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Axial transport within bidisperse granular media in horizontal rotating cylinders
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The discrete element method has been used to examine axial dispersion within rotating cylinders containing
two sizes of particle. Two bed configurations are considered: initially segregated, which consists of a pulse
(narrow axial band) of small particles within a bed of large particles, and initially mixed, in which the cylinder
is loaded with a homogeneous mixture of the two particle sizes. The dispersion of the small particles within
initially segregated beds is found to depend strongly on the initial length of the pulse of small particles. Initially
mixed beds are found to undergo a transient period in which the small particles disperse rapidly. Following this
transient, axial dispersion of both particles sizes is found to follow Fick’s second law, in that the mean squared
deviation of the axial position of the particles is proportional to time. Axial dispersion coefficients have been
calculated for initially mixed beds that have reached steady state; the axial dispersion coefficients of both particle
sizes decrease as the volume fraction of small particles is increased.
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I. INTRODUCTION

One of the most intriguing properties of granular materials
is their tendency to segregate by size or density when agitated.
An experiment that is often used to demonstrate segregation
is the partially filled, horizontal rotating cylinder. When a
rotating cylinder is loaded with a mixture of materials that
differ in size or density, two types of segregation can occur:
(i) radial segregation, in which the smaller or denser particles
form a central core in the bed cross section, and (ii) axial
segregation, which leads to the formation of bands with
different compositions along the rotational axis of the cylinder.
Radial segregation is a fast process and is usually completed
within a few cylinder rotations, whereas axial segregation is a
much slower process and does not always occur.

In the development of models of axial segregation it is
often assumed that segregation is opposed by a dispersive flux
that obeys Fick’s law [1]. However, despite the importance
of the axial dispersion coefficient in these models, relatively
little is known about axial dispersion within bidisperse systems
and the axial dispersion coefficient is often assumed to be a
constant or to depend only on the particle type. Those studies
that have considered axial transport within bidisperse systems
have been restricted to cases in which the two grain types
are initially segregated. Compared to initially mixed systems,
these systems have the advantage that the initial condition is
well defined, which allows the particle motion to be quantified
more easily in experiments. However, it is unclear whether
findings from studies based on initially segregated systems are
applicable to the initially mixed case that is the usual initial
condition for axial segregation experiments.

Nakagawa et al. [2] studied the axial migration of binary
mixtures created using different sizes of oil-filled pharmaceu-
tical spheres. Two types of initial condition were employed:
a two-band initial condition and a three-band, or pulse, initial
condition. The two-band initial condition was created by
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dividing the cylinder in two in the axial direction and loading
the two ends of the cylinder with different particle types. The
pulse initial condition consisted of a pulse or narrow axial band
of small particles located axially in the center of the cylinder
with large particles on either side. Nakagawa et al. [2] reported
that the rate of axial migration increased with the size ratio
between the particles and noted that, when the two-band initial
condition was used, axial mixing was asymmetric because the
small particles were able to penetrate the area initially occupied
by large particles more easily than the large particles could
penetrate the region initially occupied by small particles.

Ristow and Nakagawa [3] used magnetic resonance imag-
ing (MRI) to study the dispersion of 1- and 4-mm spheres in a
two-band configuration. Dispersion was found to be influenced
by radial segregation; the small particles moved into the region
initially occupied by large particles as a core in the center
of the bed’s cross section while the large particles moved
into the region initially occupied by the small particles on the
surface of the bed. Based on these observations, Ristow and
Nakagawa [3] argued that dispersion within their system may
be concentration dependent since the composition of the bed
at any axial position will control the environment experienced
by the particles.

Dury and Ristow [4] used the discrete element method
(DEM) to simulate beds consisting of two particle sizes
arranged in a two-band initial condition. Axial dispersion of
the small particles was found to follow Fick’s second law such
that the mean square deviation in particle position increases
linearly with time, as shown by Eq. (1):

1

N ′

N ′∑

k=1

[zk(t) − zk(0)]2 = 2Daxt. (1)

Here Dax is the dispersion coefficient, z is the axial particle
position, and N ′ is the number of particles whose position
is being considered. The dispersion coefficient for the small
particles was found to depend on the rotation speed of the
drum and the coefficient of friction and particle density of the
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small particles, having a minimum when the densities of the
two particle types were equal.

Khan and Morris [5] used an optical projection technique
to study the evolution of a pulse of small particles within a
bed of larger, translucent particles. The volume fraction of
small particles at a particular axial position was assumed to
be proportional to the square of the height of the core of
small particles measured by the projection technique. Based
on these measurements, dispersion of the small particles was
found to be subdiffusive such that the mean square deviation
in particle position would be expected to increase as tβ with
0 < β < 1. However, Fischer et al. [6] compared the results
of the projection techniques used by Khan and Morris [5] with
MRI measurements and found the projection technique to give
a poor representation of the concentration of small particles.

Taberlet and Richard [7] performed DEM simulations of
a pulse of 5-mm spheres within a bed consisting of 10-mm
spheres. Dispersion of the pulse of 5-mm particles was found
to follow Fick’s second law.

Fischer et al. [6] used MRI to investigate the dispersion
of a pulse of small spheres within a bed of larger spheres,
and of a pulse of large spheres within a bed of small spheres.
The dispersion of the pulse of small spheres into the bed of
large spheres was found to be Fickian. However, the dispersion
of the pulse of large spheres was found to be subdiffusive,
which Fischer et al. [6] attributed to a concentration-dependent
diffusion coefficient.

In this work we examine the axial motion of particles within
initially segregated and initially mixed bidisperse systems
using the DEM.

II. SIMULATION METHOD

The soft-sphere DEM, which is used in this work, is well
documented in the literature [8] and is not described here
except to detail the particular force laws used in this work.
In the normal direction a damped linear spring is employed
and attractive forces between particles are prevented such that
the force in the normal direction, Fn, for a collision between
particles i and j is given by

Fn = max(0,knij
δn − 2ηn

√
mijknvn). (2)

Here ηn is the damping factor in the normal direction, δn is the
particle overlap, kn is the normal stiffness, vn is the relative
velocity in the normal direction, and mij is the effective mass
defined as 1/mij = 1/mi + 1/mj . In the tangential direction
static friction is modeled as a damped linear spring and the
magnitude of the tangential force is limited by Coulomb’s law
such that

Ft = min(μknij
δn,ktij δt − 2ηt

√
mijktvt ). (3)

Here μ is the coefficient of friction, ηt is the damping factor
in the tangential direction, kt is the tangential stiffness, and
vt is the relative velocity of the two surfaces in contact. The
tangential displacement, δt , is defined as

∫
vtdt . Table I shows

the parameter values of the system, which is taken to be the
base case in this work. A particle size distribution given by

p(d) = dmindmax

dmax − dmin

1

d2
, dmin < d < dmax, (4)

TABLE I. Base case simulation parameter values.

Name Symbol Value

Nominal diameter of small particles ds 1.0 mm
Nominal diameter of large particles dl 2.2 mm
Particle size distribution ±5%
Particle density ρ 1000 kg/m3

Normal spring stiffness kn 1000 N/m
Tangential spring stiffness kt 500 N/m
Normal damping factor ηn 0.22
Tangential damping factor ηt 0.2
Particle coefficient of friction μp 0.5
Acceleration due to gravity g 9.81 m/s2

Diameter of cylinder D 48 mm
Length of cylinder L 240 mm
Rotation speed of cylinder � 30 rpm
Time step for numerical scheme dt 1.6 × 10−6 s

is used for both particle sizes in all simulations [9]. The bounds
on this distribution, dmin and dmax, are 95% and 105% of the
nominal particle size.

The cylinder in which the particles are rotated is modeled as
a smooth, but frictional, cylinder onto which “wall rougheners”
have been attached. The wall rougheners serve to prevent slip
between the cylinder wall and the outermost particles in the
bed. They consist of lines of 1-mm particles running along the
length of the cylinder and are placed 5 particle diameters apart,
center to center, around the cylinder circumference. The cen-
ters of the wall rougheners are on the cylinder circumference.
More details concerning the use of wall rougheners to prevent
slip within rotating cylinders modeled using the DEM are given
by Third et al. [10]. The ends of the cylinder are modeled as
flat, frictionless end plates. Other than the friction coefficient
of the end caps, the physical properties of the cylinder and the
end caps are identical to those of the particles. The equations
of motion are integrated using a third-order Adams-Bashforth
scheme with a time step, dt , which satisfies dt � tcol/30,
where tcol is the minimum duration of a binary collision.

In this work both initially mixed and initially segregated
systems are considered. The initially mixed states are gen-
erated by arranging particles on a regular rectangular lattice.
The size of each particle within the lattice is chosen based
on the value of a random number to give the desired ratio of
small and large particles. The particles are assigned a random
velocity and are allowed to fall into the bottom of the cylinder
under gravity. Once the particles come to rest, the cylinder
rotation is started. Time, t , is defined as zero at this point. The
volumetric fill level of the initially mixed beds studied in this
work is approximately 48%. For the initially segregated states
the cylinder is loaded with particles using dividers to separate
the regions of small and large particles. After the rotation has
started, the cylinder is allowed to rotate for 2 s (one rotation of
the cylinder) to ensure that the bed has reached steady state at
its dynamic angle of repose. Finally the dividers are removed
while the cylinder is rotating. For this system, time is defined
to be zero when the dividers are removed.

The initially segregated systems considered here consist of
a pulse of 1-mm particles in the center of a bed of 2.2-mm
particles; see Fig. 1. The length of the pulse of small particles,
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FIG. 1. Schematic showing the configuration of initially segre-
gated systems. The darker shading represents small particles and the
lighter shading represents large particles.

l, is either 6 or 30 mm and the fill levels of both 1- and 2.2-mm
particles are approximately 43%.

III. RESULTS

Figure 2 shows the mean square deviation in the axial
position of a pulse of 1-mm particles versus time for two
different values of l. For both pulse lengths the data shown
have been averaged over six simulations performed using
different values for the random seed. Averaging the data in
this way helps to reduce the noise on the data for larger
values of t . The mean square deviations for homogeneous
beds of both 2.2- and 1-mm particles are also shown. The
parameters for these homogeneous simulations are identical
to those used when two types of particles are present except
that, for the 1-mm particles, a cylinder length of 120 mm
was used in order to reduce the computational load. For
these homogeneous systems the mean square deviation was
calculated based on a pulse of particles located axially in the
center of the cylinder. Further details regarding the calculation
of the mean square deviation for homogeneous systems were
given by Third et al. [11].
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FIG. 2. Mean square deviation in axial position vs time. The
continuous lines show the deviations for the 1-mm particles for two
pulse lengths of 1-mm particles within a bed of 2.2-mm particles.
The dashed lines show the deviations for homogeneous beds. The
cylinder has a diameter of 48 mm, a length of 240 mm, and is rotated
at 30 rpm. The fill level of both particle sizes is approximately 43%.

FIG. 3. Schematic showing the initial location of the axial slices
considered in Fig. 4.

The data shown in Fig. 2 demonstrate that the dispersion
of the small particles in this initially segregated system does
not follow Fick’s second law for all values of t . The slope of
the line representing the l = 30 mm case increases with time,
indicating that the rate of axial dispersion increases with t .
Such behavior could be described as superdiffusive; however,
the authors do not recommend such a description since, as is
demonstrated below, this behavior is not characteristic of the
steady state of the system. For the l = 6 mm case the rate
of axial dispersion increases for the first 25 s but reaches an
approximately constant value after this time.

Figure 2 also indicates that the mean square deviation for the
small particles is considerably larger for l = 6 mm than for l =
30 mm. This result suggests that small particles located near
the interface with the large particles disperse faster than those
located farther from the interface since the only significant
difference between the two pulse lengths is the proportion
of the small particles located at the interface: for l = 6 mm
a larger fraction of the small particles are located near the
interface than for l = 30 mm. To investigate further the effect
of the interface on axial dispersion, the l = 30 mm case shown
in Fig. 2 is divided into axial slices as shown by Fig. 3. Slices
A and B contain only small particles, while slices C, D, and E
contain only large particles. Figure 4 shows the mean square
deviation versus time for particles which were initially located
in these different axial slices. The mean square deviation for
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FIG. 4. Mean square deviation for particles initially located in
the axial slices shown in Fig. 3. The cylinder has a diameter of
48 mm, a length of 240 mm, and is rotated at 30 rpm. The fill level is
approximately 43%.
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J. R. THIRD, D. M. SCOTT, AND C. R. MÜLLER PHYSICAL REVIEW E 84, 041301 (2011)

homogeneous beds of both 2.2- and 1-mm particles are again
shown.

Consider first slices C, D, and E, which contain only large
particles and are located progressively farther from the initial
interface between the two particle types, with slice C closest
to the interface and slice E farthest from it. There is good
agreement between the mean square deviation of the particles
initially located in slice E and that of a homogenous bed of
large particles. This indicates that far from the interface the
bed behaves as a homogeneous bed of large particles. For slice
C the mean square deviation follows that of a homogeneous
bed of large particles for approximately 1 s but for larger t

the dispersion is smaller than that of the homogeneous case.
It is thought that this deviation is due to the presence of small
particles that reduce the dispersion of the large particles. The
mean square deviation of slice D shows similar behavior to
slice C in that it initially follows the dispersion expected for a
homogeneous bed, but it disperses less than the homogeneous
case at larger values of t . For slice D the deviation from
the homogeneous case occurs later than for slice C, at about
5 s, and for later times the deviation from the homogeneous
case is less pronounced. This is consistent with the deviation
from homogeneous behavior being caused by interactions with
small particles because particles initially located in slice D will
take longer to come into contact with small particles than those
in slice C and will experience a lower concentration of small
particles than particles initially in slice C.

Slices A and B, which contain only small particles, show
that the dispersion of small particles is also affected by the
interface with the large particles. For slice B, located at
the interface between the two particle sizes, the dispersion
is significantly larger than that of a homogeneous bed of
1-mm particles for all times. Furthermore, the gradient of
the mean square deviation increases with time. It is thought
that this is due to the increase in the concentration of large
particles experienced by the particles in this slice as time
increases. Slice A is located at the center of the pulse of 1-mm
particles and initially follows the dispersion expected for a
homogeneous bed of 1-mm particles. However, at larger times
the concentration of large particles experienced by slice A will
increase, causing an increase in the axial dispersion of this
pulse.

The results presented above suggest that the axial transport
within this system is concentration dependent such that
dispersion of the small particles is increased in the presence
of large particles and the dispersion of the large particles
is reduced in the presence of small particles. To investigate
further the influence of composition on axial dispersion within
bidisperse systems, simulations of systems which are initially
well mixed have been performed.

In this work axial transport within initially mixed systems is
quantified by calculating the mean square deviation of particles
within a 150-mm slice centered on the midpoint of the cylinder.
The mean square deviation in the axial position of this group
of particles is calculated every 0.02 s for 20 s. After 20 s a
new central slice is selected and the process is repeated. The
mean square deviations calculated using this procedure have
been found to be independent of the length of the central slice
used in the calculation. This indicates that the axial motion of
the particles within this slice is not affected by the cylinder

end caps. In the following the mean square deviations of the
1- and 2.2-mm particles within the slice of particles being
considered are calculated separately. Note that, although a
higher concentration of small particles was observed close
to the end caps, none of the systems studied here underwent
axial segregation in the central region in which measurements
were made. Furthermore, the number of each type of particle
within this region remained approximately constant once the
bed reached steady state.

Figure 5(a) shows the mean square deviation against time
for the 1-mm particles within a bed containing 25% 1-mm
particles by volume. The eight lines on the graph represent
slices of particles selected at different times and the times
shown in the legend indicate the value of t when the slice of
particles was selected. These data indicate that, following an
initial transient, a steady state is reached in which the mean
square deviation of the small particles increases linearly with
time. This suggests that, after the initial transient, dispersion
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FIG. 5. Mean square deviation vs time for a bed containing 25%
small particles by volume. Times given in the legend indicate the
value of t at which z(0) was evaluated. Mean square deviation of
the (a) small and (b) large particles. The cylinder has a diameter of
48 mm, a length of 240 mm, and is rotated at 30 rpm. The fill level is
approximately 48%.

041301-4



AXIAL TRANSPORT WITHIN BIDISPERSE GRANULAR . . . PHYSICAL REVIEW E 84, 041301 (2011)

D
a
x

(m
2
/s

)

FIG. 6. Axial dispersion coefficients for initially mixed beds:◦,
dispersion coefficient of 1-mm particles in a bed composed of 1- and
2.2-mm spheres; •, dispersion coefficient of 2.2-mm particles in a
bed composed of 1- and 2.2-mm spheres; �, dispersion coefficient of
1.5-mm particles in a bed composed of 1.5- and 2.2-mm spheres; �,
dispersion coefficient of 2.2-mm particles in a bed composed of 1.5-
and 2.2-mm spheres. The cylinder has a diameter of 48 mm, a length
of 240 mm, and is rotated at 30 rpm. The fill level is approximately
48%.

of the small particles obeys Fick’s second law, allowing the
steady-state dispersion coefficient, Dax, to be calculated based
on the gradient of a plot of mean square deviation against time.
The mean square deviation of the 2.2-mm particles within
this bed is shown in Fig. 5(b). These data indicate that the
dispersion of these particles reaches its steady state shortly
after the cylinder has started to rotate and that the steady-
state dispersion of the large particles obeys Fick’s second law.
The analysis described above has been conducted for initially
mixed beds with a range of volume fractions of 1-mm particles.
Following an initial transient all of the systems studied were
found to obey Fick’s second law. Figure 6 show values of Dax

obtained for initially mixed beds of 1- and 2.2-mm particles as
a function of the volume fraction of 1-mm particles. These data
indicate that the axial dispersion coefficient of both species is
concentration dependent and decreases monotonically as the
volume fraction of small particles is increased.

Further simulations have been performed to analyze the
influence of the particle size ratio (dl/ds) and the drum diameter
on dispersion within initially mixed beds. Axial dispersion
coefficients for initially mixed beds composed of 1.5- and
2.2-mm spheres are shown in Fig. 6. Other than the diameter
of the small particles, the simulation parameters for these
simulations are identical to those given in Table I. These data
indicate that increasing the size of the small particles in an
initially mixed bed increases the axial dispersion coefficient
of both the small and large particles. This is consistent with
the findings of Parker et al. [12] and Third et al. [11],
who reported that the dispersion coefficient of monodisperse
spheres increases as the particle size is increased.

Table II gives axial dispersion coefficients of initially mixed
beds for cylinder diameters of 48 and 96 mm. A small particle
diameter of ds = 1.5 mm was used for these simulations and

TABLE II. Axial dispersion coefficients for initially mixed beds
composed of 1.5- and 2.2-mm spheres. Data shown for drum
diameters of 48 and 96 mm and beds composed of 15% and 50%
small particles by volume. The cylinder has a length of 240 mm and
is rotated at 30 rpm. The fill level is approximately 48%.

Dax (m2/s)

15% 50%

D (mm) 1.5 mm 2.2 mm 1.5 mm 2.2 mm

48 1.54 × 10−6 1.97 × 10−6 1.17 × 10−6 1.72 × 10−6

96 1.73 × 10−6 1.95 × 10−6 1.18 × 10−6 1.73 × 10−6

all other simulation parameters were identical to the base
case values given in Table I. For beds composed of 50%
small particles by volume the axial dispersion coefficients of
both particle sizes are independent of the cylinder diameter.
Dispersion of the 2.2-mm particles in beds composed of
15% small particles by volume is also independent of the
cylinder diameter. These results are consistent with results for
beds composed of monodisperse particles [11,12], which have
indicated that, for sufficiently large D, the cylinder diameter
has no influence on axial dispersion. However, Table II
indicates that, for beds composed of 15% small particles by
volume, dispersion of the 1.5-mm particles does not follow this
trend. The dependence of the dispersion coefficient of these
particles on the cylinder diameter is not currently understood
and warrants further investigation.

IV. DISCUSION

Taberlet and Richard [7] used the DEM to examine the
dispersion of a 125-mm pulse of 5-mm particles into a bed of
10-mm particles. Dispersion of this pulse was found to follow
Fick’s second law. This result appears to be in agreement with
the data shown in Fig. 2 which indicate that, following an
initial transient, the mean square deviation increases linearly
with time for both values of l. Taberlet and Richard [7] also
studied axial dispersion within beds consisting of only 5-mm
spheres and only 10-mm spheres. Axial dispersion was found
to be Fickian for both sizes of particles. Dax was found to have
the same value for beds containing only 5-mm particles, only
10-mm particles, and for the pulse of 5-mm particles within a
bed of 10-mm particles. While the data in Fig. 2 suggest that it
should be possible to select a value of l such that the dispersion
of the pulse is similar to that of a bed of large particles, it is
surprising that Dax was found to be independent of dp for beds
containing only one particle type. Both the experiments of
Parker et al. [12] and the DEM calculations of Third et al. [11]
found that axial dispersion within beds consisting of a single
particle type depends strongly on the particle diameter. The
reasons for these discrepancies are currently not understood,
although it is noted that the force laws used by Third et al. [11]
differed from those employed by Taberlet and Richard [7].

Fischer et al. [6] used MRI to investigate the dispersion of a
pulse of 2-mm spheres in a bed of 4-mm spheres and of a pulse
of 4-mm spheres in a bed of 1.5-mm spheres. Axial dispersion
of the small spheres was found to follow Fick’s second law but
dispersion of the large spheres was found to be subdiffusive.
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J. R. THIRD, D. M. SCOTT, AND C. R. MÜLLER PHYSICAL REVIEW E 84, 041301 (2011)

This subdiffusive behavior was attributed to a concentration-
dependent diffusion coefficient. Fischer et al. [6] reported
that Dax for the large particles within their system increased as
the concentration of large particles increased but were unable
to extract the exact concentration dependence of Dax. It is
surprising that concentration dependence was observed for
the large particles but not for the small particles because any
mechanism that affects the dispersion of one species would
also be expected to influence the dispersion of the other
species. In this work Dax for 1- and 2.2-mm particles has been
calculated for initially mixed systems that have been allowed to
reach steady state. The data presented in Fig. 6 for the 2.2-mm
particles are consistent with the observation made by Fischer
et al. [6] that the dispersion of the large particles increases as
their concentration increases. Unlike Fischer et al. [6] this
study has found that the dispersion of the smaller, 1-mm
particles is also concentration dependent. It is likely that the
discrepancy between these results arises from the different
methods used in the two studies. Fischer et al. [6] studied the
dispersion of a pulse of particles and considered concentration
dependence as a mechanism by which the dispersion of this
pulse may deviate from Fickian dispersion. The results for
l = 6 mm in Fig. 2 show that, following an initial transient, the
mean square deviation in particle position for a pulse of small
particles may increase linearly with time, indicating Fickian
dispersion and, based on the criterion employed by Fischer
et al. [6], no concentration dependence. However, when the
data for the two pulse widths are compared it is clear that the
dispersion of these particles is concentration dependent.

A possible explanation for the concentration dependence re-
ported above may be obtained by considering the displacement
of a particle that moves past a stationary “obstacle” particle
in a densely packed system. Figure 7 shows a schematic
of two such particles in the case that the particles are of
equal size. In order for the particle to pass the obstacle it
must undergo a displacement in the plane perpendicular to its
velocity. Axial dispersion will occur when this displacement
has a component parallel to the axis of the cylinder. The
magnitude of the displacement required to pass the obstacle
in this way may, on average, be expected to depend on the
sum of the radii of the particles involved in the collision.
Consequently, the displacement of a small particle passing
a large obstacle particle will be larger than that of a small
particle passing a small obstacle, and the displacement of a
large particle passing a small obstacle will be smaller than that

FIG. 7. Schematic of a particle (unshaded) moving past an
obstacle of equal size (shaded).

of a large particle passing a large obstacle. This is consistent
with the observations made above that the presence of small
particles decreases the dispersion of the large particles while
dispersion of the small particles is enhanced in the presence of
larger particles.

The initially mixed systems considered here are found to
undergo a transient period followed by Fickian dispersion.
This initial transient may be due to the onset of flow within
the cylinder, radial segregation, or a combination of the two.
The behavior of these systems is consistent with the model
proposed by Third et al. [11], who argued that axial dispersion
within a horizontal rotating cylinder should be expected to
obey Fick’s second law if the system is at steady state, if the bed
is homogeneous in the axial direction, and if the particles are
periodically stationary in the axial direction. An initially mixed
system that does not undergo axial segregation is expected to
satisfy these criteria once radial segregation is complete.

V. CONCLUSIONS

Axial transport within beds composed of two types of
particles has been investigated using the DEM. Two bed
configurations have been considered: initially segregated,
which consists of a pulse of 1-mm particles located axially
in the center of a bed of 2.2-mm particles, and initially mixed,
in which the bed is loaded with a homogeneous mixture of
small and large particles. Both bed configurations evolve with
time: the pulse of small particles in the initially segregated bed
spreads out into the area occupied by large particles, whereas
the initially mixed system undergoes radial segregation. These
changes in bed configuration cause the rate of axial dispersion
to change with time and lead to behavior that might be termed
subdiffusive or superdiffusive. For the systems studied here
this behavior is not representative of the steady-state behavior
of the system.

For the initially segregated systems considered here the
dispersion of the small particles was found to be influenced
strongly by the initial length of the pulse of small particles.
This indicates that the interaction between the two particle
sizes plays an important role in axial dispersion within these
beds.

The initially mixed beds were found to undergo an initial
transient during which the mean square deviation of the small
particles increases rapidly. Once the bed reaches steady state
the axial dispersion of both particle sizes is found to follow
Fick’s second law such that the mean square deviation in
axial position increases linearly with time. Axial dispersion
coefficients have been calculated for initially mixed beds
that have reached steady state. These data indicate that the
dispersion coefficient for both particle sizes decreases as the
volume fraction of 1-mm particles is increased.
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