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We investigate the jamming transition of frictional particulate systems via discrete element simulations,
reporting the existence of new regimes, which are conveniently described in a jamming phase diagram with
axes density, shear stress, and friction coefficient. The resulting jammed states are characterized by different
mechanical and structural properties and appear not to be “fragile” as speculated. In particular, we find a regime,
characterized by extremely long processes, with a diverging time scale, whereby a suspension first flows but then
suddenly jams. We link this sudden jamming transition to the presence of impeded dilatancy.
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I. INTRODUCTION

The nonequilibrium transition from a fluidlike state to a
disordered solidlike state, known as the jamming transition,
occurs in a wide variety of many-particle systems, such as
colloidal suspensions and molecular fluids, when the tempera-
ture is lowered or the density increased. Other parameters may
control the transition. For instance, the applied shear stress
σ has been introduced as in the “jamming phase diagram”
[1–4] for particulate systems. Friction, which characterize
macroscopic particles such as granular materials, is also
known to influence the jamming transition [5–11]. Its role
has been deeply investigated at zero applied shear stress,
σ = 0, where it changes the features of the jamming that
occurs on compression. Indeed, studies of frictionless systems
showed that these jam at a reasonably operatively well-defined
density value, the J point, identified with the random close
packing volume fraction φrcp, and only recently demonstrated
to be weakly protocol dependent [12–15]. Frictional systems,
on the contrary, may jam at a volume fraction that may
vary in a relatively large range [6–8,10]. In the presence of
friction, the jamming density depends both on the compression
protocol and on the friction coefficient. At finite shear stress,
σ > 0, the jamming transition of frictional systems has been
investigated to a much smaller extent but for the case of
granular particles on an inclined plane, where both the normal
and the shear stress change with the angle of inclination and
where hysteretic effects have been reported [16]. However,
there is no systematic study of the jamming transition of
frictional systems in the paradigmatic constant volume and
constant shear stress “ensemble” [1,2].

In this manuscript, we report a comprehensive numerical
investigation of the jamming transition of frictional systems at
constant volume and constant applied shear stress and show
that friction controls the emergence of new dynamical regimes.
Indeed, while in the absence of friction a system is either
fluidlike or jammed, whereas, in the presence of friction, a
system may reach a steady flowing state (“flow” regime), may
jam after flowing with a constant velocity for a long time
(“flow and jam” regime), may jam after a small slip (“slip
and jam” regime), or may respond as a solid (“jam” regime).

*massimo.picaciamarra@spin.cnr.it

These features lead to the jamming phase diagram illustrated
in Fig. 1, where we introduce friction as a relevant control
parameter. We characterize the structural changes across the
different jamming transition lines and consider the possibility
that granular systems jammed at finite shear stresses display a
fragile behavior [5].

The article is organized as follows. We start describing the
investigated systems and the numerical procedure in Sec. II.
We then illustrate in Sec. III the different dynamical regimes
and show how to define their transition lines. The dependence
of these lines on the friction coefficient, described in Sec. IV,
leads to the jamming phase diagram. The mechanical proper-
ties of the jammed states and the concept of fragile matter are
investigated in Sec. V and used to characterize the structural
changes occurring across the transition lines in Sec. VI. A
mechanism for the observed “flow and jam” behavior, based on
the concept of impeded dilatancy, is described in Sec. VII. We
draw our conclusion in Sec. VIII and describe in the appendix
finite-size effects and the role of the numerical protocol.

II. MODEL SYSTEM AND NUMERICAL DETAILS

A. Investigated system

Our analysis is based on discrete element simulations of
soft-core spherical grains of mass M and diameter D, enclosed
between two rough plates of size lx = ly = 16D, and lz = 8D,
as illustrated in Fig. 2. Each plate is made by a collection of
particles that move as a rigid object. The bottom plate is fix
(infinite mass). The top plate has a mass equal to the sum
of the masses of the constituent particles. Periodic boundary
conditions are used along x and y. The system is subject to a
constant shear stress, σ = σxz, imposed by a shear force acting
on the top plate, in the absence of gravity. Periodic boundary
conditions are used in the other directions.

The size of the vertical dimension lz is chosen to be
comparable to that of recent experiments [17]. We have
investigated the effect of the finite size considering values
of lz to 32D, as described in Appendix A.

B. Numerical model

We have used a standard model for the grain-grain inter-
action [18]. Two particles i and j , in positions ri and rj ,
with linear velocities vi and vj , and angular velocities ωi and
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FIG. 1. (Color online) The jamming properties of frictional
systems are illustrated in a diagram with axis the inverse density, the
shear stress and the friction coefficient. At zero friction the jamming
phase diagram is characterized by a “flow” and by a “jam” region,
while in the presence of friction two new regions appear: the “flow
and jam” region and the “slip and jam” region.

ωj , interact when their separation distance rij = ri − rj is
smaller than their diameter, i.e., when δij = D − |rij | � 0.
The interaction force has a normal and a tangential component.

The normal component is given by

Fnij
= −knδij nij − γnmeffvnij

,

where kn is the elastic modulus of the particles, nij = rij /|rij |,
and vnij

= [(vi − vj ) · nij ]nij . The effective mass is meff =
MiMj/2(Mi + Mj ). The parameter γn is fixed in such a way
that the restitution coefficient is e = 0.88.

The tangential component is given by

Ftij = −ktutij − γtmeffvtij ,

where utij is the elastic tangential displacement and vtij =
vij − vnij

. utij , set to zero at the beginning of a contact, mea-
sures the shear displacement during the lifetime of a contact.
Its time evolution is fixed by vtij , ωi , and ωj , as described in
Ref. [19]. Torques are given by τij = −1/2rij × Ftij . The shear

x

z

y

FIG. 2. (Color online) The investigated system. Grains are con-
fined between two rough plates (red/dark particles) at a fixed vertical
distance. A shear stress is fixed applying a force to the top plate; the
bottom plate is fixed.

displacement is set zero at the beginning of each contact and
is truncated to enforce the Coulomb condition |Ftij | � |μFtij |
if needed. Here μ is the coefficient of static friction.

We use the value of the parameters of Ref. [19]: kn = 2 ×
105, kt/kn = 2/7, γn = 50, γt/γn = 0. Different values of the
friction coefficient are investigated. Lengths, masses, times,
and stresses are measured in units of d0 = D, m0 = M , t0 =√

M/kn, σ0 = kn/D. We solve the equations of motion of the
system, mr̈i = ∑

j Fnij
+ Ftij and I ω̇i = ∑

j τij via a velocity
Verlet scheme, with an integration time step δt = 10−4.

When the applied shear stress is σ � 2 × 10−3 (the min-
imum value we have considered), the system reaches its
steady state after a time of the order of T = 106 time steps
in all regions of the phase diagram, but for the “flow and
jam” regime (see below). In this regime, simulations with
T = 5 × 108 integration time steps are needed. In 24h, we
simulate approximately a time 103, depending on the number
of particles. We have performed simulations lasting up to 50
days. For each considered φ, σ , and μ point, data are averaged
at least over 10 independent runs. In the “flow and jam” regime
we have performed 100 runs for each considered φ, σ , and μ

point to properly evaluate the mean jamming time.

C. Volume fraction

The volume fraction φ is equal to the volume occupied by
the grains divided by the volume of the container. Here, we
have defined the volume fraction introducing a term that takes
into account the effect of the rough plates protruding into the
system. Due to the boundaries, the volume accessible to the
grains is not V0 = lx ly lz, but V = V0 − �V , where �V is an
unknown corrective term. Since �V is much smaller than V0,
we have

φ(N ) = Nv0

V0 − �V
� Nv0

V0

(
1 + �V

V0

)
, (1)

where N is the number of enclosed grains and v0 = π/6D3 is
the volume occupied by a single grain. We work at constant
volume and change N to set the value of the volume fraction.

We have estimated �V evaluating the number of grains
Nrcp corresponding to the jamming transition, i.e., such that
the generated configurations have a finite pressure for N >

Nrcp. Imposing φ(Nrcp) = φrcp, we have determined �V using
Eq. (1).

D. Preparation protocol

We prepare the initial state using the protocol of Ref. [10]:
randomly placed small particles are grown to their final size via
molecular dynamics frictionless simulations in the presence of
a small viscous damping force. After inflating the particles, the
system is allowed to relax until the kinetic energy vanishes.
With this protocol, the jamming volume fraction at zero
applied shear stress results to be φrcp � 0.645 [7]. Friction
is introduced after these steps. Introducing friction after the
inflation procedure allows for the generation of dense packings
of frictional systems. Experimentally, these high-density states
can be generated via more complex procedures such as
vertical tapping, continuous high-frequency small amplitude
vibrations [20], or thermal cycling [21]. The effect of different
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preparation protocols on the reported phenomenology is
described in Appendix B.

III. DYNAMICAL REGIMES

A. Overview

When the Coulomb friction coefficient μ is set to zero,
our system reduces to an assembly of frictionless particlesthat
either flow or respond as a solid to an applied external stress.
The transition between these two regimes is assumed to occur
along a well-defined jamming line, φJ (σ ). In making this
assumption, one is considering the system large enough for
finite-size effects to be negligible [3] and neglects the recently
observed dependence of φJ (0) on the protocol [12–14]. In
our investigation these assumptions are reasonable, as we
report a phenomenology occurring on volume fraction ranges
that are greater than those of the intederminacy of φJ (0)
due to finite-size effects, and to the protocol dependence. At
finite applied shear stress σ > 0, assuming the presence of a
single jamming line φJ (σ ) means to neglect hysteretic inertial
effects [22].

Our simulations at constant volume and constant shear
stress show that this scenario drastically changes in the
presence of friction. Indeed, we have found four different
dynamical regimes, “flow,” “flow and jam,” “slip and jam,”
and “jam”,1 which are easily identified in Fig. 3, where we
illustrate the time evolution of the top plate position (upper
panel) and velocity (lower panel).

The behavior of the system in the different regimes can be
summarized as follows. At low density, in the “flow” regime,
the system flows and reaches a stationary velocity. For φ larger
than a threshold φJ1 = φJ1 (σ,μ), the system enters the “flow
and jam” regime. Here the system first flows with a stationary
velocity (reached after a transient) but eventually enters by
chance a microscopic configuration that is able to sustain the
applied shear stress, and jams. The “flow and jam” region is
limited by a jamming line φJ2 = φJ2 (σ,μ). Above φJ2 steady
flow is never observed, and the system jams after a small slip.
This “slip and jam” region is limited by the line φJ3 (σ,μ) above
which the system does not slip but responds as a solid to an
applied external stress.

In this section we describe how to identify the different
transition line, whose dependence on the control parameters is
investigated in Sec. IV.

B. Jamming line φJ1

The line φJ1 marks the transition between the “flow” and
the “flow and jam” regime. In the “flow and jam” regime,
the system stops flowing when a jamming configuration has
been selected, after an average time tjam. We find this jamming
time to grow as the volume fraction decreases, in agreement
with the expectation that the lower the volume fraction, the

1Another regime may be found at very high shear stresses,
characterized by the ordering of the particles in planes parallel to
the shearing direction [9,23–25], causing a reduction of the shear
viscosity. We do not describe this ordering transition in our diagram
as it occurs at shear stresses that are higher than the ones we consider.
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FIG. 3. (Color online) Position (upper panel) and velocity (lower
panel) of the shearing top plate for σ = 0.5 and μ = 0.8 and different
volume fractions representative of the different flow regimes: φ =
0.578 (“flow”), 0.596 (“flow and jam”), 0.629 (“slip and jam”), and
0.655 (“jam”). In the “flow” regime the system flows with a steady
velocity; in the “flow and jam” regime the system first flows with a
steady velocity but then jams after a time tjam; in the “slip and jam”
regime the system slips of a distance �L, never reaching a steady
velocity, and then jams. In the “jam” regime the system responds as
a solid to the applied shear stress.

smaller the number of configurations able to sustain the applied
stress. Indeed, when the volume fraction is too small, no
such configuration exists, and tjam is infinite, as in the “flow”
regime. We, therefore, define φJ1 as the volume fraction
where tjam diverges on decreasing the volume fraction and
determine it via a numerical extrapolation. Our numerical
data, shown in Figs. 4(a) and 4(c) for different values of the
parameters, suggest a power law divergence of the jamming
time, tjam ∼ (φ − φJ1 )−α , with α not universal.

C. Jamming line φJ2

When the system reaches a steady flowing state, in the
“flow” regime, it is possible to define the shear viscosity
η(φ,σ,μ) as the ratio between shear stress σ and shear rate
vs/h, where h is the distance between the two plates, and
vs(φ,σ,μ) the velocity of the shearing plate. This definition
is meaningful as we observe a linear velocity profile. The
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FIG. 4. (Color online) The jamming time tjam and the viscosity η

have been fitted by power laws, tjam ∼ (φ − φJ1 )−α , η ∼ (φJ2 − φ)−γ ,
for any given value of σ and μ. [(a) and (b)] Data corresponding to
σ = 2 × 10−3 and μ = 0.1, where α = 1.75, φJ1 = 0.622, γ = 0.75,
and φJ2 = 0.625. [(c) and (d)] The same quantities for σ = 5 × 10−3

and μ = 0.8. In this case α = 2.4, φJ1 = 0.598, γ = 2.1, and φJ2 =
0.612.

viscosity increases on increasing the volume fraction. We
define φJ2 as the volume fraction where the extrapolated
viscosity diverges. We find η to diverge as a power law,
η ∼ (φJ2 − φ)−γ , with an exponent γ that appears to depend
not on the shear stress but on the friction coefficient. Results for
the divergence of tjam and of η are shown in Fig. 4. We always
find φJ2 > φJ1 , as expected, considering that the system flows
with a finite shear rate at φ = φJ1 .

Note that it is also possible to measure the shear viscosity in
the “flow and jam” regime, as for t < tjam the system flows in
an apparently steady state. We have used values of the viscosity
in this regime to reduce the error on the estimation of φJ2 .

D. Jamming line φJ3

The line φJ3 marks the end of the “slip and jam” regime,
where the system slips a distance �L(φ,σ ) before jamming.
We, therefore, define φJ3 as the volume fraction where �L

vanishes. To measure �L one needs to consider that the total
displacement of the top plate in a jammed configuration of
the “slip and jam” regime includes, in addition to the slip
distance �L, a contribution due to the deformation induced
by the shear stress. This additional deformation disappears
when the shear stress is set back to zero. We have, therefore,
defined the slip �L as the residual displacement of the top
plate in a stress cycle: After preparing the system we slowly
increase the stress to its final value σ and then decrease it to
zero. Figure 5 (top panel) shows the displacement of the top
plate position as a function of the shear stress for σ = 5 × 10−3

and μ = 0.8. Different curves refer to different values of the
volume fraction, as indicated. At small φ, the initial and final
positions of the top plate do not coincide, and the residual
displacement is �L > 0, while at high φ we find �L � 0.

0 0.01 0.02 0.03 0.04 0.05 0.06
ΔL

0

0.0001

0.0002

0.0003

0.0004

0.0005

σ

10
-4

10
-3

10
-2

10
-1

φ
c
-φ

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

ΔL

FIG. 5. (Color online) (Top) Displacement of the top plate in a
stress cycle. The stress is first increased to its final value σ , and
then decreased to zero. The residual displacement is our definition of
the slip �L. From left to right, φ = 0.6488, 0.6482, 0.6480, 0.6477,
0.6475. (Bottom) For a fixed value of the shear stress (σ = 5 × 10−3),
the slip decreases on increasing the volume fraction, and vanishes at
a volume fraction φJ3 , which depends on σ and μ. The straight line
is a power law �L = a(φ − φJ3 )b, b � 1.2, and φc � 0.6495.

Precisely, when the shear stress is small, the residual
displacement decreases as a power law as the volume fraction
increases, which allows us to estimate φJ3 via a numerical
fit of �L(φ) at each σ and μ, as illustrated in Fig. 5
(bottom panel). At high values of the shear stress, �L does
not vanish on increasing the volume fraction, as the system
deforms plastically in a stress cycle. When this is the case
the dependence of �L on φ shows a clear crossover from
a slip-dominated regime to a plastic-dominated regime, as
shown in Fig. 6. When such a crossover is seen, we define
φJ3 as the inflection point of �L(φ).

The crossover from the elastic to the plastic regime is due to
the increase of the number of contacts that break as the strain
increases. At small σ , the strain of the system is small, and
contacts do not break. At higher σ , the strain of the system is
large, and contacts break. Contact breaking appears, therefore,
to be the microscopic origin of the plastic response. Indeed,
memory of the tangential force between two grains is lost when
the Coulomb threshold is reached.

The line φJ3 can also be defined as that where the jamming
time tjam vanishes on increasing the density. Within numerical
errors, the resulting estimate coincides with the one obtained
investigating the residual slip.
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FIG. 6. (Color online) Dependence of the slip �L on the volume
fraction φ, for different values of σ , at μ = 0.8. When σ is small, �L

decreases on increasing φ, and φJ3 is defined as the volume fraction
where �L vanishes, as illustrated in Fig. 5. Conversely, at high σ ,
�L does not vanish but shows a crossover from a slip-dominated
regime to a plastic-dominated regime. In this case φJ3 is defined as
the inflection point of �L(φ).

IV. JAMMING PHASE DIAGRAM

The location of the jamming lines depends on the model
parameters. Their dependence on the applied shear stress is
illustrated in Fig. 7 for two different values of the friction
coefficient. As the shear stress increases, all transitions move
to higher volume fractions. The dependence on the friction
coefficient of φJ1 , φJ2 , and φJ3 is illustrated in Fig. 8 for
σ = 2 × 10−3. The dependence of φJ3 on μ is very small and
appears only at high φ or σ , where the system behaves plasti-
cally due to the breaking of frictional contacts. The dependence
of φJ1 and φJ2 on μ is similar to that of different jamming
thresholds found via particle inflating algorithms [7,8] or via
experiments [26] and simulations [27] of sedimentation.

Extrapolating our high friction estimate of φJ1 to the limit
of zero applied shear stress, we found limσ→0 φJ1 (σ ) � 0.585.
This estimate is close to the smallest volume fraction at which
jammed states have been found via particle inflating protocols
in no gravity [7]. Looser states have been found experimentally
in the presence of gravity [26,28], as well as numerically in
no gravity via particle deflating procedures [29]. We prefer
not to link this loose density state with the random loose
packing volume fraction, as this lacks an accepted theoretical
definition, and is operatively defined via a different protocol
(sedimentation) [26,28,30].

The dependence of the jamming lines on friction leads to
the schematic jamming phase diagram for frictional particles
of Fig. 1, characterized by three axis: the inverse density, the
shear stress, and the friction coefficient. In this phase diagram,
the surfaces φJ1 (σ,μ), φJ2 (σ,μ), and φJ3 (σ,μ) enclose regions
of different flow properties. In this diagram, we have assumed
the jamming surfaces to meet in the μ = 0 plane along a well-
defined jamming transition line, φJ (σ ), in agreement with the
absence of results showing the presence of the “flow and jam”
phenomenology in frictionless systems. However, as already
mentioned, at zero friction neither the J point [12–14] nor the
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FIG. 7. (Color online) Location of the different flow regimes
in the inverse density, applied stress space, for μ = 0.1 (a) and
μ = 0.8 (b).

jamming transition line [22,31] are uniquely defined, which
suggests the possible existence of an extremely small volume
fraction range where the “flow and jam” and the “slip and jam”
regime persist [32].

The phase diagram of Fig. 1 clarifies the intuitive expec-
tation that when a frictional system jams after flowing, then
it is possible to unjam it, not only by varying the density or
the shear stress but also by changing its friction coefficient,
for instance, by changing humidity or temperature or by
introducing lubricants [33,34].

V. MECHANICAL RESPONSE AND FRAGILITY

Here we describe the measure of the shear modulus G.
This is a quantity of interest both to characterize the jamming
transitions, as well as to investigate, whereas granular jammed
systems jammed at a finite value of the shear stress are fragile
as speculated [5]. The concept of fragile matter has been
introduced by M. E. Cates et al. [5], following earlier numerical
results concerning the shear viscosity of particle suspensions
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[35], and concerns systems jammed under the action of a
shear stress. In these systems, the stress is supported by an
anisotropic structure. It was speculated that this anisotropy
influences the mechanical properties of the system, which may
depend on the relation between the perturbing stress and the
pre-existing one. In particular, the system is expected to behave
as a solid in response to compatible perturbations, which
are those not changing the principal stress axis. Conversely,
perturbations changing the principal stress axis are expected
to unjam the system.

To measure the shear modulus G of a system jammed
under the action of an existing shear stress σxz, we have
introduced a perturbing shear stress. The nonzero components
of this perturbing stress are δσxz and δσyz, we fix in such
a way that δσ 2

xz + δσ 2
yz = δσ 2. The perturbing shear stress

is, therefore, conveniently expressed in terms δσ and of
θ = arctan(δσyz/δσxz).

Figure 9 shows the displacement δr = (δx,δy) of the top
plate position for different values of φ at fixed σ and δσ
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FIG. 9. (Color online) Response of a jammed system to a small
perturbing shear stress. (a) The response of systems jammed under
the action of a stress σ = 10−2, to a perturbing stress δσ = 10−4, for
different values of the volume fraction (from the inside, φ =0.655,
0.630, 0.617, 0.613, and 0.610). (b) The response of system with
volume fraction φ = 0.617, jammed under the action of a shear stress
σ = 10−2, to different perturbing stresses (from the inside, δσ =
10−3, 5 × 10−3, 10−2, 2.5 × 10−2, 5 × 10−2, 7.5 × 10−2, 10−1). The
friction coefficient is μ = 0.8.
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FIG. 10. (Color online) Anisotropy in the response to a small
perturbing shear stress of a system jammed under the action of a
large shear stress. Different curves refer to different values of the
volume fraction.

(left) and for different values of δσ at fixed σ and φ (right).
Each curve is obtained by, first, applying a perturbing shear
stress at θ = 0 and then increasing θ from 0 to 2π . The
figure clarifies that systems jammed under shear are elastic, as
each curve describes a close path. Accordingly, even though
their mechanical rigidity originates from an underlying force
network that is highly anisotropic, these systems are not fragile
as speculated [5], at least in their response to the small stress
perturbations we have considered.

The absence of fragility can be rationalized in terms of
the properties of the energy landscape of the system. Indeed,
fragile jammed systems can be associated with saddle points,
as their elastic energy may increase or decrease, depending
on the direction of the perturbation, respectively, leading to an
elastic response or to an instability. Since dissipative systems
do not spontaneously arrest in an unstable point of their energy
landscape, we expect them to arrest in a true energy minimum.
Systems that jam under the action of an applied stress are,
therefore, not expected to be fragile. Of course, a fragile
behavior may appear in the response to large stress variations.

The curves of Fig. 9 resemble perfect circles, suggesting
the presence of an isotropic response. We have verified that
this is the case investigating the parameter

ξ (θ ) = [δx2(θ ) + δy2(θ )]1/2 − δr

δr
, (2)

where δr = 〈[δx2(θ ) + δy2(θ )]1/2〉θ . As illustrated in Fig. 10,
the anisotropy of the system is small, being |ξ (θ )| < 4%.

Due to the elastic and isotropic response of the system,
we are allowed to defined the shear modulus as G =
limδσ→0 δσ/ε, where ε is the shear strain induced by δσ . Its
behavior is described in the next section.

VI. STRUCTURAL CHANGES ACROSS
THE JAMMING LINES

Here we consider how the structural properties of the system
change across the jamming transitions. In particular, we focus
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FIG. 11. (Color online) Mean contact number Z (a), normal
pressure on the shearing plate P (b), and shear modulus G (c) as a
function of φ for σ = 5 × 10−3 and μ = 0.8. The vertical lines mark
φJ1 , φJ2 , and φJ3 , as indicated. Full circles are measures taken when
the system flows, while full diamonds are measure taken in jammed
configurations. Open circles in the range φJ1 –φJ2 are measures taken
in the flowing regime for t < tjam(φ) before the system jams.

on the variation of the mean contact number Z, of the normal
pressure on the confining walls P , and of the shear modulus G.
In Fig. 11, we illustrate their volume fraction dependence for
μ = 0.8 and σ = 5 × 10−3. In the flowing regime (full circles)
Z and P increase with φ, while G is zero. In the jammed
regime (full diamonds) Z, P , and G are roughly constant for
φ < φJ3 , while they increase as power laws for φ > φJ3 , where
a continuous transition occurs. Measures in the flowing state
in the range φJ1 –φJ2 (open circles) are taken for t < tjam(φ).
Compared to previous numerical studies [7,8,11] conducted at

σ = 0, our findings show that there is a whole volume fraction
range where frictional granular systems may have the same
mechanical properties. This volume fraction range can be iden-
tified with a constant Z line of the Z-φ diagram of Ref. [11].

VII. IMPEDED DILATANCY

The phenomenology observed in the “flow and jam” regime,
where flowing frictional systems subject to a constant shear
stress suddenly jam, may possibly be ascribed to dilatancy
[36]. Dilatancy, which is the tendency of a particulate system to
expand when flowing, has been mainly investigated at constant
pressure, where systems can expand when flowing. At constant
volume, dilatancy is impeded, and here we speculate that its
effect could be the sudden jam of a flowing system.

Indeed, since dilatancy is impeded, an increase of the shear
velocity may lead to an increase of the pressure, resulting both
from an increase of the mean number of contacts and from
an increase of the mean force between contacting grains. The
increase of the confining pressure may then lead to a reduction
of the shear rate and possibly to jamming. This picture is
supported by the presence of a clear correlation, in the flowing
regime, between the shear velocity vs and the mean number
of contacts per grain Z, whereby large values of Z occur
when the shear velocity is small, as illustrated in Fig. 12. An
analogous correlation is found between vs and P , not shown.
In this picture, jamming results from an impeded dilatancy
induced fluctuation of the underlying network of contacts,
which leads to a microscopic configuration able to support the
applied shear stress. Such jammed configuration occurs when
the mean number of contacts reaches a friction-dependent
critical value. Note that the shear velocity fluctuations we
observe at constant volume and constant shear stress can be
seen as the counterpart of the anomalous pressure fluctuations
found at constant volume and constant shear velocity [37–39].
However, pressure fluctuations at fixed volume and fixed shear
stress are not anomalous as those observed at fixed volume and

0 20 40 60 80 100
0

5

10

15

v
s

0 20 40 60 80 100
time

4.6
4.8

5
5.2
5.4
5.6
5.8

6

Z

4.8 5 5.2 5.4 5.6 5.8
Z

0

2

4

6

8

10

12

v
s

0 20 40 60 80 100

time
0.008

0.01

0.012

P

(a)

(b)

(c)

(d)

FIG. 12. Typical time dependence of the shear velocity vs (a), of
the mean contact number Z (b), and of the pressure (c) in the “flow
and jam” regime. Data refer to μ = 0.8, σ = 1 and φ = 0.606. Panel
(d) shows that Z and vs are correlated.
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fixed shear rate, as one may observe comparing, for instance,
Fig. 12(c) with Fig. 1 of Ref. [37].

VIII. CONCLUSIONS

We have investigated the jamming transition of frictional
particles at constant volume and constant shear stress, report-
ing the existence of regimes characterized by novel dynamical
and structural properties. In particular, frictional granular
systems may flow in an apparently steady state for a long
time before they suddenly jam. While we have proposed a
model to describe this dynamical jamming transition, using
the concept of impeded dilatancy, a quantitative description of
this transition is still lacking. In the static phase, these regimes
are characterized by transitions of geometrical and mechanical
quantities. In particular, when a system jams after flowing, the
resulting mean contact number, pressure, and shear modulus
appear to depend on the applied shear stress and not on the
volume fraction. This suggests that these states could be related
to the jammed states of fixed mean contact number observed at
zero applied stress [11]. The study of the mechanical response
of systems jammed at a finite shear stress has revealed that
these systems do not exhibit a fragile behavior in response to
small perturbations.

Open questions ahead include the relation of the observed
jamming transitions with transitions seen at constant shear rate
[40], where jamming is, by definition, precluded. In addition,
the role of other parameters that are expected to control the
jamming transition of frictional systems, as the confining
pressure, should be also investigated. In this direction, future
plans include the investigation of the role of temperature [41]
in the jamming of frictional particles. Large colloidal particles,
with a size of roughly 1 μm, are, in fact, at the same time small
enough for temperature to influence their dynamics and large
enough to be characterized by frictional forces. Indeed, dense
colloidal suspensions have already shown to behave as dense
granular systems [42].
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APPENDIX A: FINITE-SIZE EFFECTS

In this section, we discuss the robustness of the jamming
phase diagram on the system size. We have performed this
investigation keeping the size of the system in the transverse
directions fixed, lx = ly = 16D, and varying the vertical size
lz. We compare the results for lz = 8, described in the main
text, with results obtained with lz = 16 and lz = 32. Data refer
to σ = 5 × 10−3 and μ = 0.8.

1. Finite-size effects at φJ1

The jamming volume fraction φJ1 is that where the time tjam

a system flows in a steady state before jamming diverges on
decreasing the volume fraction. The numerical identification
of φJ1 is difficult because it involves a diverging time scale, and
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FIG. 13. (Color online) Volume fraction dependence of the
fraction of simulations (over 100) jamming in a time T = 100 for
different values of lz.

because tjam widely fluctuates from run to run. This implies
that a large number of runs are required to reliably estimate tjam

at each value of σ , φ, and μ. The computational cost required
to assess the presence/absence of finite-size effects at φJ1 is,
therefore, prohibitive; accordingly, while we have observed
the phenomenology at all values of the system size we have
considered, and also when lz = 64D, we cannot exclude that
this phenomenology disappears in the infinite system size limit
(where it could be that φJ1 = φJ2 ). Nevertheless, we show data
clarifying that φJ1 < φJ2 in very large systems, even larger
than those considered in many experiments of sheared granular
particles [17]. This clarifies that the reported phenomenology
is experimentally relevant.

Practically, we have determined the probability p that a
simulation jams in a given time T as a function of φ for
different values of lz. The probability is computed over 100
runs with different initial conditions, while the simulation time
is fixed to T = 100. The results, which are shown in Fig. 13,
clarify that the “flow and jam” phenomenology is observed up
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FIG. 14. (Color online) Log-log plot of the inverse shear viscosity
η−1 versus φJ2 − φ for different system sizes. The data collapse on the
same curve [η−1 � (φJ2 − φ)γ , γ � 1.1], indicating that finite-size
effects are negligible.
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FIG. 15. (Color online) Normal pressure acting on the top
confining plate as a function of the volume fraction for different
system sizes.

to lz = 32. Note that these data cannot be used to infer the fate
of the φJ1 line in the thermodynamic limit, as one should also
consider the T → ∞ limit.

2. Finite-size effects at φJ2

For each value of lz, we have measured the shear viscosity
η in the steady state, which is found to diverge as a power law
at a size-independent φJ2 value, as shown in Fig. 14. Data of
different system sizes can be reasonably scaled on the same
curve, which indicates that our system is large enough for
finite-size effects at φJ2 to be negligible.

3. Finite-size effects at φJ3

At the jamming line φJ3 , defined as the volume fraction at
which the “slip” vanishes, structural quantities have cusps, as
shown in Fig. 11. To investigate the dependence of the line φJ3

on the system size, we have studied the size dependence of
the location of the cusp in the pressure. As shown in Fig. 15,
the cusp occurs at the same volume fraction regardless of
the system size, implying that the line φJ3 is not affected by
finite-size effects.

APPENDIX B: PREPARATION PROTOCOLS

Due to the presence of frictional forces, the response of
granular systems to applied perturbations may depend on
the particular protocol used to prepare the initial state. The
phenomenology described so far is observed when frictional
forces are introduced after the system has reached a state
of zero kinetic energy at the desired volume fraction. This
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FIG. 16. (Color online) Location of the jamming transition lines
as found using different protocols to prepare the initial state. φJ1

and φJ2 are protocol independent, while the line φJ3 depends on the
protocol. Our estimate for φJ3 is an upper bound for all possible
estimations obtained using different protocols.

memoryless protocol give access to the whole zero pressure
jamming phase diagram [11].

Here we consider how our findings change when the initial
packing is prepared using a different and popular protocol (see,
for instance, Refs. [7,43]), where friction is always taken into
account. Frictional grains, initially placed in random positions
with small radii, are inflated until they reach their final size.
We use the same inflation rate � both when using the protocol
considered in the manuscript (“no friction protocol”), as well
as when using the modified protocol (“friction protocol”).
In Fig. 16 we compare, for σ = 5 × 10−3 and μ = 0.8, the
velocity of the shear plate (upper panel) and the pressure (lower
panel) obtained using the two protocols. The pressure is normal
force acting on the top plate divided by its surface.

The shear velocity is the same regardless of the initial
protocol, in agreement with the expectation that flowing
systems do not remember their initial state. Accordingly,
the line φJ2 , where the viscosity diverges (the velocity
vanishes), is protocol independent. The same is true for the
line φJ1 (not show), which is determined from the diver-
gence of the jamming time, also measured when the system
flows.

The pressure, which is shown in the bottom panel, has
a cusp at φJ3 (at small σ ). Figure 16 clarifies that the line
φJ3 depends on the preparation protocol. The line obtained
with the “no friction” protocol used in this work is an upper
bound with respect to the lines obtained using other preparation
protocols.
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