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Monte Carlo simulations based on an integration scheme for free energy differences is used to compute critical
Casimir forces for three-dimensional Ising films with various boundary fields. We study the scaling behavior of
the critical Casimir force, including the scaling variable related to the boundary fields. Finite size corrections to
scaling are taken into account. We pay special attention to that range of surface field strengths within which the
force changes from repulsive to attractive upon increasing the temperature. Our data are compared with other
results available in the literature.
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I. INTRODUCTION

Forces induced by thermal fluctuations can be very sensitive
to tiny changes in temperature. This is exemplified by effective
forces arising between two surfaces confining a fluid close to
its critical point, for which a slight variation in temperature can
lead to pronounced changes in their range and magnitude. The
universal features of these so-called critical Casimir forces are
captured by scaling functions [1–3]; they have been studied
theoretically and experimentally for systems belonging to the
bulk universality classes of the XY and the Ising model [2–4].
The XY model describes quantum fluids, such as liquid 4He
close to its normal-superfluid phase transition or a 3He-4He
mixture close to its tricritical point, whereas, for example, a
classical binary liquid mixture near its demixing point or a
simple fluid close to a liquid-gas critical point belong to the
Ising universality class.

In the systems studied so far experimentally, the measured
critical Casimir forces have been either attractive or repulsive
throughout the whole temperature range. (The addition of salt
to a critical oil-water mixture presents a notable exception
in that, under favorable conditions, on route to the critical
demixing point the sign of the critical Casimir force can
change twice [5] due to a coupling between the noncritical
charge density and the critical order parameter field.) Here we
investigate simple systems which provide the possibility of
changing the sign of the critical Casimir forces upon varying
the temperature. Analytic studies and computer simulations
indicate that the sign of the critical Casimir force is determined
by the properties of the confining surfaces, that is, by
the boundary conditions (BCs) which they impose on the
fluctuations of the order parameter characterizing the under-
lying second-order phase transition. Indirect measurements
of the Casimir scaling function, inferred from wetting films
of superfluids [6,7] and of classical binary liquid mixtures
[8,9], are consistent with these predictions. For pure 4He
one has symmetric Dirichlet-Dirichlet (O,O) BCs because
the quantum mechanical wave function of the superfluid
state vanishes at both confining interfaces. This gives rise to
attractive critical Casimir forces [10–14]. For wetting films
of 3He-4He mixtures (+,O), BCs are realized because due to
quantum mechanical effects a 4He-rich layer forms near the
solid-liquid interface and favors the superfluid phase giving

rise to the so-called surface transition [14,15]; (+) indicates a
symmetry-breaking BC with the surface completely ordered.
Upon reaching the surface transition the superfluid order
parameter becomes nonzero at the solid surface, whereas
it vanishes at the fluid-vapor interface of the wetting film.
These asymmetric BCs give rise to a repulsive Casimir force.
Measurements for wetting films of certain classical binary
liquids mixtures have been found to be in agreement with
(+−) BCs corresponding to a strong opposing preferential
adsorption of the two species of the mixture at the two
confining surfaces [10,11,16,17]. Within the framework of
an Ising magnet (which is equivalent to the lattice model of
a binary mixture) or within the continuum field theory for
the order parameter, this amounts to the presence of strong
antagonistic symmetry-breaking surface fields H̄+

1 and H̄−
1

which couple linearly to the order parameter and give rise to
repulsive critical Casimir forces. Direct evidences for critical
Casimir forces have been provided by studying the Brownian
motion of a single colloidal particle near a flat substrate
surface and immersed in the binary liquid mixture of water
and lutidine [18,19]. The experimental results for the cases
in which the colloid and the substrate surface preferentially
adsorb the same species of the mixture are consistent with
(++) or (−−) BCs, whereas for cases in which the particle
and the surface preferentially adsorb different species of the
mixture the results agree with the occurrence of (−+) or (+−)
BCs. Whereas the theoretical and experimental understanding
of critical Casimir forces in the presence of strong or vanishing
surface fields has reached a mature level, here we set out to
study the influence of variable weak surface fields.

Dirichlet and (±) BCs are the renormalization-group fixed-
point boundary conditions corresponding to the so-called or-
dinary surface universality class (O) and the normal transition
surface universality class, respectively [20–22]. The ordinary
transition corresponds to the bulk phase transition occurring
in the absence of surface fields and with a reduced tendency
to order at the surface. Within a mean-field picture the latter
is described by a surface scaling field c so that 1/c plays the
role of an extrapolation length of the order parameter profile;
c = ∞ defines the ordinary transition fixed point. The normal
transition occurs for systems with strong surface fields and
which exhibit a reduced tendency to order if these surface fields
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are switched off. The normal transition is defined by the fixed
point (H̄1 = ∞,c = ∞). As indicated by the nomenclature the
normal transition is the generic situation for a fluid. In a spin
model as discussed below H1 = H̄1/J is dimensionless with
J as an interaction constant.

Near the ordinary transition there is a single linear scaling
field g1 = H1/c

y associated with the surface field of strength
H1 and the surface enhancement parameter c [22]. The
scaling exponent is y = (�sp

1 − �ord
1 )/�, where �

sp,ord
1 are

the surface counterparts of the bulk gap exponent � and �

is a crossover exponent [20–22]. For the three-dimensional
(D = 3) Ising model one has �ord

1 � 0.46(2) [23], �sp
1 � 1.05

[21], � � 0.68 [21], and y � 0.87; ν � 0.63 [24,25] is the
critical exponent of the bulk correlation length ξb = ξ±

0 |t |−ν

with the reduced temperature t = (βc − β)/β = (T − Tc)/Tc;
± corresponds to t ≷ 0. The corresponding surface scaling
variable can be chosen as (ξ+

0 )−yg1|t |−�ord
1 . For t → 0 the

scaling variables tend to their fixed point values, and the
scaling functions assume asymptotic forms corresponding
to the respective fixed points [21,22]. The scaling variable
|(ξ+

0 )−yg1|t |−�ord
1 |ν/�ord

1 is proportional to the ratio ξb/�1

between the true bulk correlation length ξb and the length
�1 introduced by the scaling field g1:

�1 = ξ+
0 |(ξ+

0 )−yg1|−ν/�ord
1 . (1)

The fixed point dominated critical regions correspond to either
the divergence [ (+) or (−) fixed-point BCs] or the vanishing
[(O) fixed-point BCs] of this ratio. The length �1 corresponds
to the range of distances from the surface within which the
order parameter profile responds linearly to the presence of a
surface field H1 [26,27]. (A precise definition of �1 will be
provided below.)

Depending on the interplay between �1 and the length �c =
(ξ+

0 c)−ν/� associated with the surface enhancement parameter
c one finds various asymptotic regimes for the short-distance
behavior z � ξb of the order parameter profile [22,26,28]. At
the bulk critical point one has φcri(z) ∼ g1z

κ for distances
�c � z � �1 from the surface with κ = (�ord

1 − β)/ν and
φcri(z) ∼ z−β/ν for distances �c � �1 � z from the surface.
We note that near the ordinary transition fixed point (i.e.,
large c) the length �c is small, whereas the length �1 can be
large or small. Within mean-field theory one has κ = 0 due
to �ord

1 (D = 4) = 1/2 and ν(D = 4) = 1/2, whereas one has
κ(D = 3) � 0.23 [26] and (β/ν)(D = 3) � 0.52 [24]. Conse-
quently, the critical order parameter (OP) profile turns out to
be a nonmonotonic function of z. For z � �1 the OP increases
upon increasing z, at z � �1 it reaches a maximum and only for
z � �1 the universal “normal” fixed-point behavior, that is, the
decay of the OP occurs [26]. Accordingly the position of this
maximum can serve as a definition for the length �1 [26,27].
With increasing surface field strength the surface-near regime
with the aforementioned increase ∼zκ of the OP becomes
narrower, and eventually for H1 → ∞ the length scale �1

goes to zero, such that this regime disappears and the normal
transition behavior ∼zβ/ν is attained throughout.

For the 2D Ising model on the square lattice with lattice con-
stant a, the length �1 has been extracted from an exact result for
the scaling function of the OP profile below and above Tc; the
profile at Tc has not been reported. In the case that the exchange

coupling between spins in the surface row is the same as in the
bulk, the OP scaling function depends on the scaling variable
ξb/l̂1 with l̂1 = (a/2) tanh(K)/(tanh h̄2

1), where K = J/(kBT )
is the dimensionless reduced exchange coupling between Ising
spins and h̄1 = H̄1/(kBT ) [29]. Thus for weak surface fields
and in the limit K → Kc, l̂1(Kc) = (a/2)K−2

c tanh(Kc)/h̄2
1 =

1.066(4)aH−2
1 = 1.879(0)ξ+

0 H−2
1 , where Kc = 0.5 ln(1 +√

2) � 0.44 is the critical coupling and ξ+
0 = a/(4Kc). This

is in line with Eq. (1) due to ν(D = 2) = 1 and �ord
1 (D =

2) = 1/2. Examination of the OP profiles for T → Tc shows
that the maximum occurs at zmax � 1.5l̂1 which implies �1 �
2.8ξ+

0 H−2
1 .

Studies of systems belonging to the Ising universality class
[30–34] showed that near bulk criticality the presence of the
length scale �1 has important consequences for finite-sized
systems such as slabs of thickness L. For these systems
the relevant lengths are the bulk correlation length ξb, the
distance L between the two confining surfaces which exert
fields H+

1 and H−
1 , and the corresponding lengths �1 and

�2. The asymptotic critical region, associated with (+) or
(−) fixed-point boundary conditions at the surfaces i = 1,2,
corresponds to L � �i , whereas corrections proportional to
�i/L are expected to be relevant for L � �i . In the crossover
regime the critical properties of the confined systems are
particularly sensitive to the values of the surface fields, that is,
whether one or both length scales �i become comparable to
or even larger than the distance L, together with L,�i � ξb.
For example, in films with identical surface fields, that is,
H+

1 = H−
1 and �1 = �2, at bulk criticality and for weak surface

fields the order parameter profile exhibits two symmetric
maxima at z � �1 and z � L − �1; for even weaker fields
so that �1 � L these maxima merge into a single one at
midpoint z = L/2 [30,31]. Concomitantly the critical Casimir
amplitude as a function of the surface field H+

1 , that is, the
critical Casimir force at the bulk critical temperature, exhibits
a maximum absolute value at L � �1 [30].

For symmetric surfaces, the effect of variation of the
amplitude of H+

1 on the temperature dependence of the critical
Casimir force, that is, the crossover behavior between the
ordinary and normal surface universality classes, was studied
within the two-dimensional (2D) Ising model by using the
quasiexact numerical density-matrix renormalization-group
method [32] and within continuum mean-field theory [33].
For L/�1 ∼ 1 these results show strong deviations of the force
scaling function from its universal fixed-point behavior such
as the occurrence of two minima, one above and one below
Tc, but no change in sign as the temperature is varied. It
turns out that only strongly asymmetric surface fields can lead
to, even multiple, sign changes of the critical Casimir forces
upon varying the temperature. This has been demonstrated
rigorously for 2D Ising films [34], within mean-field theory
for the same geometry [33], and it was supported by our
preliminary results from Monte Carlo simulations of simple
cubic Ising slabs [33]. Further evidence has been provided
by Monte Carlo simulations of the improved Blume-Capel
model in the film geometry [35]. The Blume-Capel model has
a second-order phase transition which also belongs to the 3D
Ising universality class. It offers the opportunity that a careful
choice of the interaction parameters of this model allows one
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to eliminate leading corrections to finite-size scaling (see also
Ref. [36]). As it will be discussed below, controlling finite-size
corrections is essential for inferring the scaling functions of
critical Casimir forces from Monte Carlo simulation data. In
Ref. [35] the Taylor expansion of the scaling function up to the
second order in the surface field around a vanishing surface
field was computed. For these Taylor coefficients corrections
to scaling were carefully checked. It was also discussed up
to which values of the surface fields this Taylor expansion
provides a reliable approximation. In the following we shall
present a Monte Carlo simulation study of the critical Casimir
forces for the 3D Ising model in a slab geometry with freely
variable surface fields applied at its bottom and top surfaces.
Our scan of the parameter space extends the one presented in
Ref. [35]. As mentioned above, in Ref. [33] certain preliminary
results of this study were reported together with a detailed
continuum mean-field analysis.

It is worth mentioning recent results revealing still other
sets of parameters which influence the sign of the critical
Casimir force. For the O(n) model in the d-dimensional
film geometry, the crossover from attraction to repulsion at
the critical point can be achieved by varying the surface
enhancement parameters c+

1 and c−
1 [37]. This result was

obtained by using a field-theoretic approach beyond mean-field
theory. Therefore only the case of symmetry-preserving BCs
could be addressed. For the periodic Ising model in a cuboid
geometry the same effect can be achieved by changing the
shape of the system [38]. Monte Carlo simulations in D = 3
and exact calculations in D = 2 show that, whereas for the
film geometry (small aspect ratio) the critical Casimir force is
negative, for the rod geometry (large aspect ratio) it is positive.
However, the results of both studies are not applicable for fluid
systems, because generically these are exposed to symmetry
breaking surface fields.

The analytic results and the simulation data for the scaling
functions of the critical Casimir forces for weak surface
fields can be probed experimentally and they offer application
perspectives for soft matter systems such as tuning the
properties of colloidal suspensions. In complex fluids, for
example, in liquid crystals, such perspectives may be even
richer because of the interplay between the surface fields
and other relevant surface parameters [39]. A first attempt
to investigate experimentally the effects of gradual changes
in the properties of confining surfaces on critical Casimir
forces was made recently by studying colloids suspended in a
critical mixture of water and lutidine [40]. These experiments
have demonstrated the ability to continuously tune the order
parameter boundary conditions at the confining surfaces. This
was achieved by a chemical treatment of a solid substrate such
that it produces a spatial gradient of the adsorption preference
for lutidine and water molecules. Depending on the position of
a single dissolved colloidal particle at this structured surface a
smooth transition from attractive to repulsive critical Casimir
forces was found. However, these experimental observations
have not yet been cast into a universal scaling function of the
critical Casimir potential which has to change sign as function
of the effective surface field.

Our presentation is organized as follows. In Sec. II we
introduce our model, define the range of parameters for which
we perform our computations, and briefly present the relevant

theoretical background. In Sec. III we describe the numerical
method employed in order to infer the scaling functions of the
critical Casimir forces from the Monte Carlo (MC) simulation
data. In Sec. IV we discuss corrections to scaling which we take
into account in order to obtain data collapse signaling scaling.
Section V contains our results. We provide a summary and
conclusions in Sec. VI.

II. MODEL AND THEORETICAL BACKGROUND

In the spirit of the universality of critical phenomena we
study the simplest representative of the 3D Ising universality
class, that is, the three-dimensional Ising model defined on
a simple cubic lattice. We consider a slab geometry. The
dimensionless volume of the system is Lx × Ly × Lz where
Lx = Ly � Lz and A = Lx × Ly with periodic BCs along
the x and y directions. Each lattice site (x,y,z) with 1 � x �
Lx,1 � y � Ly,1 � z � Lz and lattice constant 1 is occupied
by a spin sx,y,z = ±1. The Hamiltonian of the Ising model with
surface fields is

H= − J

⎛
⎝∑

〈nn〉
sx,y,zsx ′,y ′,z′+H−

1

∑
x,y

sx,y,1+H+
1

∑
x,y

sx,y,Lz

⎞
⎠,

(2)

where J > 0 is the spin-spin interaction constant, H̄−
1 = H−

1 J

and H̄+
1 = H+

1 J are the values of the surface boundary fields
acting on the spins in the bottom and in the top layer,
respectively. The sum 〈nn〉 is taken over all nearest-neighbor
pairs of sites on the lattice and the sum x,y corresponding to the
boundary fields is taken over the top and the bottom layer. Here
we do not consider a bulk field. In the following temperatures,
the surface fields, and energies are measured in units of J ; the
inverse critical temperature is βc = 0.2216544(3) [41].

For a fixed width Lz and a fixed aspect ratio ρ = Lz/Lx =
Lz/Ly of the slab, the thermodynamic state of the system is
characterized by three parameters: t,H−

1 , and H+
1 . Based on

finite-size scaling arguments, for the present system Fisher
and Nakanishi [42] proposed the following convenient scaling
variables associated with the surface fields:

h±
1 := H±

1 L
�ord

1 /ν
z = (cξ+

0 )y
[
Lz/(�±

1 /ξ+
0 )

]�ord
1 /ν

D=3= (cξ+
0 )0.87[Lz/(�±

1 /ξ+
0 )]0.73; (3)

�−
1 and �+

1 correspond to bottom and the top surface, respec-
tively.

Here we study the following three trajectories (see Fig. 1):
(I) h+

1 = ∞, an infinitely strong top surface field.
(II) h+

1 = |h−
1 |, finite symmetric and antisymmetric surface

fields.
(III) h+

1 = 0, free boundary conditions at the top surface.
In the simulations, case (I) is realized by fixing all spins in

the top layer z = Lz at the value +1. For finite surface fields
it is convenient to replace the surface field applied at the top
(bottom) surface of the slab by having this surface layer being
linked via modified bonds to spins located in an extra layer
z = 0 (z = Lz + 1) with the interaction −H−

1

∑
x,y sx,y,0sx,y,1

(−H+
1

∑
x,y sx,y,Lz

sx,y,Lz+1); the spins in the extra layer z = 0
(z = Lz + 1) are fixed at the same value +1 for all x,y. In
practice, a surface field, which is finite but strong enough to
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h−
1

h+
1

0

+∞

+∞≈

≈

computed

equivalent
due to
symmetry

(I) h+
1 = +∞

(II) h+
1 = |h−

1 |
(III) h+

1 = 0

FIG. 1. (Color online) The parameter space spanned by the
scaling variables h+

1 and h−
1 corresponding to the top and bottom

surface fields H+
1 and H−

1 , respectively [see Eq. (3)]. We investigate
the following paths: (I) h+

1 = ∞ (red line) corresponding to an
infinitely strong surface field H+

1 , (II) h+
1 = |h−

1 | (green line),
(III) h+

1 = 0 (blue line). Dashed lines of corresponding colors denote
trajectories, which are equivalent due to the exchange symmetry
h+

1 ↔ h−
1 . Since Eq. (2) does not contain a bulk field there is in

addition the symmetry (h+
1 ,h−

1 ) ↔ (−h+
1 , − h−

1 ).

lead to a saturation of the data, can be used to mimic the action
of an infinite surface field. For instance, for |h+

1 | > 100 we do
not observe any variation of our data as function of h+

1 .
By construction, for all three cases there is only one scaling

variable associated with the two surface fields. In the following
we use the notation H1 ≡ H−

1 and h1 ≡ h−
1 . This fixes the top

surface field H+
1 in accordance with (I)–(III). The plane of

parameters (h−
1 = h1,h

+
1 ) is shown in Fig. 1. We note that the

cases (I) and (II) with symmetric fields coincide at the point
(∞,∞), the cases (II) with symmetric fields and (III) coincide
for (0,0), and finally for the cases (I) and (III) the point (0,∞)
coincides with (∞,0).

We have computed the critical Casimir forces for a selection
of parameters from sets corresponding to the cases (I), (II), and
(III) which in Fig. 1 are denoted by solid lines. Points in the
plane (h−

1 ,h+
1 ) corresponding to the cases (I), (II), and (III)

which are equivalent due to the exchange symmetry h−
1 ↔ h+

1
are indicated by dashed lines. Due to the absence of a bulk
field there is also the symmetry (h+

1 ,h−
1 ) ↔ (−h+

1 , − h−
1 ).

For large areas A, the total free energy F (β,H+
1 ,H−

1 ,Lz,A)
of the film of thickness Lz can be written as

F (β,H+
1 ,H−

1 ,Lz,A) ≡ ALzf (β,H+
1 ,H−

1 ,Lz)

= A[Lzf
bulk(β)

+β−1f ex(β,H+
1 ,H−

1 ,Lz)], (4)

where f bulk(β) is the bulk free energy density at a given tem-
perature. The excess free energy f ex per area contains two Lz-
independent surface contributions in addition to the finite-size
contribution f ex(β,H+

1 ,H−
1 ,Lz) − f ex(β,H+

1 ,H−
1 ,∞) which

vanishes for Lz → ∞. The Lz dependence of the latter gives
rise to the critical Casimir force fC per unit area A and in units
of kBT ≡ β−1:

fC(β,H+
1 ,H−

1 ,Lz) ≡ −∂f ex(β,H+
1 ,H−

1 ,Lz)/∂Lz, (5)

with the bottom surface field H−
1 = H1 and the upper surface

field H+
1 = {∞,|H−

1 |,0}, in accordance with (I), (II), and (III),
respectively.

For a lattice (lattice quantities are denoted by a “hat”), the
derivative in Eq. (5) is replaced by a finite difference and
f̂C(β,L) is given by

f̂C(β,H1,L,A) ≡ −β�F̂ (β,H1,L,A)

A
+ βf̂ bulk(β) , (6)

with the free energy difference �F̂ (β,H1,L,A) =
F̂ (β,H1,L + 1

2 ,A) − F̂ (β,H1,L − 1
2 ,A). In these three

expressions the thickness L = Lz − 1
2 is half-integer, so

that the right-hand side is expressed via the free energy
difference for slabs of integer thicknesses Lz = L + 1

2 and
Lz − 1 = L − 1

2 . Later on we shall denote by Lz the thickness
of the system for which we perform the computations and by
the half-integer quantity L = Lz − 1

2 the variable the critical
Casimir force depends on.

From the general theory of finite-size scaling [42,43] and
based on renormalization-group analyses [44] we expect that
in the scaling limit the Casimir force takes the universal scaling
form

fC(β,H+
1 ,H−

1 ,L) = L−dϑ[(L/ξb)1/νsign(t),h+
1 ,h−

1 ], (7)

where the scaling function ϑ[τ = (L/ξ±
0 )1/ν t,h+

1 ,h−
1 ] depends

on the spatial dimension D and on the boundary conditions
on the top and bottom surfaces. Here ξb = ξ±

0 |t |−ν is the bulk
correlation length which controls the spatial exponential decay
of the two-point correlation function; ξ±

0 are nonuniversal am-
plitudes above (+) and below (−) the bulk critical temperature
Tc. In the whole range of temperatures, we plot the scaling
functions using the value ξ+

0 = 0.501(2) [41] which is the
amplitude of the second moment correlation length ξ2nd; for
the Ising model ξb/ξ2nd � 1 for β < βc [24].

Below we shall use the following notations: ϑ (I)(τ,h1) =
ϑ(τ,h+

1 = ∞,h−
1 ), ϑ (II)(τ,h1) = ϑ(τ,h+

1 = |h−
1 |,h−

1 ), and
ϑ (III)(τ,h1) = ϑ(τ,h+

1 = 0,h−
1 ).

III. NUMERICAL METHOD

We compute the free energy difference �F̂ (β,H1,L,A)
by using the so-called coupling parameter approach (see,
e.g., Refs. [45] and [11]). This is a viable alternative to
the method used in Ref. [46], in which a suitable lattice
stress tensor has been introduced in such a way that its
ensemble average renders �F̂ . So far, this latter method can
be implemented only for periodic BC. The coupling parameter
approach is used in order to compute the difference F1 − F0

between free energies Fi = − 1
β

ln
∑

C exp(−βHi), i = 0,1,
of models characterized by two different energies as given by
Hamiltonian H0 and H1. Such a calculation is successful if
the configuration space C (i.e., the whole set of spins) is the
same for both models. In order to implement this approach,
one introduces an interpolating system with the crossover
Hamiltonian

Hcr(λ) = (1 − λ)H0 + λH1. (8)
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As a function of the coupling parameter λ ∈ [0,1], Hcr(λ)
interpolates betweenH0 andH1 as λ increases from 0 to 1. Ac-
cordingly the free energy Fcr(λ) = − 1

β
ln

∑
C exp[−βHcr(λ)]

of the crossover system interpolates between F0 and F1. The
sum is taken over all spin configurations C of the model, which
are the same for F0, F1, and Fcr. The difference F1 − F0 can
trivially be expressed as F1 − F0 = ∫ 1

0 F ′
cr(λ)dλ where F ′

cr is
the derivative of Fcr(λ) with respect to the coupling parameter:

dFcr(λ)

dλ
=

∑
C(H1 − H0)e−βHcr(λ)∑

C e−βHcr(λ)
= 〈�H〉cr(λ) , (9)

which takes the form of the canonical ensemble average
〈· · · 〉cr(λ) of the energy difference �H ≡ H1 − H0 with
respect to the crossover Hamiltonian Hcr for a given value
of the coupling parameter λ. The energy difference 〈�H〉cr(λ)
can be computed efficiently via Monte Carlo (MC) simulations
of the lattice model characterized by the Hamiltonian Hcr.
Finally, the difference of free energies is expressed as an
integral over the mean energy difference (see, e.g., Ref. [45]):

F1 − F0 =
∫ 1

0
〈�H〉cr(λ) dλ. (10)

According to Eq. (6) we are interested in the difference
�F̂ (β,H1,L,A) between the free energies F̂ (β,H1,Lz,A) and
F̂ (β,H1,Lz − 1,A) (we recall that L = Lz − 1

2 ). In order
to apply the method described above for the computation
of �F̂ (β,H1,L,A) [which renders f̂C, see Eq. (6)] one
identifies the model, the Hamiltonian H0, and the associated
configuration space C with the corresponding quantities of the
model we are interested in on the lattice A × Lz {see Fig. 1(a)
in Ref. [11]} so that F̂0(β,H1,Lz,A) = F̂ (β,H1,Lz,A). The
final system H1 is identified with the slab of area A

and thickness Lz − 1 plus a two-dimensional layer of size
A: F̂1(β,H1,Lz,A) = F̂ (β,H1,Lz − 1,A) + F̂2D(β,A) {see
Fig. 1(b) in Ref. [11]}. Here F̂2D(β,A) is the free energy
of the isolated 2D layer of area A. One has to include this
2D layer into the consideration in order to maintain the same
number of spins in the configuration space C for the initial,
intermediate, and final models. This layer can be extracted
from the initial model at any position z0 = 1,2, . . . ,Lz along
the z direction. It decouples from the rest of the lattice upon
passing from λ = 0 to λ = 1, that is, from Fig. 1(a) in Ref. [11]
to (b) there via (c). The corresponding crossover Hamiltonian
Hcr(λ) [but not the result of the integration in Eq.(10)] does
depend on the position z0 from where the 2D layer is extracted.
In our simulations we use z0 = Lz/2 for even values of Lz and
z0 = (Lz − 1)/2 for odd values of Lz. The explicit expression
for the energy difference H1 − H0 is

�H ≡ −
∑
x,y

(sx,y,z0−1sx,y,z0+1 − sx,y,z0−1sx,y,z0

−sx,y,z0sx,y,z0+1) , (11)

where the three indices (x,y,z) identify a lattice site, the sum
is taken over all lateral lattice site positions in the xy plane,
and with a coupling strength J = 1 {indicated by solid bonds
in Figs. 1(a) and 1(b) in Ref. [11]; J is absorbed into β} . The
crossover Hamiltonian Hcr(λ) = H0 + λ�H is characterized
by the coupling constants depicted in Fig. 1(c) in Ref. [11].

The free energy difference �F̂ [see Eqs. (6) and (10)] can be
expressed as

�F̂ (β,H1,L,A) = −
∫ 1

0
〈�H〉cr(λ)dλ + F2D(β,A), (12)

where the integral is taken for fixed values of β and H1. Note
that although �H is independent of H1, the dependence of
�F̂ on H1 enters via the statistical weight ∼exp(−βHcr). The
free energy F2D(β,A) of the 2D layer can be computed from
the analytical expressions given in Ref. [47].

Once �F̂ (β,H1,L,A) has been computed, one has still to
subtract f bulk(β) from it [see Eq. (6)] in order to obtain the
Casimir force for a slab of assigned thickness L = Lz − 1/2.
We determine the bulk free energy by using the temperature
integration method [12,35,48] applied to a cubical system
of size Lcube with periodic boundary conditions. For such a
system the free energy per site (in units of kBT ) can be written
as

βf̂ (β,Lcube) = − ln(2) + 1

L3
cube

∫ β

0
〈E(β ′,Lcube)〉dβ ′, (13)

where 〈E(β ′,Lcube)〉 is the averaged internal energy of the
system at the inverse temperature β ′ and for the size Lcube;
− ln(2) is the free energy in units of kBT and per site at β = 0.
For a cube, in the limit Lcube → ∞ the finite-size dependence
of the free energy density for a cube is predicted [43] to scale
with Lcube as βf̂ (β,Lcube) − βf bulk(β) ∝ L−3

cube. Therefore the
bulk free energy per spin follows as the limit βf bulk(β) =
limLcube→∞[βf̂ (β,Lcube)]. At the critical point one has

βcf̂ (βc,Lcube) � βcf
bulk(βc) + U0L

−3
cube, (14)

with the universal finite-size scaling amplitude U0 =
−0.657(30) (see Ref. [45]).

In order to determine the universal scaling function of
the critical Casimir force we perform the following steps
(details are given below). For each temperature we compute the
averaged internal energy 〈E(β,Lcube)〉 for a cube with periodic
boundary conditions by using a histogram reweighting MC
method. Then we carry out a numerical integration in order
to obtain an estimate for the bulk free energy βf bulk(β) in
accordance with Eqs. (13) and (14). For the slab geometry
A × Lz, at the inverse temperature β, and for a fixed boundary
field H1, we compute the ensemble averages 〈�H〉cr (λ)
via MC simulations for Nλ = 21 different values of λk =

k
Nλ−1 ,k = 0, . . . ,Nλ−1. Based on these Nλ values we carry
out the numerical integration in Eq. (12) and use an analytical
expression for F2D(β,A) in order to obtain �F̂ (β,H1,L,A).
Combining the results for the bulk free energy density
βf bulk(β) and for the free energy difference and by using
Eq. (6) we obtain a numerical estimate for the critical Casimir
force f̂C(β,H1,L,A). In order to obtain the corresponding
scaling function ϑ̂ we perform computations for various values
of L, A, the inverse temperature β, and boundary fields H1. The
scaling function ϑ̂ in Eq. (7) is retrieved from the numerical
data for f̂C by taking into account finite-size corrections as
described in the following section.

For determining the bulk free energy density the histogram
reweighting method has been used as follows [49,50]. The
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computation of the energy distribution P (E,βi) has been
performed for a choice of 256 points βi ∈ [0,0.3] for a cubic
system of size Lcube = 128. For the numerical simulation
we have employed the hybrid MC method, which is a
suitable mixture of Wolff and Metropolis algorithms [50].
For thermalization 4 × 105 hybrid MC steps have been used.
The averaging has been performed over 106 hybrid MC steps
which have been split into ten series for the evaluation of
statistical errors. Therefore, for every value βi actually ten
histograms (each consisting of 105 MC steps) have been
computed. According to the histogram reweighting method
one can obtain an estimate for 〈E〉 at an inverse temperature
β ′ based on the histogram P (E,βi) for the inverse temperature
βi [49,50]:

〈E〉βi
(β ′) =

∑
E EP (E,βi)e−E(β ′−βi )∑
E P (E,βi)e−E(β ′−βi )

. (15)

For every β ′ ∈ [βi,βi+1] we define the interpolated internal
energy

〈E〉(β ′) = βi+1 − β ′

βi+1 − βi

〈E〉βi
(β ′) + β ′ − βi

βi+1 − βi

〈E〉βi+1 (β ′). (16)

We have checked that for the same inverse temperature β ′ the
difference between the estimates 〈E〉βi

(β ′) and 〈E〉βi+1 (β ′),
which use histograms for two neighboring points βi and
βi+1, is substantially less than the statistical inaccuracy of
our simulation data. The statistical inaccuracy has been
determined canonically over ten series of histograms. In the
next step, in accordance with Eq. (13) we obtain the free
energy βf̂ (β,Lcube) by integrating numerically the interpo-
lated internal energy. For the integration we employ the
trapezoidal rule with a large (105) number of points, so that the
inaccuracy of the numerical integration is less then 10−9. We
estimate that at the bulk critical temperature βc the statistical
error �βcf̂ (βc,Lcube) for the free energy determined from
ten series is about 4 × 10−7. In the following we neglect
the finite-size correction of the bulk free energy and take
βf bulk(β) � βf̂ (β,Lcube = 128) [compare Eq. (14)]. This is
justified, because for the maximal value L = 19.5 used in
our simulation the finite-size correction to ϑ due to the finite
system size Lcube = 128, that is, 0.657(L/Lcube)3 � 0.0023,
is of the same order as the statistical error stemming from the
contribution L3�βcf̂ (βc,Lcube), that is, (19.5)3 × 4 × 10−7 �
0.00297 [see Eqs. (6) and (7)].

Another route for determining the free energy of the bulk
system was used in Ref. [38]. There combining high and low
temperature series expansions together with the expression
valid in the critical region, which is based on the finite-size
scaling analysis of numerical results obtained from Monte
Carlo simulations [51], provides quite accurate estimates of
the bulk free energy in a wide range of temperatures.

For the computation of the free energy �F̂ (β,H1,L,A)
in Eq. (6) we use slabs of thicknesses Lz = 10, 15, 20, so
that L = 9.5, 14.5, 19.5, with an aspect ratio equal to 1/6:
Lx = Ly = 6Lz, A = 36L2

z . In order to compute the average
〈�H〉cr(λ) we again use the hybrid MC method with a
mixture of Wolff and Metropolis algorithms. Each hybrid
MC step consists of a flip of a Wolff cluster according to

the Wolff algorithm, followed first by 3A attempts to flip
an arbitrary spin and then by 3A attempts to flip a spin
sx,y,z with z ∈ {z0 − 1,z0,z0 + 1}. These attempts are accepted
according to the Metropolis rate [50]. We use 2.5 × 105 MC
steps for thermalization. For the computation of the thermal
average we use 5 × 105 MC steps split into ten series. For
each series, using Simpson’s rule we perform a numerical
integration over Nλ = 21 points for fixed values of the inverse
temperature β, the surface field H1, and the width L of the slab.
Having computed the free energy difference �F̂ (β,H1,L,A),
for each series we finally combine the results for the bulk
free energy βf̂ bulk(β) with the corresponding ones for the
free energy difference �F̂ (β,H1,L,A) and determine the
numerical inaccuracy.

In Fig. 2(a) we plot the Casimir force f̂C as a function
of β for the three values h1 = −100, 0, 100 of the bottom
surface scaling field. In Fig. 2(b) we plot the rescaled values
of the Casimir force L3f̂C as a function of the temperature
scaling variable τ = (L/ξ+

0 )1/ν(T − Tc)/Tc = (L/ξ+
0 )1/ν t for

case (I). The visible absence of the expected data collapse is
due to finite size corrections to scaling, which will be discussed
in the following section.
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FIG. 2. (Color online) MC data for case (I): (a) Casimir force
f̂C as a function of the inverse temperature β; βc = 0.2216544(3).
(b) Rescaled Casimir force L3f̂C as a function of the scaling variable
τ = (L/ξ+

0 )1/ν(T − Tc)/Tc = (L/ξ+
0 )1/ν t . The data correspond to

h1 = −100, 0, 100 and L = 9.5, 14.5, 19.5. In (a) and (b) the data for
(h1,L) = (100,9.5) and (100,14.5) as well as (0,14.5) and (0,19.5)
can be barely distinguished.
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IV. FINITE SIZE CORRECTIONS TO SCALING

Finite-size scaling is known to be valid asymptotically for
finite but large lattices and small values of t , that is, for a
large bulk correlation length ξb; here large means relative
to the lattice constant [43]. Outside the asymptotic regime
corrections to the leading (universal) scaling behavior become
relevant. These nonuniversal corrections affect both the scaling
variables and the scaling functions and depend on the details
of the model as well as on the geometry and the boundary
conditions [52,53]. Renormalization-group analyses reveal
that there is a whole variety of sources for corrections to scaling
which arise from bulk, surface, and finite-size effects [43].

For the finite and rather limited sizes of the lattices which
we investigate in our MC simulations, it is necessary to take
corrections to scaling into account in order to obtain data
collapse and thus allowing us to infer the leading universal
scaling function [10–12].

In the present study, the following quantities are expected
to acquire corrections to scaling:

(1) the amplitude of the scaling function ϑ = L3fC,
(2) the surface field scaling variable h1, and
(3) the temperature scaling variable τ = t

(
L/ξ+

0

)1/ν
.

In our previous MC simulations aimed at obtaining critical
Casimir forces for Ising films with a variety of universal
boundary conditions, such as (+,+),(+,−), or (O,O) BC
[10,11], corrections to scaling were taken into account by
using various ansätze. The choice for a particular form of
corrections to scaling was guided by achieving the best
data collapse or the best fits used in our computations. For
example, for the amplitude of the scaling function we adopted
the expression f̂C = L−3 (1+g1L

−1)
(1+g2L−1) ϑ̂ . Various variants for this

form of corrections to scaling were considered; we used
(g1 �= 0,g2),(g1,g2 �= 0), or (g1 �= 0,g2 �= 0). They all lead
to a satisfactory data collapse, but the inferred amplitude
of the scaling function of the critical Casimir force depends
sensitively on the particular ansatz.

In Refs. [35,48] still another type of finite-size correction
is employed. It amounts to introducing an effective width
L + δ of the slab so that, for example, the amplitude of
the scaling function of the critical Casimir force scales as
f̂C = (L + δ)−3ϑ̂ . Using this type of finite-size correction
may be justified as follows. As mentioned in Sec. I surfaces
subjected to the action of a surface field asymptotically belong
to the surface universality class of the normal transition which
corresponds to (+) or (−) fixed-point boundary conditions
in the sense of renormalization-group theory [20,21]. [The
(+) and (−) boundary conditions are realized as the limits
of the scaling field h

(i)
1 → +∞ and −∞, respectively.] For

such boundary conditions, on the coarse-grained scale the
order parameter varies as |φ(z → 0)| ∝ z−β/ν for small normal
distances from the surface (but still large on molecular scales)
[22,54]. Within a certain range of small z values such a
divergent behavior is expected to hold also for a finite but
sufficiently strong surface field. In Ising lattice models with
boundary conditions corresponding to (+) or (−) fixed-point
BCs, the order parameter does not diverge at the surface but
saturates there at the value +1 or −1. Changing the width
of the slab from L to L + δ with a nonuniversal length
δ = z(1)

ex + z(2)
ex such that the order parameter profile behaves

as |φ(z → 0)| ∼ (z + z(i)
ex )−β/ν [20,55] upon approaching the

wall i, turns out to be an effective means to take into account
corrections to the leading critical behavior [55]; z(i)

ex plays the
role of an extrapolation length [20,21]. Similarly, the effects
of a physical wall with a finite surface field [which implies
�

(i)
1 �= 0, see Eq. (1)] on the order parameter are equivalent

to those of a fictitious wall with strong surface fields (which
means �

(i)
1 = 0) displaced by a distance −z(i)

ex from the physical
wall. One can determine the length δ by analyzing the spatial
variation of the order parameter profile, as it was done for
the Blume-Capel model in Ref. [35]. Here we assume that the
equivalence described above carries over to critical Casimir
forces such that we can determine the effective width L + δ

of the slab by demanding the best data collapse. We apply this
method also in the crossover regime, that is, for sufficiently
weak surface fields for which upon approaching the critical
point one effectively observes a crossover to the boundary
condition corresponding to the ordinary transition (O) fixed
point. As discussed in the Introduction, the order parameter
profiles in a film with weak surface fields deviate strongly from
the fixed-point universal behavior. Accordingly, we expect
that within this range of surface fields the aforementioned
type of correction does not satisfactorily capture the actually
corrections to scaling.

In Fig. 3(a) we plot the rescaled critical Casimir force L3f̂C

for case (I). It is evaluated at the critical point βc and presented
as a function of h1 without finite-size corrections taken into
account. Apparently the data for the rescaled force do not
coincide for various values of L = 9.5, 14.5, 19.5, 24.5. In
order to obtain the expected data collapse we apply the
following finite-size corrections (here and in the following
we denote scaling variables with finite size corrections by a
tilde: τ̃ , h̃1):

f̂C(β,H1,L,A) = (L + δ)−3ϑ̂(τ̃ ,h̃1) (17)

with

τ̃ ≡ t[(L + δ)/ξ+
0 ]1/ν[1 + gω(L + δ)−ω] (18)

and [see Eq. (3)]

h̃1 = H1(L + δ)�
ord
1 /ν, (19)

where ω = 0.84(4) is the leading bulk correction-to-scaling
exponent [24,25]; the length δ and the coefficient gω remain
to be determined. Here we do not incorporate explicitly the
leading bulk correction with the exponent ω to the scaling
function Eq. (17). The reason is that we cannot expect
that for our rather narrow films this asymptotic behavior of
the correction holds. Moreover, there are other sources of
corrections to scaling which might be equally important, for
example the ones arising from the presence of surfaces or the
finite-size effects. They may even change the value of ω to
some ωeffective. Therefore, we treat the leading bulk correction
to scaling “effectively” by correcting the scaling function by
(L + δ)−3, which has the expansion L−3(1 + 3δ/L + · · · ).
Thus even at T = Tc corrections to scaling are incorporated
albeit in an effective way.

The value of the length δ is obtained from the data for
the critical Casimir force at the critical point [these data are
presented in Fig. 3(a)]. By using Eqs. (17) and (19) and by
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FIG. 3. (Color online) Results at the critical point β = βc for
case (I) (see Fig. 1) as a function of boundary fields: (a) Casimir
force multiplied by L3 as a function of the scaling variable h1 =
H1L

�ord
1 /ν without finite size corrections. (b) Casimir force scaling

function ϑ̂ (I)(τ̃ = 0,h̃1) with taking corrections L + δ into account as
a function of the corrected scaling variable h̃1 = H1(L + δ)�

ord
1 /ν ; in

units of the lattice spacing δ = 0.65 at the bulk critical point βc. For
h̃1 = 0 one finds the fixed-point (O,+).

implementing the fitting procedure within the interval h̃1 ∈
[−15,15] with δ being the only fit parameter, we obtain the
value δ = 0.65 which minimizes deviations between data for
different values of L. Including error bars we find δ = 0.65(2)
for various intervals of h1 or δ = 0.60(5) for different sets
of L. The final result for the scaling function ϑ̂(0,h̃1) with
corrections to scaling corresponding to δ = 0.65 is shown in
Fig. 3(b). For large absolute values of h̃1 we reproduce the
data from Refs. [10,11] for the critical point with (−,+) and
(+,+) BCs. For small values of |h̃1| we observe the crossover
between these two regimes.

The procedure which we used in order to obtain the best
fit for the value of the length δ is described in detail in the
Appendix of Ref. [11]. One of the difficulties in finding the
optimal data collapse is that the fitting function itself, that
is, the scaling function of the critical Casimir force, is not
known. For the initial guess for the value of the length δ

we infer the scaling function from the corresponding data for
f̂C, one function ϑ̂k for each value Lk (k = 1, . . . ,N) used
[see Eqs. (17)–(19)]. We define an expected scaling function
as the average of the various ϑ̂k: ϑ̂expected = (1/N )

∑N
k=1 ϑ̂k .

Finally, for every Lk and for a given value of δ we compute the
sum of squares χ2(δ) of the deviation of the aforementioned
scaling functions from the expected scaling function. Finally,
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FIG. 4. (Color online) Same as Fig. 3 for the case (II) (see Fig. 1).
For h̃1 = 0 one finds the fixed point (O,O).

we determine as the value of δ the one which minimizes χ2.
That value provides the best data collapse of the data for
different L.

Applying the same procedure for case (II) and case (III) we
obtain the values δ = 0.6 and δ = 1.4, respectively. However,
in order to be consistent (as mentioned earlier, for some
values of the surface field different cases coincide) we use
the common value δ = 0.65 for all cases. In Figs. 4 and 5
we present our results without (a) and with (b) finite-size
corrections for case (II) and case (III), respectively.

Knowing the finite-size corrections of the surface field
scaling variable we can carry out numerical simulations for
various values of h̃1; for each value of h̃1 we can extract
information about the coefficient gω using the same procedure
as for the determination of the length δ.

For the case of Ising systems with periodic BCs, the strong
aspect ratio dependence of the Casimir force scaling function
occurs for not too small ρ, that is, for ρ > 1/2 [38]. Since our
focus is on the film geometry, which is easily realized in fluid
systems by, for example, wetting films, we have considered
here small aspect ratios. As demonstrated in our previous
work [11], the Casimir scaling functions with (+−) and (++)
BCs do not exhibit a noticeable dependence on the aspect
ratio for ρ = 1/6, 1/10, 1/14, whereas for (O,O) (free) BCs
the scaling function does depend on the aspect ratio but only
in some interval near its minimum. Thus we expect that our
current results are independent of ρ for strong values of the
boundary fields and depend (slightly) on ρ for small values of
the boundary fields. Due to the large number of parameters,
which influence the behavior of Casimir scaling function much

041605-8



CRITICAL CASIMIR FORCES FOR ISING FILMS WITH . . . PHYSICAL REVIEW E 84, 041605 (2011)

 0

 0.1

 0.2

 0.3

 0.4

 0  5  10  15  20  25  30
h1

L
3
f̂ C

(β
c
,h

1
,L

)
(a)

h+
1 = 0

L = 9.5
14.5
19.5
24.5

 0

 0.1

 0.2

 0.3

 0.4

 0  5  10  15  20  25  30

h̃1

ϑ̂
(I

I
I
) (

0,
h̃

1
)

(b)

h+
1 = 0

L = 9.5
14.5
19.5
24.5

FIG. 5. (Color online) Same as Fig. 3 for the case (III) (see Fig. 1).
For h̃1 = 0 one finds the fixed point (O,O).

stronger, we postpone the detailed analysis of the role of the
aspect ratio in our systems to a future study. To be consistent
with our previous paper here we consider just one aspect ratio
ρ = 1/6.

V. RESULTS

Here we present the critical Casimir force scaling function
determined for various values of h̃1 as a function of τ̃ . The set
of values used for h̃1 is given in Tables I, II, and III. For each
of the three values L = 9.5, 14.5, 19.5 of the slab thickness
we infer the values of the surface fields H1 which correspond
to the pair (h̃1,L) according to Eq. (19) with δ = 0.65. Next,
for each pair (h̃1,L) the critical Casimir force f̂C(β,H1,L) has
been computed for various inverse temperatures β. Finally,
for each value of h̃1 we apply the fitting procedure described
above in order to determine gω by using Eq. (18). Our results
for gω are given in Tables I, II, and III for the cases (I), (II),
and (III), respectively.

For a selection of values of the surface field scaling variable
h̃1 in Fig. 6(a) we present our results for the critical Casimir
force scaling function ϑ̂ (I )(τ̃ ,h̃1) corresponding to case (I).
We find that de facto for h̃1 = ±100 the scaling limit of

TABLE II. Same as Table I for case (II), that is, h+
1 = |h1|.

h̃1 −100 −8 −4 −2 −1 0
gω −0.58(2) −0.14(2) 0.25(2) 0.15(2) −0.10(3) 0.70(3)

h̃1 0.5 1 1.5 2 6 100
gω 2.05(10) 0.51(10) 0.97(13) 1.30(5) −0.06(2) −0.95(2)

infinitely strong surface fields has been reached and the
scaling function of the critical Casimir force corresponds to
the fixed-point BCs (+,±). The scaling functions for these
BCs have already been determined previously using a different
numerical scheme [11]. Comparing them reveals quantitative
differences with the present ones, the size of which depends
on the various choices of corrections-to-scaling employed
in Ref. [11]. In Fig. 6(b) we present our results for small
values of |h̃1|, h̃1 ∈ [−1,2], for which we observe a transition
from a repulsive to an attractive force upon increasing the
temperature scaling field τ̃ . In these instances in which a
change in sign is observed in Fig. 6(b), the length scales
associated with the surface fields are �+

1 = 0 [see Eq. (1) for
H+

1 = ∞] on the top and |�−
1 /ξ+

0 | = 0.44Lz [see Eqs. (1) and
(3) for h1 = 1 and c = 0.5/ξ+

0 ] and |�−
1 /ξ+

0 | � 1.13Lz [see
Eqs. (1) and (3) for h1 = 0.5 and c = 0.5/ξ+

0 ] on the bottom.
(In D = 3, c = 1/a if the coupling constant in the surface
row is unchanged relative to the one in the bulk [20,21];
with ξ+

0 � 0.501 this implies cξ+
0 � 0.501.) In Figs. 6(a)

and 6(b) we have shown together with our results also the
MC simulation data obtained for the 3D Blume-Capel model
with (+,+), (+,−), and (0,+) BCs (lines) [35]. Although the
overall shapes of the Casimir scaling functions are the same in
both models there are differences in the magnitude, especially
for the (+,−) BCs below Tc, and above Tc for (+,+) BCs.
For (0,+) BCs the maximum of the Casimir scaling function
obtained from the Blume-Capel model is larger than the one
following from the Ising model. Because of these differences
which occur for the fixed-point BCs we have not attempted to
compare the results corresponding to the crossover region. The
origin of encountered differences may lie in the computational
error due to the surface and finite-size effects and call for
further investigations. Significant differences between finite-
size effects in the Ising and Blume-Capel models in the
film geometry were reported also in Ref. [36] for the case
of chemically structured substrates [a chemical step on one
surface and (+) BCs on the other]. There the variation of
the estimator of the critical Casimir amplitude as a function
of thickness of the film shows opposite trends for both
models, that is, in the Ising model this estimator approaches
its asymptotic value at L → ∞ from below, whereas in the
Blume-Capel model from above. Moreover in the Ising model
the finite-size effects are stronger.

TABLE I. Values of h̃1 with the corresponding values of gω as obtained from the fitting procedure for case (I), that is, h+
1 = ∞.

h̃1 −100 −8 −4 −2 −1 0
gω −0.56(2) −0.05(2) −1.19(2) 1.04(2) 1.60(4) 2.3(2)

h̃1 0.5 1 1.5 2 6 100
gω 1.68(12) 0.72(15) −0.05(5) −0.145(3) −0.47(2) −0.94(2)
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TABLE III. Same as Table I for case (III), that is, h+
1 = 0.

h̃1 100 6 2 1 0.5 0

gω 2.8(1) 1.6(1) −0.12(5) 1.51(5) 1.87(4) 1.30(3)

In Fig. 7(a) we show data for the critical Casimir force
scaling function ϑ̂ (II)(τ̃ ,h̃1) corresponding to case (II). For
h̃1 = 100 and h̃1 = −100 we recover the scaling limit corre-
sponding to (++) and (+−) fixed-point BCs, respectively.
We note that the change in sign of the critical Casimir
force upon varying the temperature occurs only for opposing
surface fields. As before this change of sign is observed
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FIG. 6. (Color) The scaling function ϑ̂ (I ) of the critical Casimir
force for case (I), that is, h+

1 = ∞ as a function of the temperature
scaling variable τ̃ [see Eq. (18)] for various bottom boundary fields
corresponding to certain values of the surface field scaling variable
h̃1 ≡ h̃−

1 [see Eq. (19)]: (a) large amplitudes of the surface field (from
top to bottom): h̃1 = −100, − 8, − 4, − 2, 0, 2, 6, 100; (b) small
amplitudes of the surface field for which a crossover from repulsive
to attractive forces as function of τ̃ is observed (from top to bottom):
h̃1 = −1, 0, 0.5, 1, 1.5, 2. For each color ×+ corresponds to L = 9.5,
� to L = 14.5, and � to L = 19.5. The MC simulation data obtained
in Ref. [35] are denoted by lines.
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FIG. 7. (Color) Same as Fig. 6 for case (II) (see Fig. 1). In (b) for
small amplitudes of the surface field (from top to bottom: h̃1 ≡ h̃−

1 =
−2, − 1, 0, 0.5, 1, 1.5) there occurs a crossover from attractive to
repulsive forces upon increasing τ̃ .

for weak surface fields for which |�−
1 /ξ+

0 | ≈ Lz, that is, for
h̃1 = −2, − 1.

Finally, in Fig. 8 the data for case (III) are presented.
This case contains in particular two fixed-point BCs: for
the value h̃1 = 100 we observe a universal behavior of the
scaling function of the critical Casimir force corresponding
to (O,+) fixed-point BCs, whereas for h̃1 = 0 we find the
(O,O) fixed-point universal behavior of ϑ̂(τ̃ ,h̃1). As in the
other cases, the crossover from attraction to repulsion can
be achieved by increasing the temperature scaling variable τ̃ ,
provided that the surface fields are sufficiently weak so that
|�−

1 /ξ+
0 | ≈ Lz, that is, for h̃1 = 2 and 1.

The evaluation of the accuracy in Tables I–III is carried
out by analyzing the curvature of χ2(gω) in the vicinity of its
minimum. However, we expect that the actual inaccuracy of gω

is larger than the quoted estimates. This is the case because the
location of the minimum itself depends on the fitting interval
and is influenced by the inaccuracy of the MC data. Moreover,
χ2 is not a monotonous function of gω and may exhibit more
than one local minimum of comparable depth. This is the case
for h̃1 = 2 in Table III, which in addition to the minimum
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FIG. 8. (Color) Same as Fig. 6 for case (III) (h̃1 ≡ h̃−
1 see Fig. 1).

at gω = −0.12(5) (which is presented in Table III) exhibits
another one at gω = 0.45(10). We checked that adopting the
other value of gω = 0.45(10) does not noticeably influence the
final result.

VI. SUMMARY AND CONCLUSIONS

For variable surface fields we have determined via MC
simulations the universal scaling functions ϑ̂ of critical
Casimir forces for 3D Ising slabs describing the crossover from
the ordinary to the normal surface universality class (Figs. 6,
7, and 8). This amounts to investigate the scaling functions
ϑ(τ,h+

1 ,h−
1 ) [see Eq. (7)] for finite values of the surface

fields. We have computed the lattice scaling functions ϑ̂(τ̃ ,h̃1)
along three different paths in the parameter space (h+

1 ,h−
1 )

(see Fig. 1): ϑ̂ (I)(τ̃ ,h̃1) corresponding to h+
1 = ∞, ϑ̂ (II)(τ̃ ,h̃1)

corresponding to h+
1 = |h−

1 |, and ϑ̂ (III)(τ̃ ,h̃1) corresponding
to h+

1 = 0. Due to the fact that on the lattice the derivative
in Eq. (5) is replaced by a finite difference, the scaling
function ϑ̂ as function of the corrected scaling variables (τ̃ ,h̃1)
estimates the leading behavior of ϑ as function of (τ,h+

1 ,h−
1 );

alternative definitions of the lattice derivative give rise to
distinct corrections for both the scaling function and the scaling
variables. We have focused on cases in which upon variation of
the temperature a crossover from attractive to repulsive critical
Casimir force is observed. Such a behavior is particularly
interesting in view of potential application, for example, for
colloidal suspensions. We have found that a change of sign of
the critical Casimir force as a result of a minute change in tem-
perature occurs only in systems with strongly asymmetrical
surfaces, that is, in cases in which the two surface fields differ
significantly in magnitude. For this phenomenon to occur at
least one of the surface fields has to be weak enough such that

the length scale �1 associated with the surface field H1 [Eq. (1)]
is comparable with the width L of the slab [see Figs. 6(b) and 8
corresponding to fixed h+

1 = ∞ and h+
1 = 0, respectively, and

a variable second surface scaling field h−
1 ]. We note that for

such large values of �1 the order parameter profiles near a
single wall differ significantly from the ones corresponding to
strong surface fields which belong to the surface universality
class of the normal transition. If both surface fields are weak
and have the same magnitude they must have opposite signs in
order to produce a change of sign of the critical Casimir force
[see Fig. 7(b)]. The change from attraction to repulsion (i.e., a
zero of ϑ̂) can occur either below the bulk critical temperature,
as for the cases in which one of the surfaces is subjected to
the (O) fixed-point BC or for weak opposing surface fields
(see Figs. 8 and 7, respectively), or above Tc, as for the (+)
fixed-point BC [see Fig. 6(b)]. In all cases the change of sign
takes place rather close to the critical point.

Corrections to scaling have had to be taken into account
in order to obtain data collapse which allowed us to infer the
universal scaling functions (see Fig. 2). The introduction of
an effective width L + δ of the slab turned out to be a very
useful way of implementing corrections to scaling, provided
the surface fields are not too weak. The value of the length δ has
been obtained from the data for the critical Casimir force at the
critical point (see Figs. 3 and 5 corresponding to fixed values
h+

1 = ∞ and h+
1 = 0 for the top surface, respectively, and a

variable surface scaling field h−
1 for the bottom surface, and

Fig. 4 corresponding to the surface fields for the two surfaces
to be of the same magnitude; compare Fig. 1).

The present results close an important gap in the knowledge
of the Casimir scaling function for the 3D Ising universality
class. The theoretical results for variable surface fields have
been available in D = 2 (from exact calculations in Ising strips
[34]) and in D = 4 (from a field-theoretic approach [33]). The
MC simulation results in Ref. [35] have been obtained for the
3D Blume-Capel model which is an extension of the Ising
model studied here for certain values of the surface fields,
which in the parameter space shown in Fig. 1 correspond
to path (I) with h−

1 � 0. We have observed that there is a
qualitative agreement with our findings; for certain choices of
the surface fields the critical Casimir force changes sign as
function of temperature.

Our data for the critical Casimir scaling function have the
crucial advantage over the results in D = 2 and 4 that they can
be directly compared with possible experimental data. Interest-
ingly, in all spatial dimensions studied the crossover behavior
of the scaling function of the critical Casimir force as a function
of the temperature scaling variable is qualitatively the same.
The robustness of this observation indicates that an experi-
mental observation of the change of sign of the critical Casimir
force with temperature is possible, provided that the chemical
properties of the confining surfaces are carefully chosen.
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