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Rupture of thin liquid films on structured surfaces
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We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining
pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film.
Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid
film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the
liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both
linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease
of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film
dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen
in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture
point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films
if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.
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I. INTRODUCTION

Microfluidic devices incorporating structured surfaces have
a potential for significant improvement of liquid transport due
to slip reduction observed when gas is trapped between the
elements of the structure [1]. However, mathematical models
motivated by such applications usually focus on behavior of
single-phase flows near structured surfaces [2,3]. In practical
microfludic applications, the flow is often multiphase, with
bubbles, droplets, or biological cells transported through net-
works of microchannels [4,5]. Modeling the behavior of fluid
interfaces near structured surface is crucial for development
of these applications. One obvious example is a situation
when a liquid film separating a moving bubble or droplet
from the wall breaks up, possibly resulting in significant
reduction of transport rate. Structured surfaces are also used
in a variety of heat transfer devices for intensification of
single-phase and two-phase heat transfer [6,7]. Liquid film
rupture in these applications can have a significant influence
on heat transfer rates. The minimum heat flux required for
rupture of a gravity-driven liquid film on a grooved plate was
recently studied experimentally by Zaitsev et al. [7]. As liquid
evaporates, the film eventually thins to the point where rupture
can occur, and the rupture conditions clearly depend on the
parameters of the structuring. Determining these conditions
is an important step in the development of novel microscale
systems for cooling of electronic devices [8,9].

The issue of fluid interface interaction with a structured
surface received little attention in the literature, except for the
special case of a liquid droplet bouncing off or rolling on a
superhydrophobic surface [10]. In the present study we address
this issue in a setting relevant for microfluidic applications
by examining the conditions of rupture of a thin liquid film
between a gas-liquid interface and a grooved surface with gas

trapped in the grooves. The film is assumed to be thin enough
so that the rupture is driven by the London–van der Waals
dispersion forces.

The general framework for mathematical modeling of thin
film rupture under the action of the London–van der Waals
forces was developed in the pioneering works of Williams
and Davis [11] and Burelbach et al. [12] in the context
of liquid films on flat and chemically homogeneous solid
substrates. They used a lubrication-type model of the viscous
flow in the film and carried out numerical simulations of
the resulting evolution equation for film thickness. Zhang
and Lister [13] extended the lubrication-type approach to
axisymmetric geometry and found self-similar solutions which
incorporate the effects of London–van der Waals forces, vis-
cous dissipation, and surface tension for both two-dimensional
and axisymmetric rupture. The linear and nonlinear stability
and rupture time of ultrathin fluid films on coated nonwettable
substrates were studied by Khanna et al. [14]. They found that
the film breakup time is sensitive to the coating properties even
for relatively thick films.

The effect of the chemical heterogeneity of the substrate on
the dewetting in a thin liquid film was considered by Thiele
et al. [15], Sharma et al. [16], and Kao et al. [17]. These authors
investigated how pattern formation in the dewetting liquid film
depends on the parameters of the heterogeneity. In particular,
Thiele et al. [15] identified the conditions when the solid
substrate pattern is transferred onto the liquid film structure.
For a substrate pattern of alternating stripes of different
wettability, Sharma et al. [16] showed that film rupture is
suppressed on some potentially destabilizing nonwettable sites
when their spacing is below a characteristic lengthscale of
instability. Kao et al. [17] used weakly nonlinear analysis to
investigate the structure of the bifurcation for the liquid film
shapes on a solid with periodic sinusoidal or square-wave
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patterning and conducted numerical simulations of the film
evolution for these two models of chemical heterogeneity.

Limitations of the classical no-slip condition at solid-liquid
interfaces, especially for cases when the solid surface is
structured, have been discussed in Lauga et al. [18]. This
review article and more recent studies, e.g. [19], discuss gener-
alized slip boundary condition and methods for calculating the
effective slip length. The effects of slippage on the stability,
dynamics, and morphology of thin films on solid surfaces
from no-slip to moderate slip and to the case of strong slip are
analyzed in Kargupta et al. [20]. It was shown that a decrease
in film thickness causes transitions from weak to moderate- to
strong-slip regime. For the case of strong slippage the holes
in the film are produced faster, are fewer in numbers, and
have less developed rims. Peschka et al. [21] considered a
strong-slip regime for small Reynolds numbers where van der
Waals forces and viscosity are the dominant physical effects.
The existence of self-similar solutions was shown and the
convergence to these solutions was studied. The presence
of the nanobubbles on hydrophobic substrates can have a
significant effect on thin film rupture [22]. Bubbles relax the
no-slip condition at parts of the lower boundary of the film and
modify expressions for disjoining pressure. In the context of
heat transfer applications, Gatapova and Kabov [23] examined
the effect of slip at the solid-liquid surface for thin liquid film
driven by vapor flow in microchanel with a heater at the bottom
wall.

The studies of the effects of substrate heterogeneity on film
rupture ([15–17]) and the models of slip flow in thin films
( [20–23]) represent two mostly independent directions of
research in thin film dynamics. In the configuration of interest
for the present paper, both the periodic heterogeneity (due
to surface structuring) and slip effects (due to the liquid-gas
menisci in the grooves) are present and are in fact considered
simultaneously, which was not done in the previous studies.
In particular, we investigate coupling between the flow and
deformation of the menisci separating air in the grooves
and the liquid. Such coupling has not been fully understood
except for some simple steady flows [2,3,19]. In our study,
the deformations of the menisci are both time dependent
and spatially nonuniform (in the sense that the deformation
amplitudes are different in different grooves).

II. EVOLUTION EQUATION

We consider a film of incompressible Newtonian liquid of
density ρ and viscosity μ on a structured surface as sketched
in Fig. 1. The grooves of the surface are filled with air so
that the liquid does not enter the grooves. The Cartesian
coordinates x and y in our two-dimensional model are scaled
by d2/lm and d, respectively, where d is the characteristic
initial thickness of the film and lm = (3|A∗|/σ )1/2 is defined
in terms of the value A∗ of the Hamaker constant for the
liquid film on a flat solid substrate and the surface tension
σ . At the bottom, the liquid film is bounded by the line
y = h1(x,t) which consists of straight segments corresponding
to the solid and the deformable segments corresponding
to air-liquid menisci; time is scaled by σμd5/(3A∗2). The
choices of the time scale and the horizontal length scale are
motivated by the dimensional dispersion relation from the
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FIG. 1. Sketch of a liquid film on a structured surface and
Cartesian coordinates.

linear stability theory of film rupture on flat solid surfaces, as
discussed in, for example, Ref. [13]. Even though we expect the
instability growth rate and its characteristic wavelength to be
affected by the presence of the grooves, our simulations below
indicate that these changes are not dramatic enough to justify
the use of time and length scales which are different from the
case of the flat substrate. We assume the dimensional width
of the grooves to be of the same order as d2/lm, which is
reasonable for microscale structuring; nondimensional groove
width is denoted by w and distance between grooves by l. The
upper surface of the film is defined by the function y = h2(x,t).

Let us first consider a region of the film above a groove,
so that both h1(x,t) and h2(x,t) represent segments of liquid-
air interfaces. Using the standard small-slope approximation
for the shapes of both interfaces, we write the normal stress
conditions in the form,

p + � = pg + h1xx at y = h1(x,t), (1)

p + � = −h2xx at y = h2(x,t). (2)

Here p is the pressure in the liquid relative to the atmospheric
pressure and � is the disjoining pressure (specified below),
both scaled by 3A∗/d3. The scaled difference between the air
pressure in the groove and the atmospheric pressure, pg(t), can
be a function of time depending on the flow pattern inside the
groove, but possible spatial variation of this quantity along the
meniscus is neglected. Assuming flow in the liquid is governed
by the standard lubrication-type equations under the conditions
of negligible gravity, the pressure p is not a function of y [24].
By combining Eqs. (1) and (2), we obtain

p = 1
2 (pg − hxx) − �. (3)

Here we express the pressure in terms of the film thickness
defined by h = h2 − h1. For the portion of the liquid film above
the solid segment of the lower boundary, the usual expression
for pressure applies:

p = −hxx − �. (4)

There are transition regions at the edges of the grooves in
which neither (3) nor (4) applies and the assumptions of
the lubrication theory break down locally. However, it has
been established based on both theoretical considerations
and comparisons with numerical simulations [25,26] that
the lubrication theory still gives accurate predictions of the
interface shape when such localized breakdown happens. For
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numerical reasons, the transition region can be described using
a smoothing function f (x) which varies from 1 above the
groove to zero above the solid segment of the interface, so that
the pressure gradient driving the flow is expressed as

px = −[(
1 − 1

2f (x)
)
hxx + �

]
x
. (5)

To define f (x) we start by introducing a function S(x) such
that it is equal to unity everywhere above each groove and
equal to zero for the solid segments. The function f (x) is a
smooth version of S(x), which according to [27] can be defined
by

f (x) =
∫ ∞

−∞
S(x̃)ωε(x − x̃)dx̃, (6)

where the function

ωε(x) =
{

Cεe
−ε2/(ε2−x2), |x| � ε

0, |x| > ε
(7)

is infinitely differentiable everywhere and identically equal to
zero outside of the interval bounded by x ± ε; ε is a small
parameter not exceeding 10−2 in all our simulations. The
constant Cε is chosen so that the integral of ωε is equal to
unity.

The same smoothing function approach is used to account
for slip length variations along the surface structure. The scaled
slip length,

β = β0f (x), (8)

is the quantity used in the slip condition at the lower boundary
of the film,

u = βuy at y = h1(x,t). (9)

Finite value of the slip at the menisci is due to non-negligible
effects of air viscosity at the small scales of the grooves. In
principle, the value of β0 can be determined from the solution
of a coupled problem of liquid and air flow, assuming that the
grooves are not small enough to be in the Knudsen regime
considered by de Gennes [28]. However, in the present work
we follow previous studies [3,22] and consider β0 to be a
parameter of the formulation.

The dimensional Hamaker constant in the film above
the grooves, A∗

g , can be different from the value of A∗
corresponding to the film on a flat solid surface. To take this
into account, we write the formula for the disjoining pressure
�(h,x) as

�(h,x) = − s + (Ag − s)f (x)

3h3
, (10)

where s = A∗/|A∗|, Ag = A∗
g/|A∗|. The film thickness is

assumed to be much smaller than the depth of the grooves,
so that A∗

g is the same as the Hamaker constant for free liquid
films and is independent of the groove dimensions.

The lubrication-type velocity profile which satisfies the zero
shear stress condition at y = h2(x,t) and the condition (9) is
given by

u = 3
2px[(y − h2)2 − h2] − 3βpxh. (11)

Substitution of this velocity profile together with (5) into the
integral mass balance condition results in an evolution equation
for film thickness,

ht + [
(h3 + 3β0f (x)h2)

((
1 − 1

2f (x)
)
hxx + �(h,x)

)
x

]
x
=0,

(12)

where �(h,x) is defined by (10). An important special
case of s = Ag = 1, discussed in detail in the next section,
corresponds to the situation when variations of the Hamaker
constant due to the presence of the grooves are neglected. This
approximation allows us to focus on the physical effects of slip
and flow-induced deformation of the menisci separating air in
the grooves from the liquid film. The variations of the Hamaker
constant are then incorporated into the model in Sec. IV.

III. SOLUTIONS FOR UNIFORM HAMAKER CONSTANT

A. Linear stability

We start by considering Eq. (12) with the disjoining
pressure given by

�(h,x) = − 1

3h3
. (13)

The uniform thickness film, h = 1, is a solution of (12)
with this approximation for disjoining pressure. Let us now
investigate its stability with respect to small perturbations
ζ (x,t) = h(x,t) − 1, using the linearized version of the evolu-
tion equation,

ζt +
[
(1+3β0f (x))

(
ζxxx +ζx − 1

2f (x)ζxxx − 1
2f ′(x)ζxx

)]
x
=0.

(14)

In the limit of flat substrate (f (x) = 0), considering ζ ∼
eγ t+ikx results in the well-known analytical dispersion relation
[13],

γ (k) = k2 − k4. (15)

For the choice of f (x) given by (6), the coefficients of
the linearized equation are functions of x, so there is no
analytical dispersion relation and the problem has to be solved
numerically. Writing ζ = eγ t ζ̂ (x) leads to an eigenvalue
problem,

γ ζ̂ = −[
(1 + 3β0f )

(
ζ̂ ′′′ + ζ̂ ′ − 1

2f ζ̂ ′′′ − 1
2f ′ζ̂ ′′)]′

, (16)

which was solved numerically for the computational domain
of length Lc using finite difference discretization with a
uniform mesh. For each mesh point i, the derivative of the
expression in the square bracket on the right-hand side of
(16) is approximated as the difference between its values at
half-points of the mesh, i ± 1/2, divided by the mesh size �x.
The condition of zero derivatives at the endpoints was used to
define the ghost points outside the computational domain, as
needed for the calculation of the derivatives near the endpoints.

Is is important to note that each eigenfunction defined by
(16) is not a simple sinusoidal function. However, we found
that each of them can be represented as a superposition of
a leading sinusoidal term of a wave number k and small
corrections due to the effects of the structure. We refer to
the value of k as the wave number of the perturbation and
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order the eigenfunctions by the value of k, which allows us to
define the growth rate γ as a function of the wave number.

The size of the computational domain Lc has to be chosen
large enough to capture film dynamics. It is important to em-
phasize that the wave numbers of the perturbations appearing
on the surface of flat film are not dictated by the period of the
structure; they only depend on the total horizontal extent of the
film LT (determined by the size of the experimental apparatus)
and can take virtually any value for sufficiently large LT .
It may seem that solving the problem on the computational
domain of size Lc restricts the applicability of the results to
systems of size Lc, possibly much smaller than the actual
size LT . However, we found that choosing a computational
domain of size Lc = Ng(w + l) with a moderate integer Ng

allows us to accurately determine the dispersion relation
and, most importantly, find the fastest growing wavelength
of the instability. To justify our approach, let us discuss the
results of the following computations. First, we carry out
the computation on the domain Lc = Ng(w + l) with the
number of grooves Ng = 15, w = l = 1. The conditions of
zero derivatives applied at the endpoints dictate the discrete
set of wave numbers allowed in the spectrum of the free
surface perturbation. The growth rates for these wave numbers,
obtained numerically based on (16) with β0 = 10, are shown
by solid squares in Fig. 2. The solid line is the result of cubic
interpolation from the data shown by the squares. Next, we
carry out simulations on a larger domain LT = 38, which
allows us to sample more perturbation wave numbers; the
result is shown by circles. Clearly, the agreement between the
actual and the interpolated growth rates on LT is excellent
even for the relatively small number of data points used in
the interpolation procedure. The results on the fastest growing
instability mode presented below are based on simulations
with the domain size Lc = 30.

The dashed line in Fig. 2 shows the result of the classical
stability analysis for flat substrate, which in our scaled

0.0 0.5 1.0 1.5
k

0.0

0.2

0.4

0.6

0.8

γ

FIG. 2. Numerical dispersion curves obtained based on cubic
interpolation from the results on a domain Lc = 30 (solid line, with
the actual data shown by solid squares) and the data obtained from
the simulations with a larger domain size LT = 38 (circles). The
parameters are β0 = 10, w = l = 1, ε = 0.01. Dashed line represents
the analytical result for the flat uniform substrate Eq. (15).

variables is represented by (15). Comparing our numerical
results with this line, we immediately observe that the surface
structuring has a destabilizing effect on the film and also that
the fastest growing wavelength λ∗ is decreased [since the value
of k corresponding to the maximum of γ (k) in Fig. 2 is
clearly increased]. Let us discuss the physical interpretation
of these results. The model of this section incorporates two
different physical effects related to the presence of the grooves:
the appearance of slip region and deformation of the groove
meniscii as the flow in the film develops. Addition of slip is
clearly destabilizing as it makes it easier for the viscous flow
to develop. The effect of having two deforming interfaces is
less obvious but it turns out to speed up the development of
the instability since it effectively reduces the surface tension
(note the 1/2 factor in front of the nondimensional curvature
in the formula for the pressure, Eq. (3)). This has to do
with the fact that the capillary pressure jump is calculated
from the deformation of the actual interface [e.g., h2(x,t)],
and not the change in film thickness h(x,t), which includes
contributions from both interfaces and therefore overestimates
the actual physical deformation generating the pressure gradi-
ent.

In order to interpret our results on the fastest growing
wavelength λ∗, we note that in dimensional terms the classical
result for the flat substrate can be written as λ∗

0 ∼ d2√σ/A∗.
One could expect the same general scaling to be valid for our
case but with some effective film thickness and surface tension,
deff and σeff . Increase in slip is equivalent to increasing deff

and therefore leads to an increase in λ∗. Having an additional
interface, on the other hand, is equivalent to a reduction of σeff .

To get a better picture of the relative significance of the
two effects incorporated in our model, we plot the fastest
growing wavelength of the instability as a function of the
slip length in Fig. 3. While a range of values of β0 between
zero and 10 is investigated, the values of slip close to zero
are not physically realistic since viscous effects in the air are
not likely to result in such a dramatic reduction of slip at
the interface. Remarkably, over a range of realistic values
of β0, the wavelength λ∗ is almost unchanged. Thus, the

0 2 4 6 8 10
β0

7.16

7.20

7.24

7.28

λ∗

FIG. 3. The fastest growing wavelength of the instability as a
function of the slip length in scaled coordinates for Lc = 30, Ng = 15,
w = l = 1, ε = 0.01.
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geometric effect of meniscus deformation and not the slip
value is expected to be the key to wavelength selection. This
is especially useful to note since getting accurate estimates
of the actual slip length β0 may be difficult without extensive
numerical simulations of the air flow. The air is recirculating
in the grooves due to the effects of the shear stress at the
air-liquid menisci. Due to the very small size of the grooves, the
effects of viscous stresses in the air are not negligible, which
motivated the introduction of the finite slip length β0 in our
model. The general trend toward increasing the characteristic
instability wavelength with an increase of the slip length is
consistent with observations made from the numerical studies
of slipping films on flat surfaces [20] and our argument from
the previous paragraph. We also checked (for β0 = 10) that
the fastest growing wavelength increases as the groove width
w decreases, which is to be expected since in the limit of small
w the effect of the grooves should be negligible and the value
of λ∗ = 2

√
2π corresponding to the flat substrate should be

approached.
The effect of the structure in our formulation is modeled by

a function f (x) which involves an arbitrary small parameter
ε. We verified that our conclusions, both here and below, are
independent of the value of ε as long as it is of the order of
10−2 or below. For example, considering the parameter values
listed in the caption to Fig. 3, we observed that reducing ε by
a factor of two leads to the relative change of the growth rate
on the order of 10−3.

B. Film rupture

To investigate evolution of the film in the strongly nonlinear
regime we carry out numerical simulations of Eq. (12) on the
domain [0,Lc] with Ng grooves and zero-slope and no-flux
conditions at both endpoints. The spatial discretization method
is the same as for the linear stability problem, except that a
nonuniform mesh is introduced near the point of rupture, as
discussed in more detail below. Time stepping is performed
using the Gear’s backward difference formula (BDF) method
as implemented in the standard DVODE package. The value
of Lc has to be large enough for instability, based on the
linear stability theory from the previous subsection. As is
common in rupture studies [13,22], we focus our attention on
the minimum scaled film thickness a, which due to our choice
of initial perturbation corresponds to x = 0. The result for
a ≡ h(0,t)/h(0,0) as a function of time is shown by the solid
line in Fig. 4 for sinusoidal initial perturbation of amplitude
0.1 and wavelength 2Lc. The dot-dashed line represents the
result for flat substrate. Clearly, the rupture happens faster due
to the effect of the structure, due to the same physical reasons
as the increase in the growth rate of the small perturbations
discussed in the previous subsection.

For steady lubrication-type flows near structured walls with
grooves perpendicular to the direction of the flow, the effect
of the grooves can be represented by an effective slip β∗

⊥,
calculated, for example, in [19]. It may seem natural to expect
the effect of the grooves in the present case to be represented
by an effective slip. This, however, turns out to be not the
case, for reasons which are twofold. First, the effective slip
formula does not account for the menisci deformation in the
grooves. Second, the flow is no longer steady, as was assumed

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

a

FIG. 4. Minimum scaled film thickness as a function of time
for Lc = 4 found from different models: flat substrate with no slip
(dot-dashed line), numerical calculation for structured surface with
w = l = 0.2, ε = 0.01, β0 = 10 (solid line); calculation based on
effective slip (dashed line).

in deriving the formula for β∗
⊥. The result for rupture on a

surface with uniform effective slip equal to β∗
⊥ is shown in

Fig. 4 by the dashed line; clearly, this approach overestimates
the rupture time. It would be of interest to investigate whether
an effective boundary condition of a different kind may be
applicable to our situation, but such discussion is beyond the
scope of the present paper.

The shapes of the deformed groove menisci can be obtained
from our numerical solution for h(x,t). By combining Eqs. (1)
and (3),

h1xx = − 1
2 (hxx + pg). (17)

Integrating this equation twice in x, we obtain

h1(x,t) = − 1
2h(x,t) − 1

4pgx
2 + a1x + b1, (18)

where the constants a1 and b1 are determined by the pinning
boundary conditions at the groove boundaries, h1(xi,t) =
h1(xi + w,t) = 0 (with grooves numbered by i = 1, . . . Ng).
We note that the exact deformation of the interface depends
on the relationship between pg and the effective slip length,
which can in principle be found from solving the Stokes
flow equations in the gas phase, but doing so is beyond the
scope of the present article. However, moderate variations of
pg do not dramatically alter the interface shapes, so we plot
typical results using pg = 0 in Fig. 5. This illustration provides
an additional insight into why the effective slip models do
not work well for the present situation: The deformation of
the menisci is different in different parts of the film. This
effect can be crucial for two-phase flows in microfluidic
applications, but is not captured by the averaging techniques
based on single phase flows. The pressure gradient is very
large near the groove boundaries, effectively reducing the flow
between segments corresponding to different grooves, but the
pressure distributions away from the points xi are similar to
the ones for the case when the instability develops over a flat
substrate.
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FIG. 5. Plot of the lower surface of the film at t = 0.5 for pg = 0
showing deformed menisci in several grooves.

At the final stages of film rupture on a flat substrate with
no-slip condition, the local solution near the rupture point is
known to be self-similar [13], so that a(t) ∼ (tR − t)n with
n = 1/5, where tR is the rupture time. It has been suggested
[20,22] that the introduction of slip at the bottom of the
film changes the exponent to n = 1/6, but only moderately
small values of a have been investigated in these previous
studies. Here we carry out simulations over many orders of
magnitude to verify the self-similarity, as shown in the plot
in Fig. 6. Since n = 1/6 implies that |a′(t)| ∼ (tR − t)−5/6,
the log-log plot of |a′(t)| versus a should be a straight line
with the slope of −5, which is indeed clearly seen in the
figure (the dashed line of slope exactly equal to negative 5
is shown to illustrate our conclusion). The result shown in
Fig. 6 also provides a verification of our numerical method.
To achieve the accuracy needed for this calculation we used a
nonuniform spatial mesh suggested by [13] (described in detail
in the appendix to their paper) with second-order interpolation
for the interface shape as the mesh changes, and a variable
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FIG. 6. A plot illustrating self-similar behavior at the final stages
of rupture in the presence of slip for β = 1, Lc = 4. Dashed line has
the slope of negative 5.
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1.4

t
R

FIG. 7. Rupture time of the film as a function of the ratio of
Hamaker constants for β0 = 10, Ng = 10, w = l = 0.2.

time step proportional to a6, as suggested by the similarity
solution.

IV. EFFECT OF VARIATIONS OF THE
HAMAKER CONSTANT

The Hamaker constants are in general different for the parts
of the film which are in contact with the solid phase and the
gas phase. In the present model, this effect can be captured
by choosing values of Ag different from s in Eq. (10). Let us
first consider s = 1 and Ag > 0. Numerical simulations over
a range of values of Ag indicate that in this case the film is
unstable as long as the computational domain is chosen to be
large enough. The total rupture time is shown as a function
of Ag in Fig. 7. Estimating this time is important because
even when the system is unstable, the value of rupture time in
dimensional terms can be large compared to other time scales
of interest for a particular application. Clearly, tR decreases
with an increase in the ratio of Hamaker constants, but at a
slower rate for larger Ag .

1 2 3 4

Ag

0.4

0.5

0.6

0.7

0.8

0.9

φ*

FIG. 8. The critical relative groove width φ = w/(w + l) as a
function of the nondimensional Hamaker constant Ag .
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A situation which can be encountered in applications is
when the values of the Hamaker constant have different signs,
with the one corresponding to the solid segment of the interface
being negative. Based on the model of film on the flat substrate,
one may expect stability. Let us investigate what happens
when the effect of grooves is taken into account. Numerical
simulations conducted for a range of values of β0 indicate
that the presence of the grooves can destabilize an otherwise
stable film if their relative width, φ = w/(w + l), is large
enough. The critical value of φ as a function of the ratio
of Hamaker constants is shown in Fig. 8. The critical value
is decreasing with the increase of the ratio of the Hamaker
constants.

V. CONCLUSIONS

We formulated a mathematical model of rupture of a thin
liquid film on a structured substrate. The general lubrication-
type framework is similar to the previous studies of films on flat
substrates, but three additional physical effects are introduced
to account for the presence of the surface structure: spatial
variations in the Hamaker constant, in the slip length, and
deformation of the menisci separating air in the grooves from
the liquid film. The value of the slip length at the menisci
surfaces is assumed finite due to the effects of air viscosity.

For the case of negligible variations of the Hamaker
constant, linear stability analysis of the uniform base state
shows that the effect of surface structure is destabilizing. The
scaled wavelength of the fastest growing mode of the linear
theory is decreased compared to the classical value of 2

√
2π .

This prediction is in contrast to what is expected when the

structure is modeled by introducing an effective slip. The
discrepancy is explained by the effect of the deformation of
the menisci in the grooves. For a range of realistic values of
the slip length, λ∗ is found to be nearly independent from
β0. Numerical simulations in the strongly nonlinear regime
indicate that rupture time is decreased significantly due to
the effect of the structure. Effective slip models tend to
overestimate the rupture time. Thus, when a bubble is moving
in a microchannel with a structured wall, the film separating
the gas phase from the wall is likely to rupture faster than
can be expected based on the classical theories of rupture
(e.g., [12,13]) even if the effect of slip is incorporated into
such theories. Self-similar rupture is observed at the final
stages of evolution, with minimum film thickness decaying
as (tR − t)1/6, where tR is the rupture time.

Simulations are also conducted for the spatially nonuniform
Hamaker constant. Rupture time is shown to decrease as the
ratio of the maximum and minimum values of the Hamaker
constant is increased. In addition, we showed that an otherwise
stable film can be destabilized by the presence of sufficiently
wide grooves and found the critical value of the groove size as
a function of the parameters of disjoining pressure.
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