models by considering the orientational distribution function
of the nanoparticles as well as the liquid crystal. It shows a
coupling between the nanoparticle order and the liquid crystal
order, which leads to an increase in the isotropic-nematic tran-
sition temperature and in the Kerr effect. In the current paper,
we consider the same physical concept, but we improve the
mathematical treatment by using a Maier-Saupe-type theory.
This theory reduces to the previous Landau theory in the limit
of weak interactions (for the isotropic-nematic transition) or
weak electric fields (for the Kerr effect). However, it changes
the results in the opposite limit, when the order parameters
begin to saturate. For that reason, the new theory should make
more accurate predictions for experiments.

In general, the concept of coupled orientational distribution
functions should be useful for many other systems beside
ferroelectric nanoparticles in liquid crystals. For example, it
applies to any type of nonspherical colloidal particles, such
as carbon nanotubes, in a liquid-crystal solvent, as studied in
Ref. [23]. It also applies to two distinct species of nonspherical
colloids suspended in an isotropic solvent, which could have
a coupled ordering transition. Such systems would provide
further opportunities to investigate the theory presented here.
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