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Phase transitions in thin films with competing surface fields and gradients
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As a generic model for phase equilibria under confinement in a thin-film geometry in the presence of a
gradient in the field conjugate to the order parameter, an Ising-lattice gas system is studied by both Monte
Carlo simulations and a phenomenological theory. Choosing an L × L × D geometry with L � D and periodic
boundary conditions in the x,y directions, we place competing surface fields on the two L × L surfaces. In
addition, a field gradient g is present in the z direction across the film, in competition with the surface fields. At
temperatures T exceeding the critical temperature of the interface localization-delocalization transition, one finds
a phase coexistence between oppositely oriented domains, aligned parallel to the surface fields and separated
by an interface in the center of the film, for small enough g. For a weak gradient, a second-order transition to
a monodomain state occurs, but it becomes first order if g exceeds a tricritical threshold. For sufficiently large
gradients, another domain state becomes stabilized with domains oriented antiparallel to the surface fields.
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I. INTRODUCTION

The phase behavior of systems confined in a thin-film
geometry is of interest for various applications in materials
science and nanotechnology (e.g., [1,2]) and simultaneously
represents a challenging problem of statistical thermodynam-
ics. Thin films can provide protective coatings of surfaces,
and can also be technologically important due to their func-
tional properties (including optical, electronic, and mechanical
properties) [3,4]. However, we shall not dwell further on
such applications of thin films here but rather consider them
only as a generic problem of the statistical mechanics of
heterogeneous condensed matter systems. Because of the
reduced dimensionality of such quasi-two-dimensional sys-
tems, effects due to statistical fluctuations are very important,
and the interplay between finite-size and surface effects is
responsible for phenomena distinct from what is found in the
bulk (capillary condensation or evaporation of fluids in slit
capillaries, wetting, and interface localization-delocalization
transitions, etc.; see, e.g., [5–10] for reviews).

An additional complication arises when a gradient in some
variable is maintained in the direction across the film. For
instance, by coupling the lower and upper boundaries of a
thin film to thermal reservoirs at different temperatures, a
temperature gradient (and heat flux across the system) can
be maintained. However, here we shall consider only the
simpler case of a fluid film in a gravitational field (or the
related cases of a ferromagnetic thin film in a magnetic-field
gradient or a binary mixture in a gradient of the chemical
potential difference between the species). Unlike the case of
temperature gradients, no transport of heat or matter is implied
by such gradients, and instead of steady states (far from
thermal equilibrium), one still has full thermal equilibrium,
although the state of the system clearly is not homogeneous
in the direction in which the field gradient acts. We note
that in binary liquid mixtures, the concentration gradients
caused by gravity are indeed enough to cause unconventional
patterns during phase separation processes [11], and the
creation of anisotropic microporous membranes produced via
diluent evaporation from the top surface of a polymer blend

film [12] is another instance when composition gradients of a
species in a multicomponent system are of interest. Of course,
theoretical modeling of such systems will require somewhat
more complexity than the simple Ising model that will be
studied here as a first step. But these examples serve to illustrate
the point that systems exposed to various gradients are already
studied in various contexts.

So far, this problem has only been briefly discussed within
the framework of Landau theory [13] and by density matrix
renormalization calculations for an Ising strip (i.e., a D × L

geometry with L → ∞) [14]. In contrast, thin Ising films with-
out gradients have been studied extensively [15–29]. Thus, to
improve the understanding of the phase behavior of Ising-type
systems in the presence of gradients, we present the first Monte
Carlo study of this problem in the present paper. In addition,
we present two phenomenological theoretical approaches to
the problem in order to facilitate the theoretical interpretation
of the Monte Carlo results (Sec. II). We have worked out
a low-temperature approximation for the transition from the
monodomain states of the thin film to the gradient-dominated
domain state, and we also provide a treatment in terms of the
capillary wave Hamiltonian approximation [30–32] for small
gradient g. In Sec. III, we present and interpret the numerical
results from our simulations, while Sec. IV briefly offers some
conclusions.

II. THEORETICAL BACKGROUND

A. Model and low-temperature analysis

Following Rogiers and Indekeu [13], we consider an Ising
Hamiltonian in an L × L × D geometry, applying periodic
boundary conditions in the x,y directions and assuming two
free surfaces at which surface fields H1, HD act,

H = −J
∑
〈i,j〉

SiSj − H
∑

i

Si − H1

∑
i∈1

Si − HD

∑
i∈D

Si

+ g

D∑
n=1

(2n − 1 − D)
∑
i∈n

Si, Si = ±1. (1)
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Here, we have also included a coupling to a bulk field H

and a linearly varying field with a constant gradient g. In the
absence of this “gravitation-like” field, the problem is already
rather intricate if HD �= −H1, so we confine ourselves to the
strictly antisymmetric case, HD = −H1 > 0. Note that the
Hamiltonian is constructed such that for H = 0, no direction of
the magnetization is singled out. Therefore, phase coexistence
in our system will occur exclusively for H = 0, as in the
bulk. Note that we did not assume any modification of the
nearest-neighbor exchange constant J between pairs of spins
in a surface plane, and hence the model (for g = 0 and in
the limit D → ∞) exhibits a second-order wetting transition
[33,34].

In the following, we consider a simple cubic lattice and take
the lattice spacing as our unit of length.

To provide a qualitative understanding of the phase behavior
of this model, we start from a quasimacroscopic description
of the system, which should be accurate for D → ∞ and at
low enough temperatures (Fig. 1). The free energies per lattice
plane parallel to the walls can be estimated as follows:

f1
∼= Dfb + gmbD

2/2 + fint − 2|H1|m1, state (1) , (2)

where fb is the free energy of the corresponding bulk system
(which has bulk magnetization mb). The second term on the
right-hand side of Eq. (2) is an estimate of the gradient energy
[which neglects any deviation of the magnetization profile
m(z) from −mb on the left side of the interface or of m(z) from

FIG. 1. Schematic description of the sequence of phases observed
for D → ∞ in the temperature regime Tw < T < Tcb when the
strength of the field gradient g/J increases. For small enough g/J ,
the surface fields dominate, and there are two domains, separated by
an interface parallel to the walls [state (1)]. In this state, the sign
of the magnetization and of the surface field at the adjacent wall
are the same, and the magnitude of the magnetization equals the
value in the bulk (mb). In state (2), the gradient energy essentially
compensates for the surface effects, yielding a degenerate state with
the entire film being predominantly positively (+mb) or negatively
(−mb) magnetized. In state (3), the gradient energy dominates: there
are two domains of opposite magnetization, but the signs are opposite
to that of the surface field at the adjacent wall.

+mb on the right side, respectively]. The interface free energy
is denoted as fint (neglecting any possible “renormalization”
of this term by the gradient g). The last term describes the
Zeeman energy due to the surface fields, where m1 = −mD

is the magnetization in the layer where the surface fields act.
Effects on the free energy due to “missing neighbors” at the
walls are also neglected [these effects would have a similar
magnitude in all these states (1), (2), and (3)].

In state (2), no interface is present, and both contributions
due to the gradient vanish, as does the Zeeman energy due to
the surface field. Hence the result is simply

f2 ≈ Dfb. (3)

Note that any effects on the free energy due to a nontrivial
magnetization profile m(z) near the walls are ignored, but we
can again argue that these effects would be similar in all three
states (1), (2), and (3), and all that matters are free-energy
differences between the states in question.

Similarly, for state (3) we have

f3
∼= Dfb − gmbD

2/2 + fint + 2|H1|m1. (4)

For large enough g, it is advantageous to have domains oriented
such that they overrule the free-energy cost due to the surface
fields.

Since the transition between states (1) and (2) is of second
order, at least for small g (see the following section based
on the interface Hamiltonian treatment), one cannot simply
locate the transition between states (1) and (2) by equating
their free energies: in fact, the transition occurs because the
interface in state (1) for T < Tw(H1) moves gradually to one of
the walls. Recall that the wetting transition temperature is the
limit of the interface localization or delocalization transition
Tc(H1,D,g = 0) for D → ∞ [7,18,20,21],

lim
D→∞

Tc(H1,D,g = 0) = Tw(H1). (5)

Thus, the quantitative details of the transition between states
(1) and (2) require a more careful and detailed treatment. How-
ever, the transition between states (2) and (3) is discontinuous,
and the corresponding transition line extends even down to
T = 0, where the approximations involved in Eqs. (2) and
(3) become legitimate. Thus we estimate this transition line
gt (D,H1,T ) as follows:

f2 = f3 ⇒
gt (D,H1,T )mb(T )D2/2 = fint(T ) + 2|H1|m1(T ). (6)

In the ground state (T = 0), we simply have mb(0) = 1,
fint(0) = 2J , m1(0) = 1, and hence

gt (D,H1,0)/J = 4(1 + |H1|/J )/D2. (7)

Monte Carlo data have been generated for the special
case D = 12, |H1|/J = 0.55, implying gt ≈ 0.043 in this
case. At finite but low T , accurate estimates for fint can
be found from Hasenbusch and Pinn [35]. For example,
for J/kBT = 0.46(T/Tcb ≈ 0.48), one finds fint/J ≈ 1.851,
and using from the actual observation of the profiles (see
Sec. III) that m1 ≈ 0.98 and hence gt ≈ 0.0407. As should be
clear from Eq. (6), gt (D,H1,T ) gets smaller with increasing
temperature, since both fint(T )/mb(T ) and m1(T )/mb(T ) are
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decreasing functions of T . While it is possible to evaluate
Eq. (6) at all T � Tcb, it is clear that the approximations
made in writing down f2, f3 break down at temperatures at
which the magnetization profile m(z) develops a nontrivial
structure, and the failure of Eq. (6) at T/Tcb � 0.6 is also
evident from a comparison of Eq. (6) with the Monte Carlo data
(see Sec. III).

B. Interface Hamiltonian treatment

In the absence of the gradient term in Eq. (1), the interface
localization or delocalization transition of the Ising model on
a mean-field level can be described by the following interface
Hamiltonian [7,18,21]:

Heff(�) =
∫

d �ρ
[
fint

2
(∇�)2 + V (�)

]
; (8)

here, �ρ = (x,y) denotes the coordinates in the plane of the left
wall in Fig. 1 and �( �ρ) is the local distance of the (fluctuating)
interface from the wall. For the case of a second-order wetting
transition in the limit D → ∞, the interface potential V0(�) is

V0(�) = −2a0δε exp(−κD/2){cosh[κ(� − D/2)] − 1}
+ 2b exp(−κD){cosh[κ(2� − D)] − 1}
+h(� − D/2). (9)

Here a0,b are phenomenological, positive constants, δε =
(Tw − T )/Tw, and κ−1 is a length that is of the same order as
the correlation length of the order parameter in the bulk. Note
that Eq. (8) implies that all bulk fluctuations in the system have
been already eliminated by some coarse-graining procedures,
so the only degrees of freedom left are the positions �( �ρ) of
the interface separating a domain of magnetization −mb(T ) on
the left side of the interface from a domain with magnetization
+mb(T ) on the right side. Thus, the last term on the right-hand
side of Eq. (9) simply represents the Zeeman energy in
Eq. (1), and therefore h = 2Hmb(T ). We disregard here the
explicit relation of the parameters a0,b,Tw to the parameters
kBT /J and H1/J of Eq. (1). We also note that for the
present somewhat qualitative treatment, the “local” interface
Hamiltonian, Eq. (8), suffices, thus there is no need for the
nonlocal theory [36].

Now we also need to translate the gradient energy in
Eq. (1) to the description in terms of the interface Hamiltonian.
Noting that the continuum analog of the gradient energy in
Eq. (1) is

gradient energy = g

∫ D

0
dz(2z − D)m(z) (10)

and that m(z) = −mb for 0 � z � � while m(z) = +mb for
z > �, we readily obtain from Eq. (10)

gradient energy = −2gmb(�2 − D�). (11)

Note that the gradient energy is symmetric around � = D/2,
where it has a maximum of height Vmax = gmbD

2/2, while it
vanishes for both � = 0 and � = D.

Adding Eq. (11) to the potential in Eq. (9), V (�) =
V0(�) + gradient energy, we then find the equilibrium position

of the interface by minimizing V (�) with respect to �, i.e.,
[∂V (�)/∂�]T = 0. This yields

− 2a0δεκ exp(−κD/2) sinh[κ(� − D/2)]

+ 4bκ exp(−κD) sinh[κ(2� − D)]

+ h − 2gmb(2� − D) = 0. (12)

For T � Tc(H1,D,g), the only solution of Eq. (12) for h =
0 is � = D/2, i.e., the state (1) in Fig. 1. At Tc(H1,D,g), the
second derivative of the potential for � = D/2 changes its sign;
thus the condition(

∂2V (�)

∂�2

)
T ,�=D/2

= −2a0δεκ
2 exp(−κD/2)

+ 8bκ2 exp(−κD) − 4gmb = 0 (13)

yields Tc(H1,D.g), i.e.,

2a0
Tc(H1,D,g) − Tw

Tw

= −8b exp(−κD/2) + 4gmb

κ2
exp(κD/2). (14)

As is well known from previous work for g = 0 [7,18,21],
Tc(H1,D,g = 0) approaches Tw from below; but the difference
between Tc(H1,D,g = 0) and Tw is exponentially small, ∝
exp(−κD/2). However, when g > 0, we see that Tc(H1,D,g)
increases rapidly, and the region where Tc(H1,D,g) exceeds
Tw is already reached for an exponentially small value of g,
namely g > (2bκ2/mb) exp(−κD).

We now characterize the critical behavior of the interface
localization-delocalization transition at Tc(H1,D,g) [or the
corresponding values δεcrit of δε in Eqs. (9), (12), and (13)].
We first recall that the inverse susceptibility χ−1 of the system
is [M = (L2D)−1 ∑

i〈Si〉T ] [7,18,21]

χ−1 = (∂M/∂H )−1
T ,

∝ [∂2V (�)/∂�2]−1
T |�=D/2 , (15)

and we readily conclude from Eqs. (12) and (13) that
(

∂2V (�)

∂�2

)−1

T

|�=D/2

= 2a0κ
2 exp(−κD/2)[T − Tc(H1,D,g)]/Tw. (16)

Equation (16) shows that for nonzero g for T >

Tc(H1,D,g), we also have a “soft mode” phase, with a
susceptibility that diverges exponentially with D as D → ∞
[due to an amplitude factor exp(κD/2)] at all temperatures
T < Tcb. At Tc and below, the behavior is more subtle:
we expand sinh x ≈ x + x3/3 in Eq. (12) to find for T =
Tc(H1,D,g)

h =
(

m

mb

)3

(κD)3κ[b exp(−κD) + gmb/6κ2], (17)

where we have used the fact that x = κ(� − D/2) =
−(κD/2)(m/mb). From Eq. (17), we see that there are two
regimes: only for g � gcross = (6κ2b/mb) exp(−κD) is the
effect of the gradient negligible, and we recover the anomalous
amplitude factor exp(−κD) characteristic for the soft-mode
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phase [21]. However, for g > gcross there is no longer any
anomalous response. Similarly, for T < Tc(H1,D,g), we find

x2 =
(

κD

2

)2
(

m

mb

)2

≈ 3a0[Tc(H1,D,g) − T ]/Tw

12b exp(−κD/2) + (2gmb/κ2) exp(κD/2)
. (18)

As expected, for g → 0, Eq. (18) reproduces the result
[21] m ∝ exp(κD/4)

√
Tc(H1,D,g) − T , but this anomalously

large order parameter amplitude [proportional to exp(κD/4)]
is no longer seen when g exceeds the value gcross ∝ exp(−κD).
As a final caveat, we note that the mean-field critical exponents
β = 1/2, γ = 1, and δ = 3, which can be read off from our
results for the order parameter Eq. (18), susceptibility Eq. (16),
and critical isotherm Eq. (17), are not expected to describe the
actual critical behavior if g > gcross. We recall that for g = 0,
mean-field theory is self-consistent for D → ∞, as a Ginzburg
criterion shows [21]. Of course, Eq. (14) loses its validity when
g is so large that Tc(H1,D,g) moves into the critical region
of the bulk. Rogiers and Indekeu [13] suggested a finite-size
scaling relation for the shift of Tc in this region,

(Tc(D,H1,g) − Tcb)/Tcb = D−1/νY (D�1/νH1,D
ψ/νg), (19)

where ν is the critical exponent of the correlation length, �1

is an exponent describing the critical behavior of free surfaces
[37], and ψ = � + ν (where � is the “gap exponent” in the
bulk [38]). The scaling function Y has not been calculated
explicitly, however. Assuming (as is corroborated by the
numerical data, see Sec. III) that the curve Tc(D,H1,g) exhibits
a maximum in the (T ,g) plane at Tmax, gmax, we conclude from
Eq. (19) that

Tmax − Tcb ∝ D−1/ν, gmax ∝ D−ψ/ν. (20)

Unfortunately, an extension of the interface Hamiltonian
treatment into the bulk critical region is not at all obvious, and
hence it is not attempted here.

III. MONTE CARLO SIMULATION RESULTS

In this section, we present the results of Monte Carlo
simulations of the Ising model, Eq. (1), assuming a simple-
cubic lattice with a thin-film thickness D = 12. These sim-
ulations extend previous work on interface localization or
delocalization transitions in Ising models done for g = 0
only [20,21,23,27]. As is well known, the delocalized interface
(with the average location at z = D/2) is a very slowly relaxing
object, making it very difficult to obtain meaningful accuracy.
While in previous work for g = 0 a comparative study of film
thicknesses D = 6, 8, and 12 was presented [20,21], we focus
here on a single thickness D = 12, aiming at a comprehensive
study of the effects of varying the strength of the gradient
energy, g. Most data have been taken for a single choice of
L, L = 128, but in a few cases L was systematically varied
in order to carry out a finite-size scaling analysis. We use
|H1|/J = 0.55 throughout, as in previous work [20,21], where
J/kBTc(H1/J = 0.55,D = 12) = 0.2497 ± 0.0003 was de-
termined. Note that at this critical temperature, κ/2 ≈ 0.364
was also estimated [21], implying exp(κD/2) ≈ 78.9. Since

FIG. 2. (Color online) Layer magnetization mn vs layer number
n for the case L = 128, D = 12, H1 = −HD = −0.55J : (a) g/J =
0.01 and several choices of J/kBT ; (b) J/kBT = 0.303 and several
choices of (g/J ); (c) J/kBT = 0.244 and several choices of g/J .
Note that mn is defined only for integer values of n, and data points
are connected by straight lines to guide the eye. The midplane (which,
in the continuum limit where z runs from z = 0 to xz = D, has been
denoted as z = D/2 in Sec. II) is located at z = (1 + D)/2 = 6.5
(vertical broken line), since for D = 12 there are 12 lattice planes
from n = 1 to 12. The horizontal broken straight line highlights zero
magnetization.

this value is rather large, a test of Eq. (14) by our simulations
turned out to be prohibitively difficult and must be left to future
work. Note also that within our accuracy, we cannot distinguish
the wetting transition temperature [J/kBTw(H1/J = 0.55) ≈
0.250] from J/kBTc for D = 12, as quoted above. For our
simulations, standard single-spin-flip Monte Carlo methods
(applying the heat bath algorithm [39,40]) were used. (As is
well known, in the presence of strong surface fields, the appli-
cation of cluster algorithms does not offer any advantage [26].)
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Figures 2(a)–2(c) show “raw Monte Carlo data” for our
magnetization profiles (for technical details of these Monte
Carlo simulations, the reader may also consult [20,21,39]).
The case shown in Fig. 2(a) illustrates the behavior of the
model as the temperature is lowered at a small but nonzero
value of g. Far above Tcb, e.g., J/kBT = 0.1, the layer
magnetization mn is zero everywhere except close to the
walls, where a nonzero magnetization is induced by the
surface fields. As the temperature is lowered toward Tcb, an
interface is gradually formed in the center (but no sharp phase
transition occurs). For g/J = 0.01 at temperatures slightly
below J/kBT = 0.22, the interface merely fluctuates about
the center of the film. When the temperature decreases to
J/kBT = 0.25, however, the interface moves toward one of
the surfaces until it is finally bound to the surface. For the
low temperature, J/kBT = 0.303, which is well below Tw,
for small g/J we realize state (2) in Fig. 1. Of course, the
magnetization is not strictly uniform, because it is reduced near
both walls [near the wall at z = D, where the positive surface
magnetic field acts, this reduction is less pronounced than
for the opposite wall (first layer, n = 1), where the negative
surface field and the “missing neighbor effect” act in the same

FIG. 3. (Color online) Free energy as obtained from thermody-
namic integration varying g/J at constant temperature [J/kBT =
0.467, L = 256, case (a)] and varying inverse temperature J/kBT at
constant g/J = 0.025 (b). In (a), the estimated transition point (at
g/J = 0.0424) is highlighted.

direction]. These effects are neglected in the simple estimates
of Sec. II1, and it is therefore clear that at the temperature of
Fig. 2(a), Eq. (6) is no longer accurate. Note that the effect
of g on the profiles is also very asymmetric: for increasing
g, the reduction of mn for n = 1,2,3 is somewhat reduced,
while near the other wall g has little effect. However, when
g/J becomes large (see the data for g/J = 0.04), the gradient
starts to lead to a reduction of mn near n = 12. Finally, for still
larger g/J (such as g/J = 0.05), the transition to state (3) in
Fig. 1 has occurred.

Turning now to the temperature J/kBT = 0.244, a case
in which T > Tw, we see that for g/J = 0.0 the interface
is delocalized in the center of the film, as expected [20,21].
However, for g/J = 0.005, the transition from state (1) to
state (2) in Fig. 1 has already occurred. For g/J = 0.020, we
see that the gradient causes a significant reduction of mn near
n = D, while for g/J = 0.025 the transition from state (2) to
state (3) in Fig. 1 has already occurred.

Since the transition from state (2) to state (3) is of first
order, we encounter strong hysteresis, particularly at low
temperature. The simplest recipe to deal with this problem
is to apply standard thermodynamic integration methods,
as described in the textbooks [39,40]. Figure 3 gives some

FIG. 4. (Color online) Free energy as obtained from thermody-
namic integration varying J/kBT at fixed g: (a) g/J = 0.01 and
(b) g/J = 0.0.
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examples: The intersection of the free-energy branches at
low T when g is varied allows an accurate estimation of the
transition value. However, this method breaks down near the
maximum of the curve Tc(D,H1,g). Then it is necessary to
carry out an integration varying J/kBT at fixed g, rather
than the other way round [Fig. 3(b)]. Unfortunately, near
the tricritical point, the accuracy of this method becomes
questionable since the two free-energy branches cut each
other under a rather small angle. As a check of the accuracy
of our procedures, we have also carried out a free-energy
integration in the second-order region: there, the two curves
should superimpose irrespective of in which phase [(1) or (2)]
one starts, and this is indeed verified nicely (Fig. 4). While
this procedure does not help to locate the transition (1)–(2)
accurately, it shows that neither statistical inaccuracy of the
raw data nor errors due to the numerical integration routine
are a serious problem.

In the second-order regime, we expect that the phase
transition should fall in the universality class of the two-
dimensional Ising model. We used this hypothesis in order
to locate the transition point accurately. One possibility is

FIG. 5. (Color online) (a) Fourth-order cumulant UL plotted vs
inverse temperature for the case D = 12, H1 = −HD = −0.55J ,
g/J = 0.015, and several choices of L. The dotted horizontal straight
line indicates the expected result [42–44] for the universality class of
the d = 2 Ising model. (b) Extrapolation of the values of the inverse
temperature J/kBT of crossing points vs L−1 for different choices of
the reference lattice size L′. The dashed lines are straight lines fitted
to the data.

to attempt to locate fourth-order cumulant intersections for
different values of L. As usual, the cumulant of the distribution
PL(M) of the total average magnetization is defined by [41]

UL = 1 − 〈M4〉/3〈M2〉2. (21)

Figure 5 shows a resulting attempt to apply this method for
g/J = 0.015. As was already found for the case g/J = 0.0
[20,21], there is considerable scatter in the intersections, and
they all lie below the theoretical cumulant value [44], UL(Tc) =
U ∗ = 0.610. Thus, one can only achieve modest accuracy,
J/kBTc = 0.2320 ± 0.0002. However, while for g = 0 and
D = 12 all values UL(T ) were very far below this theoretical
value U ∗ [as expected from the Ginsburg criterion [21], the
asymptotic Ising critical behavior is only seen quite close to
Tc(0)], in the present case [Fig. 5(a)] there is a much clearer
trend of UL(Tc) moving toward U ∗ as L increases. This is in
qualitative accord with the considerations of Sec. II B.

Note that despite long runs (4 × 107 Monte Carlo
steps/spin), rather large statistical errors still occur. (Error bars

FIG. 6. (Color online) (a) Normalized probability distribu-
tion P ∗

L(M∗) = 〈M2〉−1/2PL(M) vs M∗ = 〈M2〉−1/2M generated at
J/kBT = 0.2322 and reweighted to various neighboring tempera-
tures, as indicated, compared to the planar Ising model distribution at
criticality. (b) Probability distribution P ∗

L(M∗) vs M∗ for J/kBT =
0.2320 and different values of L. For comparison, P ∗

L(M∗) for the
two- and three-dimensional Ising models are included as well.
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were estimated from multiple independent runs.) Nonetheless,
the convergence to the Ising value is quite clear, unlike the case
of zero-field gradient, for which the convergence is quite slow
(see Fig. 3 in Ref. [21]). The finite-size extrapolation of the
temperatures at which the curves cross, shown in Fig. 5(b) for
different size reference systems, provides a consistent estimate
for the asymptotic value of the critical temperature.

As an additional approach, we followed Wilding [45] by
using the full information of PL(M) and adjusting J/kBT

until a good fit of the normalized distribution P ∗
L(M∗) to that

of the two-dimensional Ising model is obtained. However, if
one does this, a good fit of the peak heights is obtained at
temperatures that are clearly too low (J/kBT = 0.2335), and
the peak positions are clearly unreliable. We conclude that
optimizing PL(M) by histogram reweighting is not an accurate
method in our case [Fig. 6(a)]. However, when we study PL(M)
for different L at our best estimate for J/kBT , J/kBTc =
0.2320, we find a reasonable convergence toward the Ising
distribution [Fig. 6(b)].

In view of the difficulties encountered in locating the critical
points accurately (Figs. 5 and 6) and dealing with weak first-
order transitions [Fig. 3(b)], only a rather rough phase diagram
could be constructed in which we expected that the tricritical
point occurs somewhere between g/J = 0.020 and 0.025.

By performing the two-dimensional histogram reweighing
technique, the normalized probability distribution P ∗

L(M∗) =
〈M2〉−1/2PL(M) vs M∗ = 〈M2〉−1/2M generated at J/kBT =
0.241 67, g/J = 0.0204 was reweighted to neighboring tem-
peratures and field gradients. We find that at J/kBT =
0.242 418, g/J = 0.020 65, as indicated in Fig. 7, the prob-
ability distribution is in very good agreement with the planar
Ising model distribution at a tricritical point [46]. Thus, the
tricritical point was roughly located in the final phase diagram
shown in Fig. 8.

Note that the low-temperature approximation Eq. (6) is not
quantitatively accurate for T/Tcb > 0.4, but it does reproduce
the trend of the first-order transition line qualitatively. Clearly,
the obtainable precision of the present work and the competing

FIG. 7. (Color online) Normalized probability distribution
P ∗

L(M∗) = 〈M2〉−1/2PL(M) vs M∗ = 〈M2〉−1/2M generated at
J/kBT = 0.241 67, g/J = 0.0204, and reweighted to J/kBT =
0.242 418, g/J = 0.020 65, as indicated, compared to the planar
Ising model distribution at a tricritical point [46].

FIG. 8. (Color online) Phase diagram of the Ising thin film
(D = 12) plotted in the plane of variables T/Tcb and g/J . Second-
order transitions [from state (2) in Fig. 1 at low temperature to state (1)
at higher temperature] are shown by full dots; first-order transitions
[from state (2) to state (3)] are shown by open circles. The tricritical
point is show by a star. Triangles show estimates based on Eq. (6).

finite-size crossover effects also make it impossible to attempt
a meaningful test of the predictions based on the interface
Hamiltonian method (which are supposed to work near
g/J = 0).

IV. CONCLUSIONS

Monte Carlo simulations combined with finite-size studies
have confirmed the qualitative features of the mean-field
picture of the phase diagram of the Ising thin field with
oppositely directed surface fields in the presence of a field
gradient. The presence of the field gradient actually makes it
easier to extract the asymptotic, i.e., infinite lattice, transition
behavior even though the resolution is still somewhat limited.
The phase diagram for the interface delocalization transition
in a film with D = 12 layers is reentrant and exhibits two
phase transitions for T > Tw. Using a phenomenological
theory based on the capillary wave type interface Hamiltonian
description, we argued that the anomalous features of the
interface localization transition for g = 0 [namely that critical
amplitudes depend exponentially on film thickness D, and
critical behavior is mean-field-like, except for an extremely
narrow region around Tc(D)] are removed by the presence
of a very small gradient of order gcross ∝ exp(−κD). A
finite-size analysis of the behavior at a moderate value of
g/J provides convincing evidence that the critical behavior
along the second-order portion of the phase boundary is in
the universality class of the two-dimensional Ising model. We
presented a low-temperature approximation that does appear
to describe the actual behavior of the phase boundary at low
temperatures at least semiquantitatively.

Finally, we ask the following question: Is there the pos-
sibility to study a system experimentally where a gradient
competes with boundary fields such that the system undergoes
an Ising-type transition in the bulk? While one might first
think that a thin magnetic film in a magnetic-field gradient
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would be a good candidate, we believe that it is more likely
that success could be achieved in colloid-polymer mixtures,
which are “Ising equivalent” systems for the study of phase
transitions and interfacial phenomena [47,48]. For colloids of
several μm diameter, gravity couples sensitively to the colloid
density; a competing wall situation could be created if one wall
is just a hard wall [10] (which exerts an entropic attraction on
the colloidal particles) while the opposite wall is coated with a
polymer layer (attracting the polymers in the dispersion rather
than the colloids). Of course, such a system would not have the
perfect Ising symmetry between the coexisting phases in the
bulk, and one also cannot expect to realize “antisymmetric”

walls precisely, so such a system will have more complex
properties than the simple Ising system studied here.
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