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Hydrodynamic stress on small colloidal aggregates in shear flow using Stokesian dynamics
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The hydrodynamic properties of rigid fractal aggregates have been investigated by considering their motion
in shear flow in the Stokesian dynamics approach. Due to the high fluid viscosity and small particle inertia of
colloidal systems, the total force and torque applied to the aggregate reach equilibrium values in a short time.
Obtaining equilibrating motions for a number of independent samples, one can extract the average hydrodynamic
characteristics of the given fractal aggregates. Despite the geometry of these objects being essentially disordered,
the average drag-force distributions for aggregates show symmetric patterns. Moreover, these distributions
collapse on a single master curve, characteristic of the nature of the aggregates, provided the positions of the
particles are rescaled with the geometric radius of gyration. This result can be used to explain the reason why
the stress acting on an aggregate and moments of the forces acting on contact points between particles follow
power-law behaviors with the aggregate size. Moreover, the values of the exponents can be explained. As a
consequence, considering cohesive force typical for colloidal particles, we find that even aggregates smaller than
a few dozen particles must experience restructuring when typical shear flow is applied.
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I. INTRODUCTION

Systems of colloidal aggregates involve various phenomena
from the molecular scale to the nano- or microscale. The
interaction between colloidal particles depends on a number
of factors: the shape of the particles, their elasticity, the
nature of the particle surface, the temperature and chemical
properties of the fluid, and so forth. Additionally, complicated
hydrodynamic interactions act on them: a particle moving in
a fluid will change the velocity field of the fluid, which will
result in a change in the motion of the other particles. Due to
these factors, the modeling of colloidal system is an important
issue and many questions are still pending, even if extensive
research efforts in the field have been carried out over many
years.

Any approach investigating colloidal aggregates dispersed
in a fluid requires knowledge of the adhesion between particles.
Nowadays, direct observations are available using novel exper-
imental techniques, such as atomic force microscopy [1–3], op-
tical tweezers [4,5], and confocal microscopy [6]. These direct
approaches give valuable insights about the adhesive forces or
the mechanical properties of aggregates. However, the particles
available for such direct observations are restricted to certain
sizes, so the parameter determination for contact models is
still incomplete. A variety of approaches have been used as
alternative ways of investigating colloidal-aggregate systems.
Colloidal aggregates exhibit naturally fractal structures, so
their characteristic geometric morphology can be studied using
scattering methods, such as small-angle light, x-ray, or neutron
scattering [7–9]. However, the hydrodynamic characteristics
may depend on a nontrivial way on the geometry. These
characteristics are, for example, the sedimentation velocity
[10,11], the diffusion constant [12,13], and, more generally, the
rheology [14], with all being measured in specific experiments.
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The hydrodynamic stress experienced by the aggregates is then
the key property to investigate and understand, in order to be
able to analyze the experimental data properly.

Here, we report a study on the interaction between
hydrodynamics and rigid fractal aggregates in shear flow.
Situations where colloidal aggregates are exposed to several
types of flow are common to various industrial processes
in which the control of sizes and morphology for given
flow conditions is a central issue. Many observations have
been reported recently related to breakup and restructuring of
colloidal aggregates by flows [15–24]. In these experiments,
hydrodynamic interactions act constantly on the particles
within an aggregate and the structure of the stressed aggregate
depends directly on the local adhesive forces. To understand
the final state of the aggregate, one needs then to simulate both
the drag-force and stress distributions.

The first approach to this problem was to model the
aggregate as a porous sphere, where the Brinkman’s equation
is used to evaluate the fluid passing through a porous media
[25–28]. This theory requires consideration of a spherical
structure with continuous porosity, which could be valid for
sufficiently large and compact aggregates. Smaller and/or
open-structured aggregates require more detailed simulations.
In order to evaluate hydrodynamic interactions acting on
individual particles, one needs in principle to deal with
the Navier-Stokes equation, considering the proper boundary
conditions at the surfaces of the particles. For typical colloidal
systems, the particle Reynolds number is significantly small, so
the Stokes equation can be used instead. An enormous number
of studies of Stokes flow have been carried out in the fields
of fluid mechanics and applied mathematics [29]. Though
the finite-element method is the most rigorous numerical
approach to solve the Stokes equation, the huge calculation
cost drastically restricts the size of the aggregates [30].
Alternatively, a formulation using multipole expansions can
reduce the calculation cost substantially. Stokesian dynamics
(SD) is one of the most successful methods and can be

041405-11539-3755/2011/84(4)/041405(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.041405


RYOHEI SETO, ROBERT BOTET, AND HEIKO BRIESEN PHYSICAL REVIEW E 84, 041405 (2011)

used within a wide range of volume fractions. Actually, just
after the development of SD, Bossis et al. [31] studied the
hydrodynamic stress acting on colloidal aggregates. They
found a significant difference between rigid aggregates and
aggregation of force-free particles, with different power-law
relations between the stress S and the number of particles,
N : S ∝ N3/df for rigid aggregates and S ∝ N for aggregation
of force-free particles, where df is the fractal dimension of
the aggregates. SD was also applied to rigid aggregates by
Binder et al. [32], in which partially sintered agglomerates
were investigated with respect to the total drag forces. In their
work, they also compared SD to lattice Boltzmann simulations,
finding a good agreement except in the region of the sintered
necks. Harshe et al. [33] explicitly gave the resistance matrix
for a rigid fractal aggregate by using SD and discussed the
hydrodynamic behavior with an equivalent sphere model, i.e.,
the hydrodynamic radius, and moreover an equivalent ellipsoid
model. Another numerical method that is more accurate for
contacting particles was proposed by Filippov [34]. Thus, the
hydrodynamic behavior of fractal aggregates has been studied
by many groups. However, to the best of our knowledge, there
is no work that evaluates the hydrodynamic forces acting
on rigid aggregates by explicitly considering their realistic
motions in shear flow. There are several simulations of the time
evolution for primary particles with effective hydrodynamic
interactions [35] or SD [36]. However, the contact models used
allow facile restructuring of the aggregates. Consequently, they
cannot describe the hydrodynamic properties of aggregates
with definite structures.

We report here a strategy to tackle the problem. The target
of the present work is to study small-sized open-structured
fractal aggregates. For such systems, the assumption of a
porous media should not apply. Though we do not deal with
the time-evolution phenomena, such as the restructuring and
breakup, the realistic motion of a rigid aggregate under shear
flow can explicitly be considered. The idea is the same as the
problem of finding the terminal velocity of a particle under a
constant force in a viscous fluid. Due to the high fluid viscosity
and small particle inertia of colloidal systems, the total force
and torque acting on an aggregate are expected to reach their
equilibrium values quickly. In order to calculate the drag forces
and torques, we have used SD. The contents of the paper are
as follows: Brief descriptions of fractal aggregates and SD
are given in Secs. II A and II B, respectively. In Sec. II C,
the torque-balanced motion is introduced. The procedure to
determine forces and moments acting on contact points is
shown in Sec. II D. The torque-balanced motions are reported
in Secs. III A and III B, and the hydrodynamic radii estimated
with uniform flow and shear flow are examined in Sec. III C.
After that, we report the spatial distribution of the drag forces
in Sec. III D. At the end, the forces acting on the contact points
are evaluated in Sec. III E. Section IV gives a summary and
the conclusion.

II. METHOD

A. Fractal aggregates

The key question of this work is to determine how
hydrodynamic interactions change depending on the size and

morphology of a colloidal aggregate. In order to prepare
several sizes and morphologies, we have used computer
algorithms that are commonly used to generates fractal
aggregates [37,38]. Such fractal structures are seen in real
colloidal systems [39]. As will be explained below, fractal
structures follow a simple scaling law. Such scaling laws
should cause some systematic size dependence for the hy-
drodynamic responses, which are the target of this work.

For all of the cases in this paper, the aggregates are
composed of primary particles that are rigid spheres of radius
a, and the distance between the two particles in contact is
always 2a. The following three models are employed here.
The first model is reaction-limited hierarchical cluster-cluster
aggregation (CCA) [40]. A CCA cluster consisting of N

particles is formed by two CCA clusters of N/2 particles,
each of which is formed by two CCA clusters of N/4
particles, and so on. At each step, the direction to adjoin
is chosen randomly. The second model is diffusion-limited
particle-cluster aggregation (denoted by DLA) [41], in which
a particle moving by random walk collides with a stationary
cluster and is fixed to the cluster at that point. It is more
probable for the particle to attach to the surface of the cluster,
so that “bushy” structures are formed by such a process.
Thus, these two models involve randomness in the generated
structures. For comparison, as the third model we also examine
three-dimensional Vicsek (3D-Vicsek) fractals, which have
regular structures (see Fig. 1).

The aggregates generated by these models are known to
follow a power-law relation between the radius of gyration,
Rg , and the number of primary particles, N :

Rg/a = CN1/df . (1)

The radius of gyration, Rg , is defined as the root-mean-square
distance of the particles from the aggregate’s center of mass:

R2
g ≡ 1

N

∑
i

(r (i) − r0)2, (2)

where r (i) and r0 are the position of particle i and the center
of mass of the aggregate, respectively. The power-law relation
(1) is well defined for large particle number (N → ∞), where

FIG. 1. (Color online) 3D-Vicsek fractals (N = 7,29,343)
(top row) and their two-dimensional projections (bottom row). The
radius of gyration is denoted by the broken circles.
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FIG. 2. (Color online) The N dependence of the radius of gyration
Rg for CCA, DLA, and 3D-Vicsek fractals. The average values and
the standard deviations are plotted.

the value df is considered as a fractal dimension. However,
we investigate only small aggregates in this work. Even then,
such a fractal law is seen for some cases [42]. As Fig. 2 shows,
the average values of CCA clusters follow the power law very
well and the ones by the DLA model do reasonably. The lines
indicate the results of fitting by using the least-squares method
with the assumption of a power-law behavior in Eq. (1) for 256
samples of CCA and DLA clusters, each of size N = 2k+2 (k =
1, . . . ,8). We obtained (df ,C) = (1.99 ± 0.01,0.93 ± 0.01)
for CCA and (df ,C) = (2.31 ± 0.01,1.14 ± 0.01) for DLA.
These error estimations are based on a confidence interval of
95% for the linear regression of the data sets (log N, log Rg).
It is worth noting that such small sizes of DLA clusters show
a crossover behavior, i.e., the fractal dimension corresponding
to the local slope between adjacent data points changes from
a smaller value to the asymptotic value 2.5 with increasing
size. For the 3D-Vicsek fractal model, though the theoretical
value of the fractal dimension is df = log 7/ log 3 (≈1.77),
the N -Rg relations for the small sizes (N = 7,49,343) lead
to (df ,C) ≈ (1.73,0.60). The radii of gyration for 3D-Vicsek
fractals are shown by their two-dimensional projections (see
the bottom row of Fig. 1).

B. Stokesian dynamics

We employ Stokesian dynamics as devised by Durlofsky
et al. [43] and Brady and Bossis [44]. Stokesian dynamics
is a numerical method to deal with the Stokes equation,
which is the zero-Reynolds-number limit of the Navier-Stokes
equation. This method does not provide the solution of Stokes
equation, i.e., the velocity and pressure fields of the fluid;
instead, the relations between the hydrodynamic interactions
acting on the particles and their relative velocities from an
imposed flow are determined. The evaluation starts from the
solution of the Stokes equation for a point force, which is
written by using the Oseen tensor. As a result of the linearity
of the Stokes equation, the fluid-velocity disturbance caused
by particles can be formulated as a superposition of point
forces, which is given in an integral form. Since particles are
assumed to be spheres, multipole expansions can be applied
for the integrals. After arranging these expanded terms, the
linear relations between the force moments and the velocity

moments are obtained [45]. For standard SD, the expansion is
truncated at first order. This truncation causes serious errors
when the particles move within a close distance of each other.
In order to avoid such errors, the two-body exact solution is
used to correct interactions between two approaching particles,
which is called the lubrication correction. As the result, SD is
considered as an effective method to deal with a wide range of
volume fractions.

In order to evaluate hydrodynamic interactions in shear
flow, the force-torque-stresslet (FTS) version of SD is required.
The imposed flow is expressed with constant vectors and
tensors, i.e., the translational velocity U∞, vorticity �∞, and
rate of strain E∞:

U∞(r) = U∞ + �∞ × r + E∞ · r. (3)

The shear flow, U∞(r) = Gzex , is given by the following
nonzero elements: (�∞)y = (E∞)xz = (E∞)zx = G/2, where
G and ex indicate the shear rate and the unit vector along the
x axis, respectively. The hydrodynamic interactions acting on
a particle, the drag forces F(i), torques T (i), and stresslets S(i),
are given as a linear combination of the relative velocities from
the imposed flow, the translational velocities U (j ) − U∞(r (j )),
and rotational velocities �(j ) − �∞ of all particles j =
1, . . . ,N , and the rate of strain −E∞. This linear combination
is given by using the so-called grand resistance matrix R [43]:
⎛
⎜⎝

F

T

S

⎞
⎟⎠ = −R ·

⎛
⎜⎝

U − U∞

� − �∞

−E∞

⎞
⎟⎠ , R ≡

⎛
⎜⎝

RFU RFO RFE

RTU RTO RTE

RSU RSO RSE

⎞
⎟⎠ .

(4)

These vectors contain elements for all particles, e.g., F ≡
(F (1)

x ,F (1)
y ,F (1)

z , . . . ,F (N)
x ,F (N)

y ,F (N)
z ). Since both the stresslet

and rate-of-strain tensors are symmetric and traceless, the five
independent elements are denoted as vector forms, such as
S(i) ≡ (S(i)

xx,S
(i)
xy ,S

(i)
xz ,S

(i)
yz ,S

(i)
yy ). Therefore, the size of the grand

resistance matrix R is 11N × 11N . In this work, we have used
the numerical library developed by Ichiki [46] for obtaining it.

In this paper, we consider the situation where a colloidal
aggregate of finite size is exposed to an imposed flow. There,
the flow is disturbed systematically by particles being close
to each other. A systematic error depending on the size of
the aggregate is expected because the lubrication correction,
namely, the two-body solution, does not take such disturbance
of the imposed flow into account. This kind of systematic error
is undesirable. However, we consider only rigid aggregates in
this work. In this case, the relative velocities between any
two particles within an aggregate are always zero. We may
omit the lubrication correction because it is effective only for
the finite relative velocity between particles nearly touching.
Bossis et al. [31] and Harshe et al. [33] have also taken the same
approach to study aggregate systems. We have also checked
that this approach yields similar results for the rigid fractal
aggregates reported by Filippov [34] (see Sec. III C).

For comparison, the free-draining approximation (FDA)
has also been employed, in which the Stokes formula is used
for each individual particle. By following the same manner
as Eq. (4), the resistance matrix of the FDA has nonzero
elements only for the self-parts, i.e., R(FDA)

FU = 6πμaI3N ,
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R(FDA)
TO = 8πμa3I3N , and R(FDA)

SE = (20/3)πμa3I5N , where μ

is the viscosity of the fluid and In is the n × n identity matrix.
Though the FDA is valid only for the dilute limit, it is used for
the simulation of the time evolution because of its simplicity
and low calculation cost [30,47–49].

C. The torque-balanced motion in shear flow

Here, the dilute limit of a colloidal-aggregate system is
studied, with aggregates consisting of a certain number of
primary particles existing far from others. They are freely
suspended in the fluid phase, so that they are carried by the
shear flow. Our interest is in examining the drag forces acting
on individual particles for such a situation. In this work, we
investigate hydrodynamic behavior of rigid fractal aggregates,
so that neither their elastic deformation nor restructuring are
considered. Furthermore, in order to avoid carrying out a
time-evolution simulation, we took an approximate strategy
as follows. Due to the small inertia of colloidal particles in
comparison to the hydrodynamic interactions, their motions
satisfy balancing conditions about the drag forces and torques
after a short relaxation time. So, the balancing condition with
a given configuration of particles is solved in this work. For
a rigid object of arbitrary shape, a linear relation between the
force and the velocity holds as a consequence of the linearity of
the Stokes equation. The relation is given by a single 11 × 11
matrix for the FTS level. Since a rigid aggregate consisting
of spheres is considered here, the matrix elements can be
explicitly derived from the grand resistance matrix R [Eq. (4)].
The outline of the derivation will be shown in the following
paragraph, but more explicit equations can be found in Harshe
et al. [33].

Due to the rigidity of the aggregate, the translational and
angular velocities of a particle i relate to the translational and
angular velocities of the aggregate (Uag,�ag). So, the relative
velocities from a imposed flow can be written as

U (i) − U∞(r (i)) = U ag − U∞(r0) + (�ag − �∞)

× l (i) − E∞ · l (i),

�(i) − �∞ = �ag − �∞, (5)

where l (i) ≡ r (i) − r0. By substituting Eq. (5) in Eq. (4),
the force, torque, and stresslet acting on an individual particle
i are also given in terms of the velocities of the aggregate
and the positions l (j ) of all the particles j = 1, . . . ,N .
The total force, torque, and stresslet acting on the rigid
aggregate (Fag,T ag,Sag) are composed of the contributions
for the individual particles:

Fag =
∑

i

F(i), T ag =
∑

i

{T (i) + l (i) × F(i)},

Sag =
∑

i

{
S(i) + 1

2
(l (i) ⊗ F(i) + {l (i) ⊗ F(i)}T)

− 1

3
(l (i) · F(i)) I

}
, (6)

where the symbol ⊗ indicates the dyadic product. It is worth
noting that the larger the size of an aggregate, the more
significant are the contributions of the drag forces F(i) to the
total torque T ag and stresslet Sag. After rearranging Eqs. (6),

one can obtain a linear expression between the total forces and
the velocities for the rigid aggregate:⎛

⎜⎝
Fag

T ag

Sag

⎞
⎟⎠ = −Rag ·

⎛
⎜⎝

Uag − U∞(r0)

�ag − �∞

−E∞

⎞
⎟⎠ . (7)

Thus, all elements of the 11 × 11 resistance matrix Rag are
uniquely determined by the geometrical configuration of the
aggregate. Arbitrary motion of the aggregate (Uag,�ag) in
any linear flow expressed with (U∞,�∞,E∞), the total force,
torque, and stresslet acting on it can be determined by the
resistance matrix Rag.

Now our problem is to find the motion of an aggregate in
a shear flow. For a freely suspended aggregate, the force and
torque acting on it should be zero in the small-inertia limit:

Fag = 0, T ag = 0. (8)

In order to determine Uag and �ag, one needs to have the
inverse relation:⎛

⎜⎝
U ag − U∞(r0)

�ag − �∞

−E∞

⎞
⎟⎠ = −Mag ·

⎛
⎝ Fag

T ag

Sag

⎞
⎠ . (9)

The mobility matrix is the inverse matrix of the resistance
matrix, Mag = R−1

ag . The submatrices are denoted as follows:

Mag ≡

⎛
⎜⎝

(Mag)UF (Mag)UT (Mag)US

(Mag)OF (Mag)OT (Mag)OS

(Mag)EF (Mag)ET (Mag)ES

⎞
⎟⎠ . (10)

By substituting the balancing condition (8) in Eq. (9), the
stresslet acting on the aggregate is obtained as

Sag = (Mag)−1
ES · E∞. (11)

The strength of the stresslet Sag is given as the square root of
the second invariant of the tensor:

Sag ≡
√√√√1

2

∑
j,k

(Sag)2
jk. (12)

We refer to this quantity as the stress acting on an aggregate.
At the same time, the motion of a freely suspended aggregate
is determined:

Uag = U∞(r0) − (Mag)US Sag,
(13)

�ag = �∞ − (Mag)OS Sag.

In this way, we determine the motion under a shear flow, which
in this paper is referred to as the torque-balanced motion.

D. Forces and moments acting on the contact points

A method to determine forces and moments acting on each
contact point within an aggregate is presented in this section.
Such values can be compared with the cohesive forces between
colloidal particles observed in experiments. Our method is
restricted to open-structured fractals, and so the application
is limited. This restriction is the same as in recent work by
Gastaldi and Vanni [50]. For compact aggregates, a different
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approach was proposed by Bäbler et al. [51]. As mentioned in
Sec. II A, fractal aggregates are prepared by using numerical
algorithms. One common feature of such artificially generated
aggregates is that the number of contact points is always N −
1, as an addition of a particle or cluster always creates only one
contact point but never creates more than two contact points at
one time. This means that no loop structure can be formed in
the aggregate, so that one can always divide it into two parts
by cutting at an arbitrary contact point. Here we consider a
contact point α at the position rα , which is the unique junction
to connect the two parts divided by it, named A and B. The total
forces acting on each part are given by the simple summations

FA =
∑
i∈A

F(i), FB =
∑
i∈B

F(i). (14)

For torque-balanced motion, the sum of them is zero: FA +
FB = 0. These forces are supported by the cohesion at the
contact point α, so the magnitude of the forces acting on α is
equivalent to the total forces acting on the divided parts. The
normal and sliding parts are obtained as follows:

F
(α)
normal = FA · n, (15)

F
(α)
sliding = |FA − (FA · n)n|, (16)

where n is the normal vector between the adjoining particles at
the contact point α. In the same way, the total moments acting
on the contact point α are given as

MA =
∑
i∈A

{(r (i) − rα) × F(i) + T (i)}, (17)

MB =
∑
i∈B

{(r (i) − rα) × F(i) + T (i)}. (18)

By the same argument as above, the bending and torsional
parts are obtained as

M
(α)
bending = |MA − (MA · n)n|, (19)

M
(α)
torsion = |MA · n|. (20)

Thus, the forces and moments acting on all contact points
(α = 1, . . . , N − 1) within a fractal aggregate can be
determined.
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FIG. 4. (Color online) The stress Sag normalized by F0a
2 as

obtained by the FDA and SD methods for 3D-Vicsek fractals.

III. RESULTS AND DISCUSSION

A. The torque-balanced motion of 3D-Vicsek fractals

Figure 3 shows the drag forces for three orientations of a
3D-Vicsek fractal (N = 49) by using SD. These drag forces
look similar to the flow pattern of the elongational flow given
by the rate-of-strain part E∞ of a simple shear flow. This can be
understood as follows: the vortex part �∞ of the simple shear
flow is canceled out by the rotation of the torque-balanced
motion, and the rate-of-strain part E∞ remains to act on the
aggregate.

3D-Vicsek fractals have symmetric structures. This feature
is different from the two other random fractals. Because of
the symmetry, the total drag force acting on the aggregate
is always zero whether the FDA or SD is used, if the
center of mass of the aggregate is taken as the origin of
the frame of reference. Furthermore, the angular velocity at
the torque-balanced motion is also always the same: �ag =
(G/2)ey . This expected behavior was confirmed for three
sizes of aggregates (N = 7,49,343) with ten randomly chosen
different orientations. Thus, the behavior of 3D-Vicsek fractals
cannot be distinguished from a single sphere in a shear flow
whether the FDA or SD is used.

The difference between the FDA and SD is seen by the
stress Sag. When the FDA is used, it does not depend on the
orientation of the aggregate, and the N dependence follows
a power law Sag ∝ Nλ with the exponent λ ≈ 1.99. On the
other hand, when SD is used, the stress Sag depends slightly

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

FIG. 3. (Color online) The torque-balanced motions of a 3D-Vicsek fractal (N = 49) with three random orientations. The vectors denote
the force acting on a particle, with a vector of length 2 corresponding to a force of F0 ≡ 6πμa2G.
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FIG. 5. (Color online) The drag forces acting on the primary
particles within a CCA cluster (N = 64) at the torque-balanced
motion. The two different methods, (a) the FDA and (b) SD, are
compared. The figures show the projections for the 3D positions of
the particles in the xz plane. The grayness of the circles indicate the
depth of y, where darker means larger y (more behind). The drag
forces are represented by the length of the vectors, where the unit of
force (F0 ≡ 6πμa2G) is set to length 1.

on the orientation of the aggregate. By using the method of
least squares, the average exponent and its standard deviation
are found as λ ≈ 1.57. These results are shown in Fig. 4. Thus,
we can see that the overestimation of stress by using the FDA
increases with N . This N dependence of the stress Sag will be
further discussed in Sec. III C.

B. The torque-balanced motion of CCA clusters

Before considering the averaged behavior of CCA clusters,
an individual case is discussed. A CCA cluster of 64 particles is
taken here (see Fig. 5). When using the FDA, the translational
velocity of the aggregate at the torque-balanced motion is zero
(Uag = 0), and the angular velocity is obtained as �ag/G ≈
(−0.05,0.32,−0.02). With using SD, the translational velocity
is obtained as Uag/aG ≈ (0.21,−0.12,0.26), and the angular
velocity is obtained as �ag/G ≈ (−0.04,0.34,0.00). In any
case, the torque-balanced motion is different from the case of
a sphere. It rather relates to its irregular structure. In Fig. 5,
the drag forces with the FDA and SD are compared. By this
individual case, we can see that the magnitudes of the SD
forces are much smaller than the corresponding magnitudes of
the FDA.

The torque-balanced motion obviously depends on the
individual structure of the samples. For open-structured aggre-
gates, such as CCA clusters, the effect of individual structures
seems significant for each torque-balanced motion. In order
to see the systematic part of the results, one needs to take
averages over the results of many samples. Here 256 samples
of CCA clusters were calculated for each size N = 2k+2 (k =
1, . . . ,8). For the FDA the translational velocity is always zero
as expected (Uag = 0). On the other hand, for the results by
SD, though the average of the velocity vectors is close to zero,
the average of the magnitudes increases with the size of the
aggregate. More precisely, as seen in Fig. 6(a), it is proportional
to the radius of gyration, Rg , i.e., the average of the ratio
between |Uag| and Rg remains roughly constant for different
N : 〈|Uag|/RgG〉 ≈ 0.038. For the angular velocities �ag, the
average also coincides with the case of a sphere regardless of
whether the FDA or SD is used. The results for N = 256 are
obtained as �ag/G = (0 ± 0.10,0.50 ± 0.18,0 ± 0.08) with
the FDA and �ag/G = (0 ± 0.09,0.50 ± 0.16,0 ± 0.08) with
SD. The standard deviation does not change appreciably
with N whether the FDA or SD is used [see Fig. 6(b)]. It is
remarkable that even though the aggregate becomes larger, the
influence of randomness of the structure on the motion stays
the same. In other words, an individual CCA cluster does not
get closer to the behavior of a single sphere, even if it becomes
large. However, as we will see in Sec. III C, the simplification
of replacing the aggregate with a single sphere describes the
situation well from a statistical viewpoint.

The stress Sag also follows a power-law relation, Sag ∝ Nλ

[see Fig. 6(c)]. The least-squares fitting leads to the following
exponents: λ ≈ 1.92 with the FDA and λ ≈ 1.47 with SD.
Though these exponents are smaller than the results for 3D-
Vicsek fractals (Sec. III A), the differences of the exponents
between the FDA and SD are quite similar. This N dependence
of the stress will also be discussed in Sec. III C.

C. Hydrodynamic radius

Before going to the detail analysis of the drag forces, it
is worth considering the obtained power laws in terms of
the hydrodynamic radius. For the torque-balanced motion of
fractal aggregates, we found power-law relations between the
stress Sag and the number of particles, N , in Secs. III A and
III B. Because rigidity of the structure is assumed, the results

S ag ∝ N1.47
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FIG. 6. (Color online) N dependence of the average translational velocity |U ag| (a) and the average angular velocity (�ag)y (b) of CCA
clusters at the torque-balanced state. The averages are obtained over 256 samples, and the error bars indicate the standard deviations. (c) The
N dependence of the stress Sag.
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FIG. 7. (Color online) (a) The averages and standard deviations of the ratio between hydrodynamic radius and radius of gyration 〈RH /Rg〉.
(b) The averages and standard deviations of the ratio between the hydrodynamic radius in shear flow and radius of gyration 〈R∗

H /Rg〉. They
were obtained over 256 samples for each size of CCA and DLA clusters and 10 samples for each size of 3D-Vicsek fractals.

obtained make sense for small aggregates. However, one can
see whether or not the results obtained are reasonable by
extending the power-law relation to large values of N .

First, let us consider the hydrodynamic radius RH . The
hydrodynamic radius of an aggregate is given as the corre-
sponding radius of a sphere that gives the same drag force
acting on the aggregate in a uniform flow:

RH ≡ Fag · U
6πμU2

. (21)

For a fractal aggregate, the radius of gyration, Rg , represents
a characteristic length of the aggregate (see Sec. II A).
Figure 7(a) shows the average values and standard deviations
of the ratio RH/Rg for the three types of fractal aggregates.
For CCA clusters, the average ratio is about 1 and does not
change with N . This result seems reasonable because the
scaling behavior can be extended to larger N . In addition,
similar results were reported in the literature [12,28,34,52,53].
On the other hand, the average ratio for DLA clusters slowly
increases with N . If this trend is extended to larger N , the
hydrodynamic effect diverges. Since such a divergence is
physically unreasonable, it may represent a slow crossover
to the asymptotic regime. The ratio for 3D-Vicsek fractals
decreases with N and approaches 1. Though the scaling
behavior is imperfect for the small aggregates, this result is
physically reasonable, and similar behavior for aggregates with
a lower fractal dimension was also reported by Filippov [34].

The concept of hydrodynamic radius is useful for under-
standing the stress in shear flow. The radius of a corresponding
sphere can also be considered for the fractal aggregate in terms
of stress acting on an aggregate. When a sphere with radius R

is freely suspended in a shear flow, the force and torque acting
on the sphere are zero, but the stress is given as

Ssph = 10

3
πμR3G. (22)

By using this relation, the corresponding hydrodynamic radius
R∗

H is determined from the stress Sag:

R∗
H ≡

(
3Sag

10πμG

)1/3

. (23)

Figure 7(b) shows the average values and standard deviations
of the ratio between the hydrodynamic radius and the radius

of gyration, R∗
H/Rg , for three types of fractal aggregates.

Despite the different definitions of the hydrodynamic radius,
we cannot see significant difference between them. This
result implies that one can make use of the hydrodynamic
radius estimated by sedimentation experiments to evaluate
the viscosity of suspensions [14,54]. Now, the power laws
obtained in Secs. III A and III B can be interpreted as the
simple expectation, Sag ∝ R3

g ∝ N3/df . Especially for CCA
clusters, the hydrodynamic radius is proportional to the radius
of gyration, so that the estimated exponent 3/df ≈ 1.51 is
close to the obtained exponent 1.47. Thus, the hydrodynamic
radius represents the hydrodynamic response of CCA clusters
at the torque-balanced motion.

D. Drag force acting on individual particles

We saw that the stress acting on an aggregate follows a
simple estimation. However, it is not obvious why such open-
structured fractal aggregates show such a simple hydrody-
namic response. To elucidate this behavior, the hydrodynamic
interaction is investigated in greater detail. The drag forces
acting on individual particles have already been shown in
Fig. 5. In order to visualize the general tendency of such drag
forces, the averages of the magnitudes are taken at the positions
of particles. The local averages are taken by distinguishing

F

F0

F

F0

FIG. 8. (Color online) The spatial distribution of the drag force
strength with (a) the FDA and (b) SD in the xz plane. The
particles within the central slice |y| < 0.1〈Rg〉 are considered. Data
were averaged over 1024 CCA clusters, and the contour plots are
interpolated. The plot ranges of (a) and (b) are not the same, because
drag forces given by the FDA are much larger than those given
by SD.
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FIG. 9. (Color online) The radial dependence of drag-force strengths for CCA clusters plotted with two hydrodynamic methods, (a) the
FDA and (b) SD. The error bars indicate the standard deviation. The broken line indicates the drag force F = 3πμaGrxz, which acts on a
particle that translates along the circular orbit of radius rxz with velocity v = G/2(z, − x).

the positions (x,z) into square cells, �x = �z = 0.1〈Rg〉.
Figure 8 shows the spatial distributions in the xz plane for
particles within a sliced domain |y| < 0.1〈Rg〉, where the
CCA cluster with N = 256 was chosen, and 1024 independent
samples were calculated. There, the cells including fewer
than ten data are considered as empty. The circle (with a
dashed line) on the figures indicates the average radius of
gyration, 〈Rg〉.

First, the remarkable reduction of the drag forces from the
FDA to SD can be seen in Fig. 8. Drag forces are reduced not
only inside but also throughout the entire aggregate. Second,
both plots of Fig. 8 show different types of symmetric patterns.
The pattern of the FDA looks to have four-fold symmetry,
and the pattern of SD looks almost isotropic. The four-fold
symmetry of the FDA implies a correlation between the
anisotropic shape of the aggregate and the torque-balanced
motion. Actually, an individual CCA cluster can have a rather
different configuration from a spherical one. In shear flow, the
orientation of an aggregate affects the motion and eventually
the drag forces. However, we cannot present an explanation
for the concentric pattern seen in the distribution of SD.

From the symmetric patterns seen in Fig. 8, we can
obtain the radial dependence of the drag force. For the same
sliced domain |y| < 0.1〈Rg〉, the drag forces are averaged
by the radial sections Rj � rxz < Rj+1 with j = 1, . . . ,20,
where Rj+1 − Rj = 0.1〈Rg〉 and R1 = 0. The results for the
CCA clusters with three different sizes (N = 16,64,256) are

compared in Fig. 9 for the two methods, the FDA and SD.
The averages and standard deviations were obtained over 256
samples. Sections including fewer than ten data are considered
as empty. It is seen that the dependence on N are significantly
different between the FDA and SD. For the FDA, the slopes
for the different sizes of aggregate are similar to each other,
especially for smaller rxz. On the other hand, for SD, the
slope becomes smaller as the aggregate size increases. In these
averages, the disturbance of imposed flow by particles looks
systematic. However, the standard deviations of drag forces
remain large even for the larger N .

We have confirmed that these systematic disturbances
are more clearly seen with the radial distance normalized
by the radius of gyration, rxz/Rg . Figure 10 shows the
six different sizes N = 2k+2 (k = 1, . . . ,8) of CCA and
DLA clusters. The drag forces |F(i)(rxz)| are averaged over
the sections by the normalized radius: R̃j � rxz/Rg < R̃j+1

with j = 1, . . . ,20, where R̃j+1 − R̃j = 0.1 and R̃1 = 0.
The data closely fit on a master curve, especially for CCA
clusters. This means that the average drag force depends
only on the relative location within the aggregate. With the
FDA, the drag force becomes larger with increasing size,
because the velocity difference is simply proportional to the
size of the aggregate. However, with SD the aggregate disturbs
the imposed flow more and more as its size increases. As a
result, the average drag force acting on one particle remains
the same. The hydrodynamic interaction affecting fractal
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TABLE I. The parameters used in Sec. III E to evaluate the forces
and moments acting on the contact points within an aggregate.

Symbol Value

Viscosity of fluid μ 0.001 Pa s
Radius of particles a 735 nm
Shear rate G 50 s−1

aggregates can be rescaled by the radius of gyration, Rg . The
same results with uniform flows were reported by Gastaldi and
Vanni [50].

E. Forces and moments acting on the contact points

In order to have a concrete interpretation for the results, we
consider a problem to estimate the critical size of an aggregate
in shear flow. Though colloidal aggregates are known to show
elastic behavior (as shown by theory [55] and direct observa-
tion [5]), we assumed that the elasticity is less effective for the
small aggregates considered in this work. The interparticle
bonds are considered as brittle here. When hydrodynamic
stress is small, the structure of the aggregate is unchanged. As
seen in Sec. III A or III B, the hydrodynamic stress becomes
larger as the size of aggregate increases. When the stress at a
contact point within the aggregate exceeds the cohesive force
between particles, restructuring or breakup of the aggregate
sets in. This critical size is discussed in this section.

The Stokes equation is a linear differential equation in terms
of the velocity field and the pressure field. As a result, all
derived results can be rescaled by the radius of the primary
particle, a, the viscosity of the fluid, μ, and the shear rate
G. In other words, there is no essential variation due to such
parameters as long as the Stokes regime is valid. In this section,
a set of parameters is chosen in order to demonstrate the results
for some experimentally investigated system. However, the
results can be translated to other systems in a straightforward
way. The values of the parameters used in this examination
are given by Table I. We report the maximum forces and
moments acting on contact point within aggregates. These
quantities also follow power-law relations with respect to the
number of particles, N . Figure 11 shows the respective types of
forces and moments with SD. The averages and the standard
deviations are obtained over 256 samples for CCA clusters.

TABLE II. The exponents of power law seen between the
maximum force/moment and number of particles: Fmax ∝ Nλ and
Mmax ∝ Nλ. The fitting is done with averages over 256 samples.

CCA (df ≈ 1.99) DLA (df ≈ 2.31)

FDA SD FDA SD

Elongation 1.59 1.07 1.46 0.99
Compression 1.59 1.07 1.46 0.99
Sliding 1.54 1.03 1.45 0.99
Bending 2.06 1.56 1.84 1.40
Torsion 2.12 1.61 1.90 1.47

The exponents of the power-law relation are obtained by the
method of least squares and are shown in Table II. These
exponents indicate how such forces increase with the number
of particles, N .

These results can be compared with the direct observation
for the cohesive forces between colloidal particles reported
by Pantina and Furst [4,5]. Though they observed variation
by changing the chemical condition of the solvent, some
typical values are taken to compare with our results, i.e., the
critical elongation force and bending moment are FNc ≈ 10 pN
and MBc ≈ 30 pN μm, respectively. Unfortunately, the other
values are not measured in their experiments, so only the
above two values are considered here. If the bonds within CCA
clusters have such critical forces, the rigid regime is expected
to terminate at N ≈ 63 under a shear flow of G = 50 s−1.
There, the bending moment reaches the critical value, but the
elongation force does not become critical.

For deeper understanding, we try to interpret the exponents
shown in Table II. When the FDA is used, the typical forces
acting on a contact point are expected to be proportional to
the average drag force and to the number of particles. The
average drag force is proportional to the maximum velocity
difference of the imposed flow within the aggregate, which
in turn is proportional to the size of aggregate. This is why
one can expect the following relation: F ∝ N�U ∝ NRg . By
using the fractal relation (1), the exponent of such a force is
estimated as

λ
(FDA)
force ≈ 1 + 1

df

. (24)
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FIG. 11. (Color online) The averages of the (a) maximum forces and (b) moments acting on the contact points within aggregates obtained
over 256 CCA clusters. The drag forces were calculated by using SD.
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This is 1.50 and 1.43 for CCA and DLA clusters, respectively,
which are roughly comparable to the obtained exponents
for the maximum elongation force, i.e., 1.59 and 1.46. For
the results of SD, we saw in Sec. III D that the drag-force
distributions do not depend on the size of an aggregate, if
the position is rescaled by Rg . This implies that the typical
force acting on a contact point is expected to increase only
with the number of particles: F ∝ N ; that is, the exponent
is 1. Actually, the obtained exponents for the maximum
elongation force are 1.07 and 0.99 for CCA and DLA clusters,
respectively. The typical moments acting on a contact point are
expected to be the product of force and the typical length of
the aggregate: M ∝ FRg , which leads to the following relation
between the exponents:

λ
(FDA)
moment ≈ 1 + 2

df

, λ
(SD)
moment ≈ 1 + 1

df

. (25)

From this the λ
(FDA)
moment should be 2.01 and 1.87 for CCA and

DLA clusters, respectively, which are roughly comparable to
the obtained exponents for the maximum bending moment, i.e.,
2.06 and 1.84. λ

(SD)
moment values are 1.50 and 1.43, respectively,

which are roughly comparable to the obtained exponents for
the maximum bending moment, i.e., 1.56 and 1.40. Thus, the
simple estimations roughly explain the N dependence of the
maximum forces and moments acting on the contact points.

IV. SUMMARY AND CONCLUSION

We have evaluated the hydrodynamic interaction acting
on rigid fractal aggregates using Stokesian dynamics. Freely
suspended aggregates follow the imposed shear flow, and the

torque-balanced motion is introduced in order to investigate
such a situation statistically. We have found that the hydro-
dynamic radius of the fractal aggregates scales proportionally
with their radius of gyration, Rg . Even for small aggregates,
the average drag-force distribution fits on a master curve if
one uses a normalized radial distance r/Rag. It has also been
confirmed that the stress-radius relation Sag ∝ R3

g is valid
even for small CCA clusters. As a demonstration, we have
calculated that the critical size at which the aggregate no longer
remains rigid is of a few tens of particles if we take the typical
cohesive force for colloidal particles.

In this work, we have assumed a rigid structure for the
fractal aggregates. However, the effect of elasticity is expected
to increase for larger aggregates [55]. If such elasticity is taken
into account, the size dependence of the mechanical stability
threshold could be weaker than that estimated in this work.
In addition, no restructuring has been dealt with in this work.
If loops are formed because of restructuring, the aggregates
becomes more and more robust. In order to know the final size
and morphology of colloidal aggregates in shear flow, such an
effect needs to be studied.
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