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Two transitions between isotropic and nematic phases in confined liquid crystals
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The molecular mean-field theory for the nematic-isotropic (N-Iso) phase transition in the vicinity of the surface
is derived. We have shown that the nematic order parameter in liquid crystal near the surface is generally different
from that in the bulk. It is never equal to zero if the anisotropic interaction with the surface is present. At the same
time, transition from the phase with large nematic order parameter at the surface to the phase with small nematic
order parameter at the surface is possible on heating. This surface transition always happens at higher temperatures
than N-Iso phase transition related to the bulk. The theoretical prediction was well reproduced experimentally.
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Because of the fluidic nature of liquid crystals (LCs),
their physical properties are critically influenced by surfaces.
Many surface-mediated phenomena have been reported (i.e.,
surface-induced ordering [1–5], surface memory effect [6,7],
anchoring transition [8,9], etc.). We may ask whether the
phase transition is also influenced by the surface or not.
Actually Boamfa et al. [10] reported a prewetting transition
in a LC system without distinct thermodynamic information.
The boundary layer transition has been theoretically predicted
as well [11–14]. Ordering of LC molecules at a hard wall in
the framework of the Onsager approximation was considered
in Ref. [15]. Biaxial N phase induced by the surface was also
predicted theoretically [16] and by computer simulation [17].
Landau-de Gennes formalism for the description of anchoring
of nematic LCs and N-Iso transition was derived in
Refs. [18,19]. Recently, we found two distinct phase
transitions between Iso and N phases in a polymer-dispersed
LC system based on two experimental results [i.e., (i) a sharp
heat anomaly peak above a broad transition peaks and (ii)
two successive pretransitional increases of birefringence on
cooling from Iso to N] [20]. Here we developed a generalized
Maier-Saupe theory [21–23] considering the interactions
between molecules as a mechanism for transmission of the
order parameter from the surface to the bulk, and succeeded
in description of two temperature-induced Iso-N phase
transitions at the surface and in the bulk.

Let us first demonstrate one experimental result:
highly-sensitive differential scanning calorimetry (HS-DSC)
and birefringence measurements. The sample used was a
polymer-dispersed LC, a mixture of 4’-n-hepsylcyanobipheny
(7CB) and photocurable polymer NOA81 (Norland Optics)
(7CB/NOA81 = 69.9/30.1 wt%). Figure 1 reveals the
temperature dependence of (a) retardation and (b) heat
anomaly. Temperature dependence of retardation demonstrates
a two-step change. Namely, the blue dashed line (coinciding
with sharp HS-DSC peak) is located at the temperature where
retardation starts to show up with even a small jump (see
inset), which is attributed to the Iso-N transition at the surface
based on our previous measurement using a LC mixture E7

*http://polly.phys.msu.ru/∼emel/

(Merck) [20]. The second onset of retardation (green dash dot
line) indicates the temperature where the bulk nematic order
starts to develop.

We consider a simple geometry; LC molecules are located
at a flat polymeric surface. The simple illustrations of local
molecules are shown in Fig. 2. Since any direct intermolecular
interaction is very short range, the surface influences directly
only the nearest molecules, but this influence is transmitted
through the bulk because of the interactions of the LC
molecules with each other. The bulk free energy of LC per
unit area, which is parallel to the surface, can be written
as a generalized Maier-Saupe theory for inhomogeneous
distribution of the nematic order along the z coordinate

F = ρkBT

∫
d2a1

∫
dz1f [(a1 · n),z1] ln{f [(a1 · n),z1]}

+ 1

2
ρ2

∫
d2a1

∫
d2a2

∫
dz1

∫
d3r12f [(a1 · n),z1]

× f [(a2 · n),z2]V12(a1,a2,r12), (1)

where ρ is the molecular density, zi is the distance of molecule
i from the surface. In Eq. (1) the orientational distribution
function for each molecule f [(ai · n),zi] is assumed to
depend on the distance from the surface, V12(a1,a2,r12) is
the interaction potential between molecules 1 and 2. The
first term in Eq. (1) is the orientational entropy and the
second term is the internal energy. Since the distribution
function f [(a2 · n),z2] is assumed to be weakly dependent on
the distance between molecules r12 with respect to that for the
intermolecular potential V12(a1,a2,r12), then one can estimate
the integral over the intermolecular vector r12 in Eq. (1) by the
saddle point method [24]. Expanding the distribution function
f [(a2 · n),z2] in Taylor series with respect to coordinate z at
point r1, one obtains

ρ

∫
d3r12f [(a2 · n),z2]V12(a1,a2,r12)

= V0(a1,a2)f [(a2 · n),z1]

+1

2
V2(a1,a2)

∂2

∂z2
f [(a2 · n),z1] + · · · , (2)
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FIG. 1. (Color online) Experimental observation of the N-Iso
phase transitions in a polymer-dispersed liquid crystal (PDLC)
sample of 7CB-NOA81 at the surface and in the bulk: (a) retardation
as a function of temperature (the detailed behavior is also shown in
an inset); (b) highly-sensitive differential scanning calorimetry data.

where

Vi(a1,a2) ≡ ρ

∫
d3r12z

i
12V12(a1,a2,r12). (3)

Let us note that in the series in Eq. (2) there are no terms
with the odd indices i, because the molecular ordering is
nonpolar. Let us approximate values Vi(a1,a2) by Legendre
polynomials

− 1

kBT
Vi(a1,a2) = J

(0)
i + J

(2)
i P2(a1 · a2) + · · · . (4)

Minimizing the free energy functional in Eq. (1) with respect
to the distribution function f [(a · n),z], taking into account
the normalizing constraint for the distribution function and
approximations in Eqs. (2)–(4), and introducing the local
nematic order parameter as

S(z) ≡
∫

d2af [(a · n),z)]P2(a · n), (5)

one obtains the following recurrent equations for determina-
tion of S(z):

S(z) = I1[S(z)]/I0[S(z)],
(6)

Ik[S(z)] ≡
∫ 1

−1
dt P k

2 (t) exp

{[
J

(2)
0 S(z) + 1

2
J

(2)
2 S ′′(z)

]
P2(t)

}

FIG. 2. (Color online) Cartoons showing local molecular orienta-
tions in temperature-evolved thermodynamic states. Molecules near
surface are highlighted by red thick color: (a) isotropic orientation,
(b) pretransitional process toward the surface transition, where N
order starts to emerge, (c) just after the surface transition, and
(d) developed N order in the bulk as well.

where t ≡ (a · n) and P k
2 (t) ≡ (3t2/2 − 1/2)k . The system of

differential equations (6) is of the second order with respect to
S with surface conditions S(0) = S0 and S(∞) = S∞, where
S0 is the nematic order parameter at the polymeric surface, and
S∞ is the nematic order parameter far from the surface.

To find S0 let us consider very narrow layer 0 < z < z0,
where direct interactions of LC molecules with the surface are
still valuable. Let us also assume that S is almost constant
within layer 0 < z < z0. The free energy of layer 0 < z < z0

per unit area can be written as follows [compare to Eq. (1)]:

F0 = ρkBT z0

∫
d2a1f0(a1 · n) ln[f0(a1 · n)]

+ 1

2
ρ2z0

∫
d2a1

∫
d2a2f0(a1 · n)f0(a2 · n)

×
∫

d3r12V12(a1,a2,r12)

+ ρ

∫
d2a1f0(a1 · n)

∫ z0

0
dz Vs(a1,z), (7)

where the additional third term describes the interaction of
molecules with the surface. Similarly to Eq. (4) describing
the interactions of the LC molecules with each other, let us
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FIG. 3. (Color online) Nematic order parameter in the vicinity
of the surface S0 (red squares) and far from the surface S∞ (blue
triangles). The parameters used are J

(2)
0 /kB = 1476 K , J (2)

s /kB =
2.95 K . Two distinct transitions are related to the surface and to the
bulk, as experimentally observed in Fig. 1.
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approximate the interactions of LC molecules with the surface
Vs(a1,z) by Legendre polynomials

− 1

z0kBT

∫ z0

0
dzVs(a1,z) = J (0)

s + J (2)
s P2(a1 · k) + · · · , (8)

where k is the unit vector perpendicular to the surface. The
sign of coefficient J (2)

s is positive (or negative) if the long
molecular axes tend to be perpendicular (or parallel) to the
surface. Minimizing Eq. (7) with respect to the distribution
function f0(a · n), and taking into account the normalization
of the distribution function and approximations in Eqs. (2)–
(4) and (8), one obtains

S0 = I ∗
1 (S0)/I ∗

0 (S0),
(9)

I ∗
k (S0) ≡

∫ 1

−1
dt P k

2 (t) exp
{[

J
(2)
0 S0 + J (2)

s

]
P2(t)

}
.

Equation (9) determines the temperature dependence of the
order parameter at the surface S0. The temperature dependence
of the order parameter far from the surface S∞ can be obtained
similarly just by solving Eq. (7) within a layer of a thickness
z0 far from the surface after deleting the third term related to
the surface (the Maier-Saupe equation for the homogeneous
state). Temperature dependencies of S0 and S∞ are presented
in Fig. 3. One notes that, in contrast to the solution in
the infinity, the solution at the surface never corresponds
to S0 = 0 if the anisotropic interaction with the surface is
present [J (2)

s �= 0]. One also notes from Fig. 3 that the stepwise
decrease of nematic order at the surface always happens at
higher temperatures than the similar stepwise decrease in
the infinity. As we show below, both decreases correspond
to separate phase transitions in the whole molecular system.
These theoretical predictions are clearly shown in Fig. 1.

Now let us return to the global solution in Eq. (6)
determining S(z) distribution at a particular temperature.
Taking into account that value J

(2)
2 S ′′(z) is small, the exponents

in Eq. (6) can be expanded in Taylor series with respect to this
value, and one can take into account only the first term in this
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FIG. 4. Distribution of the nematic order parameter in the bulk of
LC. The parameters used are (1) J

(2)
0 /kB = 1476 K , J

(2)
2 /(kBz∗2) =

6.63 K , J (2)
s /kB = 2.95 K , and T1 = 320 K; (2) T2 = 325 K;

(3) T3 = 328 K; and (4) T4 = 331 K . Here z∗ is the characteristic
dimension of the LC system.

expansion explicitly depending on S ′′. Then instead of Eq. (6)
one can write

S ′′ ≈ − 1

J
(2)
2

SI0(S) − I1(S)

SI1(S) − I2(S)
,

(10)

Ik(S) ≈
∫ 1

−1
dt P k

2 (t) exp
{
J

(2)
0 SP2(t)

}
.

The corresponding S(z/z∗) distributions, where z∗ is the
characteristic dimension of the system, are presented in Fig. 4
at various temperatures. Dependencies S(z/z∗) appear to be
independent of z∗ if parameter J

(2)
2 /z∗2 is fixed. Since the

kink points in these curves appear when S ′′ = 0, we find
from Eq. (10) that S = I1(S)/I0(S) at kink points, which is
the conventional Maier-Saupe equation for the homogeneous
state. Curves 1 and 3 are the distributions at temperatures
with complete loss of stability of Iso and N phases in
the bulk, respectively. In these cases the free energy of the
homogeneous state should have only one minimum, and the
corresponding single kink points at curves 1 and 3 are observed
in the infinity. By contrast, in a certain temperature range in
between, equation S = I1(S)/I0(S) has three solutions at each
temperature (i.e., two minima corresponding to Iso and N,
and one corresponding to maximum between them). In this
condition we obtain curve 2 with large area, where N phase
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FIG. 5. (Color online) Average nematic order parameter in
the bulk of LC at J

(2)
0 /kB = 1476 K . In (a) J (2)

s /kB = 2.95 K;
J

(2)
2 /(kBz∗2) = 6.63 K (solid circles), 3.32 K (open squares), 1.66 K

(solid triangles). In (b) J
(2)
2 /(kBz∗2) = 6.63 K; J (2)

s /kB = 2.95 K

(solid circles), 1.47 K (open triangles), 5.9 K (open squares).
Note the similarity to the experimental retardation data shown in
Fig. 1(a).
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(supposed to be metastable in the homogeneous case) becomes
stable due to surface effect. Hence curve 2 gives the best
conditions for the transmission of S from the surface to the
bulk. All curves 1−3 correspond to the temperatures below the
phase transition at the surface, while curve 4 corresponds to
the temperature above this transition.

Finally, let us estimate the average nematic order parameter
in the bulk 〈S〉. The temperature dependence of 〈S〉 obtained by
integration of the corresponding S(z) dependence is presented
in Fig. 5. Solid circles in both Figs. 5(a) and 5(b) correspond
to the same set of parameters as in Fig. 4. Temperatures
T1 − T4 correspond to curves 1– 4 in Fig. 4, respectively.
Totally we have three independent parameters: anisotropy of
LC molecules J

(0)
2 regulating N-Iso transition temperature

in the bulk; anisotropy transmission between LC molecules
divided by the squared dimension of the system J

(2)
2 /z∗2;

and anisotropy of orientation of LC molecules at the surface
J (2)

s . Three curves in Fig. 5(a) correspond to various values of
J

(2)
2 /z∗2, while three curves in Fig. 5(b) correspond to various

values of J (2)
s . In particular, from Fig. 5(a) it follows that 〈S〉

observed between two transitions decreases with the increasing
dimension z∗, while the temperature difference between
two transitions remains unchanged. On the contrary, from
Fig. 5(b) it follows that the temperature difference between
two transitions increases with the increasing parameter J (2)

s ,
while 〈S〉 remains almost unchanged.

Thus, we have shown that confined molecular systems can
exhibit the two phase transitions. The lower-temperature one
is the N-Iso phase transition related to the bulk. In addition,
on further heating, we found a transition from the phase with
large S at the surface to the phase with small S at the surface.
These two phase transitions result in the two-step change of
〈S〉 and of the birefringence. This theoretical result coincides
with our recent experimental observations [20].
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