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Kullback-Leibler entropy in the electron distribution shape relaxation
for electron-atom thermalization
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We study the thermalization of energetic electrons dilutely dispersed in inert gas atomic moderators, with and
without the presence of an external electric field. We investigate the shape relaxation of the electron distribution
function relative to the steady-state distribution by means of the Kullback-Leibler entropy. The departure of
the distribution function from a local Maxwellian parametrized by the temperature of the electrons is also
considered with a functional analogous to the Kullback-Leibler entropy. For neon and argon as moderators,
we found no evidence for the formation of a local Maxwellian followed by a slower relaxation to equilibrium.
The momentum-transfer cross section for e-Ne collisions is almost constant with energy, whereas the e-Ar
momentum-transfer cross section has a deep Ramsauer-Townsend minimum and a strong energy dependence.
The role of the Ramsauer minimum in the relaxation processes is investigated. The time-dependent Lorentz-
Fokker-Planck equation is solved for the speed distribution of the electrons with a finite difference method.
A pseudospectral method is also used to investigate the spectral properties of the Fokker-Planck operator. In
spite of the multi-exponential time dependence of the speed distribution function, we show that a single average
relaxation time can be defined to characterize the relaxation to equilibrium.
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I. INTRODUCTION

The relaxation of energetic electrons in a background gas
at equilibrium at a fixed temperature Tb is an important
fundamental problem in kinetic theory with equally important
applications to numerous devices in plasma processing of
materials, plasma displays, and other technologies [1–3].
There has been extensive work done to date on both atomic
[4–9] and molecular moderators [10–13] including electroneg-
ative gases [14,15] with a strong affinity for electrons. In
this latter case, owing to large electron attachment cross
sections, there can be electron heating effects arising from the
removal of thermal electrons. In atomic moderators, there have
been two noticeable effects that occur, namely, the transient
negative mobility effect predicted by McMahon and Shizgal
[4] and observed experimentally by Warman et al. [16] and
discussed since then by other researchers [17–19]. There is
also the unexpected negative differential conductivity effect
in mixtures of inert gases [20] that was previously thought
to occur only for polyatomic gases with internal degrees of
freedom [21,22].

Mozumder [23] studied the relaxation of electrons in the
inert gases by assuming that the distribution function remains
a local Maxwellian with a time-dependent temperature. The
instantaneous electron temperature that defines the local
Maxwellian is calculated in terms of the energy exchange
determined with an integration of the Maxwellian and the
electron-atom momentum-transfer cross section. Keizer [24]
proposed an analysis of hot atom chemistry based on a
time-dependent local Maxwellian as discussed later by Shizgal
[25]. There are many additional examples such as in plasma
physics [26] where the time scale for different rate processes
is estimated with a local Maxwellian assumption. However,
the exact preservation of a local Maxwellian in physically
realistic systems is the exception rather than the rule. The

maintenance of a local Maxwellian during the approach to
equilibrium occurs only for a small number of systems such as
the hard-sphere Rayleigh gas [27] and electron-atom systems
whose interaction is given by the Maxwell molecule model
[28]. It can be readily shown that these two systems are
equivalent. They have the property that an initial Maxwellian
at temperature T (0) will relax to the equilibrium Maxwellian at
Tb through a continuous sequence of Maxwellian distributions
parametrized by T (t), a feature that is referred to as canonical
invariance [27,29].

For binary systems where no one component is present in
large excess, the relaxation to equilibrium can occur on three
distinctly different time scales, that is, two time scales for each
component to approach Maxwellians at different temperatures
via self-collisions and then complete equilibration of the two
components via cross collisions on a third time scale. This
“epochal” relaxation behavior of such binary systems with
disparate mass ratios has been discussed previously [30–32].
In molecular systems with electronic, vibrational, rotational,
and translational states, there can be a sharp separation in the
relaxation times of the different degrees of freedom [33,34]. In
plasma physics, electrons can attain a Maxwellian distribution
on a short time scale, whereas ions and neutrals remain far from
equilibrium. For each of these physical systems there can exist
a spectrum of relaxation times within each time scale [26].

The main objective of this paper is to study the shape
relaxation of the electron distribution function and the as-
sociated time scale for this electron-atom relaxation process
without electron-electron interactions. The shape relaxation of
the distribution function is studied in terms of the Kullback-
Leibler entropy [35–39], which provides a global measure of
the departure of the distribution function from the steady-state
Maxwellian or from the steady Davydov distribution when
a finite electric field is considered. In the absence of an
external electric field, we also investigate the departure of
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the distribution function from a local Maxwellian and verify
whether an intermediate local Maxwellian is established on a
short time scale followed by a slow relaxation to equilibrium.
The time dependence of the electron distribution function
is given by a Fokker-Planck equation defined in terms of
the electron-atom momentum-transfer cross section and the
strength of an external uniform electric field if present. This
is a linear time-dependent problem, and often it is useful
to express the solution in terms of the time eigenmodes of
the linear Fokker-Planck operator that defines the problem as
discussed in Sec. II. Thus, the time evolution of the electron
distribution function can be expressed as a sum of expo-
nential terms involving the eigenvalues of the Fokker-Planck
operator.

Experimental measurements of electron energy relaxation
times are usually reported in terms of the times τ1.1 and τ1.01

required for the average electron energy to decay to within
either 10% or 1%, respectively, of the thermal energy, which
is 3kBTb/2 where kB is the Boltzmann constant. Owing to
the multi-exponential nature of the relaxation process, it is
of interest to reexamine these definitions and discuss the
manner in which a single average relaxation time can be
defined as a representative of the time scale for the approach
to equilibrium [40]. We consider the relaxation time of the
distribution function in terms of the Kullback-Leibler entropy
and compare it with the relaxation time of the average
energy.

The Fokker-Planck equation is presented in Sec. II together
with a brief description of the methods of solution used. We
employ the pseudospectral method [4,41–43] to investigate
the spectral properties of the Fokker-Planck operator and
the finite difference method by Chang and Cooper [44]
to solve the time-dependent Fokker-Planck equation. The
shape relaxation of the distribution function is studied in
terms of the Kullback-Leibler relative entropy [35–39] as
discussed in Sec. III. The results and discussions are pre-
sented in Sec. IV. The interpretation of the multi-exponential
representation of the temperature relaxation and the other
quantities studied in terms of a single relaxation time is
given in Sec. V. The conclusion of this work is that a single
relaxation time can be defined that is representative of the
time scale for the relaxation of the distribution function and
the temperature. No evidence was found for the formation
of an intermediate local Maxwellian during the relaxation
process.

II. FOKKER-PLANCK EQUATION

The formalism for the calculations in the present paper
follows closely the work in previous papers [4–6,8], and
only a brief summary is presented here. The dependence
of the distribution function is expressed in reduced speed,
x = v

√
me/2kBTb, where v and me are the speed and mass of

the electron, Tb is the temperature of the atomic moderator, and
kB denotes the Boltzmann constant. The time t ′ is expressed
in units of t0, that is, t = t ′/t0, where

1

t0
= nme

2M
σ0

√
2kBTb

me

. (1)

In Eq. (1), n and M are the density and mass of the moderator
particles, respectively, and σ0 is a convenient hard-sphere cross
section. In terms of these dimensionless variables, the isotropic
portion of the distribution function is given by the Fokker-
Planck equation:

∂f (x,t)

∂t
= 1

x2

∂

∂x

[
2x4σ̂ (x)f (x,t) + x2B(x)

∂f (x,t)

∂x

]
, (2)

where σ̂ (x) = σ (x)/σ0 and

B(x) = xσ̂ (x) + α2

xσ̂ (x)
. (3)

The function σ (x) denotes the electron-atom momentum-
transfer cross section and α measures the strength of the
uniform external electric field E and is defined by

α2 = M

6me

[
eE

nσ0kBTb

]2

, (4)

where e is the electron charge. The steady-state distribution
function, fSS(x), at infinite time is the Davydov distribution
function derived from Eq. (2) and given by

fSS(x) = C exp[−d(x)], (5)

where

d(x) = 2
∫ x

0

y2σ̂ (y)

B(y)
dy. (6)

The normalization constant C is determined from
4π

∫ ∞
0 x2fSS(x) dx = 1. In the absence of an electric field,

fSS(x) corresponds to the Maxwellian distribution function
at Tb. A finite electric field will heat the electrons above the
moderator temperature.

We now express the distribution function in terms of the
deviation from fSS and write the Fokker-Planck equation in
terms of g(x,t) = f (x,t)/fSS(x), namely,

∂g(x,t)

∂t
=Lg(x,t)= 1

x2fSS(x)

∂

∂x

[
x2fSS(x)B(x)

∂g(x,t)

∂x

]
,

(7)

where we have defined the linear Fokker-Planck operator L.
We determine the distribution function by the finite difference
method on a uniform grid, which guarantees the positivity of
the distribution function [44]. The finite difference method
provides very good results for the distribution function with a
relatively small number of grid points. We also investigate
the spectral properties of the Fokker-Planck operator by
using a pseudospectral method based on a nonuniform grid
that is defined as the quadrature points associated with the
weight function w(x) = x2e−x2

, developed elsewhere [41–43].
The discretization of the Fokker-Planck equation with the
pseudospectral method gives the representation

Lij =
N∑

k=1

B(xk)[Dki + h(xk)δik][Dkj + h(xk)δjk], (8)

where

h(x) = w′(x)

2w(x)
− [x2fSS(x)]′

2x2fSS(x)

= d ′(x)

2
− x, (9)
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and Dij is the discrete representation of the derivative
operator [41,42]. As shown in Ref. [5], the Fokker-Planck
operator has an entirely discrete eigenvalue spectrum. The
eigenvalue problem Lφn(x) = λnφn(x) is solved by the nu-
merical diagonalization of the N × N representative matrix
Lij of L. The pseudospectral approach provides a rapid
convergence of the eigenvalues and eigenfunctions versus the
number of quadrature points N . The time dependence of the
distribution function is then obtained by expanding g(x,t) in
the eigenfunctions of L,

g(x,t) =
N∑

n=0

ane
−λntφn(x), (10)

where

an =
∫ ∞

0
x2φn(x)f (x,0) dx.

It is important to note that the lowest eigenvalue is λ0 = 0 ow-
ing to conservation of particle number [4π

∫ ∞
0 x2f (x,t)dx =

1] and the existence of a steady distribution at infinite time.
The moments of the distribution function and in particular

the temperature, which in reduced speed is given by T (t) =
(8π/3)Tb

∫ ∞
0 x4f (x,t) dx, can be expressed in terms of the

multi-exponential decay:

T (t)

Tb

=
N∑

n=0

bne
−λnt . (11)

The coefficients bn are expressed in terms of the an and the
projection of x2 on the eigenfunctions, that is,

bn = 8π

3
an

∫ ∞

0
fSS(x)x4φn(x) dx. (12)

For the Maxwell molecule (MM) model and zero electric
field, B(x) is independent of the speed of the particles, and the
solution to the Fokker-Planck equation Eq. (2) can be given in
a closed form. For this model, the interaction potential is

V (r) = pe2

2a0

(
a0

r

)4

,

where pa3
0 is the polarizability of the atomic moderator, a0 is

the Bohr radius, and e denotes the charge of the electron. Then
it can be shown that the reduced MM momentum-transfer cross
section is given by σ̂ (x) = a/x, where

a = Q(1) a
2
0

σ0

√
V0

kBTb

, (13)

and V0 = V (a0). The quantity Q(1) = 3.748 results from an
appropriate angular average of the MM differential cross
section. Therefore, for MM we have B(x) = a, and the
solution of Eq. (2) [27,28,45] is given by Eq. (10) with φn(x) =
L

( 1
2 )

n (x2) being the nth generalized Laguerre polynomial of
order one-half and λn = 4an, that is,

f (x,t) = fSS(x)
∞∑

n=0

anL
( 1

2 )
n (x2)e−4ant. (14)

Here fSS(x) is the Maxwellian distribution function at Tb, and
the expansion coefficients are

an = 2n!



(
n + 3

2

) ∫ ∞

0
x2f (x,0)L

( 1
2 )

n (x2) dx.

Moreover, the temperature of the electrons relaxes as a single
exponential

T (t) − Tb

T (0) − Tb

= e−4at, (15)

independent of the initial distribution chosen. If the initial
distribution f (x,0) is a Maxwellian with temperature T (0),
then the solution (14) has the closed form of a local Maxwellian
fLM[x,T (t)] = [Tb/πT (t)]3/2 exp[−x2Tb/T (t)] evaluated at
the temperature T (t); that is, for the MM model Eq. (2) satisfies
the canonical invariance property. These are well-known
results [27,28,45] that we use to check the numerical methods
implemented in this work.

Notice that the Lorentz-Fokker-Planck equation for MM
is equivalent to the hard-sphere Rayleigh gas discussed by
Andersen and Shuler in Ref. [45]. Indeed, if we introduce
the reduced energy y = x2 and the distribution P (y,t) =√

yf (
√

y,t), the Fokker-Planck equation (2) can be written
as

∂P (y,t)

∂t
= 4

∂

∂y

{[
y − 3

2

]
P (y,t) + ∂

∂y
[yP (y,t)]

}
. (16)

This is the Fokker-Planck equation deduced in Ref. [45]
for the relaxation of the hard-sphere Rayleigh gas, which
satisfies the properties cited above. On the other hand, the
function P (y,t) = √

yf (
√

y,t) substituted into the Fokker-
Planck equation (2) with the hard-sphere cross section, σ̂ (x) =
1, yields

∂P (y,t)

∂t
= 4

∂

∂y

{
(y − 2)

√
yP (y,t) + ∂

∂y
[y

√
yP (y,t)]

}
,

(17)

which is the Fokker-Planck equation deduced in Ref. [45] for
the relaxation of the hard-sphere Lorentz gas. In contrast to the
MM model, there is no closed-form solution for either f (x,t)
or T (t).

III. DISTRIBUTION FUNCTION SHAPE RELAXATION
AND CANONICAL INVARIANCE

The relaxation of the electron distribution function in inert
gas moderators has a very long history [4,5,16,46,47]. The
main objective for many of these previous investigations has
been the determination of the electron thermalization times
defined in terms of the relaxation of the electron temperature to
the equilibrium temperature Tb of the background atoms. The
definition of the relaxation times τ1.1 and τ1.01 used to interpret
experimental studies are defined as the times required for the
temperature T (t) to be respectively within 10% and 1% of Tb.
These definitions are somewhat arbitrary and in some sense
misleading as the relaxation time can be made arbitrarily long
by choosing a definition with T (t) arbitrarily close to Tb. In
addition, these definitions do not take into account the values of
T (t) at early times. On the other hand, the solution of the linear
Fokker-Planck equation for the electron distribution as well as
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the temperature are expressed as sums of exponential terms
of the eigenvalues of the Fokker-Planck operator, Eqs. (10)
and (11). It has long been recognized that the determination
of this multi-exponential time dependence from experiment or
from simulation is an ill-defined problem [40,48–50]. Quite
generally the temperature relaxation that has been reported to
date does not show separate distinct time scales. One of the
objectives of this paper is to consider the manner in which
this multi-exponential decay can be characterized by a single
relaxation time that provides the time scale for the approach
to equilibrium for this system.

In this paper, we investigate the relaxation to equilibrium
of the electron distribution function and the temperature.
In particular, we follow the evolution of the shape of the
distribution function relative to the time independent steady-
state distribution in terms of the Kullback-Leibler entropy
[35–39] defined by

�SS(t) = −4π

∫ ∞

0
x2f (x,t) ln

f (x,t)

fSS(x)
dx. (18)

The functional �SS(t) is negative at t = 0 for an arbitrary initial
distribution function and tends to zero monotonically as t →
∞. For two Maxwellian distributions at different temperatures,
in particular for an initial Maxwellian with temperature T (0)
and a steady-state Maxwellian at Tb, we have

�SS(0) = 3

2

[
1 − T (0)

Tb

+ ln
T (0)

Tb

]
, (19)

which satisfies �SS(0) < 0 for all T (0) �= Tb and �SS(0) =
0 for T (0) = Tb. More generally, if we add to Eq. (18) the
integral of x2[fSS(x) − f (x,t)], which is zero owing to the
conservation of the particles number, we obtain

�SS(t)

= −4π

∫ ∞

0
x2fSS(x)

[
f (x,t)

fSS(x)
ln

f (x,t)

fSS(x)
− f (x,t)

fSS(x)
+ 1

]
dx.

(20)

Then, since X ln X − X + 1 � 0 with equality only if X = 1,
we have that �SS(t) � 0 for all times and �SS(t) = 0 only
when f (x,t) = fSS(x). On the other hand, if we use f (x,t) =
g(x,t)fSS(x), the time derivative of �SS(t) from Eq. (18) is

d�SS(t)

dt
= −4π

∫ ∞

0
fSS(x)

∂g(x,t)

∂t
ln g(x,t) dx, (21)

where the time derivative of ln g(x,t) gives zero owing to
particle conservation. With Eq. (2), an integration by parts and
zero flux boundary conditions, we find that

d�SS(t)

dt
= 4π

∫ ∞

0
x2B(x)f (x,t)

∣∣∣∣ ∂

∂x
ln

f (x,t)

fSS(x)

∣∣∣∣2

dx. (22)

Therefore d�SS(t)/dt � 0 with equality only when f (x,t) =
fSS(x) at infinite time. This provides an H -theorem for the
Fokker-Planck equation (2) [36–39].

In many studies, the assumption of local thermodynamic
equilibrium is made and estimates of relaxation times are
determined from the energy exchange process occurring
with the maintenance of a Maxwellian distribution [23–26].
This procedure assumes that the system satisfies canonical
invariance [27,28] to some degree. In the absence of an
electric field, α = 0, we also follow the evolution of f (x,t)
relative to a local Maxwellian fLM[x,T (t)] and define the
quantity

�LM(t) = −4π

∫ ∞

0
x2f (x,t) ln

f (x,t)

fLM[x,T (t)]
dx, (23)

analogous to Eq. (18). This functional measures the departure
of the distribution function from a local Maxwellian during
the relaxation process, and it is a useful tool to investigate
the canonical invariance property. If the initial distribution is
a Maxwellian and remains Maxwellian with a time-dependent
temperature, then �LM(t) = 0 for all times. In general,
�LM(t) � 0, which can be shown by replacing fSS(x) with
fLM[x,T (t)] in Eq. (20) and using the inequality that follows
Eq. (20). It is understood that the distributions f (x,t) and
fLM[x,T (t)] in the resulting equation are normalized ac-
cording to 4π

∫ ∞
0 x2f (x,t) dx = 1. However, whereas �SS(t)

satisfies an H theorem [Eq. (22)], �LM(t) does not. For
an initial Maxwellian at T (0), we have �LM(0) = 0, and
we also have �LM(∞) = 0 since f (x,∞) ≡ fLM[x,T (∞)].
Then, unless the system exhibits canonical invariance,
�LM(t) must attain a strict minimum at some intermediate
time.

In the case of a nonzero field, α �= 0, the situation is
different as the steady state is the Davydov distribution
function [Eq. (5)] with a temperature that can be greater than
Tb as a consequence of the heating of the electrons by the
external electric field. In this case, the study of �LM(t) is
meaningless.

IV. CALCULATIONS AND RESULTS

The time evolution of the electron distribution function
is determined by the energy variation of the electron-atom
momentum-transfer cross section. We consider here a com-
parison of the behavior for e-Ne and e-Ar relaxation for which
the cross section data is shown in Fig. 1 of Ref. [6]. For
e-Ne, the momentum-transfer cross section exhibits a weak
dependence on the relative energy, whereas for e-Ar it has a
very deep Ramsauer-Townsend minimum. The initial electron
distribution is chosen either as a Maxwellian at T (0) > Tb or as
the Gaussian f (x,0) = Ae−β(x−x0)2

where A is a normalization
constant such that 4π

∫ ∞
0 f (x,0)x2 dx = 1. The solution of

the Fokker-Planck equation is determined with the finite
difference algorithm developed by Chang and Cooper [44].
We interpret these results with the spectral approach in terms
of the eigenvalues and eigenfunctions of the Fokker-Planck
operator. The Chang and Cooper code is robust and preserves
the positivity of the distribution. It has been employed in
the solution of partial differential equations describing many
different physical problems [51–53].

We show in Fig. 1 the time evolution of the electron
distribution function, the relaxation of the temperature ratio,
and time dependence of �SS(t) and �LM(t) for electrons in Ne
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(A) (B)

(C) (D)

FIG. 1. The time dependence of x2f (x,t), T (t)/Tb, �SS(t) and �LM(t) for electrons in Ne (solid curves); E/n = 0, f (x,0) = Ae−β(x−x0)2

with β = 20 and x0 = 5.5; t = t ′/t0 with t0 = 666 in units of 1011 cm−3 s; Tb = 290.1K; (a) hard sphere (σ0 = 1.18 Å
2
); (b) Maxwell molecules

(a = 4, σ0 = 10 Å
2
).

without an external electric field. The distribution function in
Fig. 1(A) evolves as a sequence of unimodal distributions from
an initial Gaussian to the final Maxwellian distribution at Tb,
which is essentially attained at t = 2.5. Since the momentum-
transfer cross section is slowly varying with energy, a hard-
sphere cross section should approximate the behavior for
electrons in Ne. This is indeed the case with σ0 = 1.18 Å

2
,

as we show for the temperature relaxation by the dashed
curve (a) in Fig. 1(B). This particular choice corresponds to
the value of the momentum-transfer cross section for e-Ne
at the energy 3kBT̄ /2, where T̄ = (T (0) + Tb)/2 and T (0)
is the temperature of the initial Gaussian. Also shown by
the dashed curve (b) is the temperature relaxation for the
MM model for which σ̂ (x) = a/x. The constant a for Ne
is determined by Eq. (13) with p = 1.38. For convenience, we
choose σ0 = 10 Å

2
with kBTb = 0.025 eV such that a = 4.

Whereas the time dependence with the real cross section
and the hard-sphere cross section is multi-exponential, the
relaxation of the temperature for MM is a single exponential
as discussed in Sec. II.

The departure of the shape of the distribution function
from the equilibrium Maxwellian at Tb is shown in Fig. 1(C)

in terms of the Kullback-Leibler entropy �SS(t), which is
initially negative and increases monotonically to zero at
infinite time in accordance with the H -theorem, Eq. (22). In
Fig. 1(D), we show the evolution of �LM(t), which measures
the departure of a nonequilibrium distribution function from a
local Maxwellian parametrized by T (t). As can be seen from
the results shown, the time it takes for �LM(t) and �SS(t) to
approach zero is very similar. This is clear from the results in
Table I(a), where we show that the ratio of the τ0.01 values for
the approach of �SS(t) and �LM(t) to within 0.01 of zero is
of the order of unity. Note that in this analysis we only have
to report the times at which these functions are close enough
to zero, and no information on the behavior at early times are
needed. Thus, we do not regard these values as relaxation times
but merely as indicators for the approach of the distribution
functions to a local and steady-state Maxwellians. In Sec. V we
define the relaxation times as measures of the average history
of the processes in comparison with the spectral properties of
the systems.

These results imply that there is no initial fast relaxation
to a local Maxwellian in this system since the distribution
relaxes to the local Maxwellian approximately at the same
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TABLE I. Times τ0.01 in units of 1011cm−3 s defined as the
time for which if t > τ0.01 then |�LM(t)| < 0.01 [analogously for
�SS(t)]; E/n = 0; Tb = 290.1K; (a) f (x,0) = A exp[−β(x − x0)2]
with β = 20 and x0 = 5.5, (b) initial Maxwellian with T (0) = 20Tb;
bold numbers denote the ratio of the bottom row to the top row.

(a) (b)

Process Ne Ar Ne Ar

τ0.01

�LM(t) 793 2579 761 2451
�SS(t) 989 2802 960 2667

1.3 1.1 1.3 1.1

time that it relaxes to the steady-state Maxwellian. Zhang
et al. [54] suggested that for atom-atom relaxation, the sharply
peaked forward scattering quantum differential cross section
that characterizes these systems will result in the relaxation of
the distribution function to a local Maxwellian at T (t) in a time
approximately 10 times shorter than the time for T (t) to reach
within 5% of Tb. In Ref. [55], they cited a previous work [47] on
electron-atom relaxation that demonstrated a similar two-stage

relaxation. However, this “epochal” relaxation occurs owing
to the inclusion of electron-electron collisions as done in
Ref. [47]. On the other hand, for electron-atom systems it is
only the momentum-transfer cross section computed from an
average over scattering angle of the differential cross section
that determines the relaxation behavior rather than the full
differential cross section.

We now compare the relaxation process in Fig. 1 for
electrons in Ne, a system with a nearly constant momentum-
transfer cross section, with the relaxation of electrons in
Ar, for which the momentum-transfer cross section has a
deep Ramsauer-Townsend minimum and thus a strong energy
dependence. The evolution of the electron distribution function
from an initial Gaussian shown in Fig. 2(A) exhibits bimodal
distributions at intermediate times that do not occur for
electrons in Ne. This behavior is better understood if we define
h(x,t) = x2f (x,t) and rewrite the Fokker-Planck equation
Eq. (2) as

∂h(x,t)

∂t
= ∂

∂x

[
A(x)h(x,t) + B(x)

∂h(x,t)

∂x

]
. (24)

(A) (B)

(C) (D)

FIG. 2. Relaxation of electrons in Ar with an initial normalized Gaussian distribution; see caption to Fig. 1; t0 = 6752 in units of 1011 cm−3 s;
Tb = 290.1K; (a) hard sphere (σ0 = 0.23 Å

2
); (b) Maxwell molecules (a = 6, σ0 = 13.57 Å

2
).
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For E/n = 0, the time evolution of h(x,t) is determined by
the coefficients B(x) = xσ̂ (x) and

A(x) = 2

(
1 − 1

x2

)
xB(x),

which for e-Ar are shown in Fig. 3 [curves (a)]. Due to
the Ramsauer-Townsend minimum in the momentum-transfer
cross section, the function B(x) has a local minimum ap-
proximately at x = 3.1, and the function A(x) has a local
minimum and a maximum approximately at x = 3 and x =
1.9, respectively. These critical points lie within the interval
limited by the dashed lines shown in the figure, which are the
positions of the maximum for the initial Gaussian at x = 5.5
and the steady-state Maxwellian at x = 1. Since small absolute
values of A(x), B(x) and their derivatives imply slow variation
in time of h, the distribution function tends to vary faster
at points lying outside a small neighborhood of the critical
points. As a result, in the cooling process of electrons in Ar,
the distribution function is first compressed close to x = 3.1,
its maximum slowly decreases around this point, and then
intermediate bimodal distributions appear when electrons with
reduced speed higher than x = 1.9 migrate to lower values of
x. In contrast, the function B(x) for e-Ne is almost linear
in x [similar to the hard-sphere case, for which B(x) = x],
and A(x) is almost parabolic with a minimum at x = 0,

which lies outside the interval limited by the dashed lines.
As a result, the relaxation of h(x,t) occurs by unimodal
distributions.

The relaxation of T (t)/Tb, �SS(t) and �LM(t) for e-Ar
has a stronger departure from the hard-sphere cross section
than in the e-Ne case. Moreover, there are changes in the
concavity of �LM(t) that are not present for the e-Ne system,
as shown in Fig. 2(D). These differences between the two
systems are a consequence of the deep Ramsauer-Townsend
minimum in the momentum-transfer cross section for e-Ar
mentioned above. Note that the computations for e-Ar were
carried out with σ0 = 0.23 Å

2
, which provides a better fit than

the value obtained by the criterion used for the e-Ne system.
For comparison, we also show for Ar the results for the MM
cross section [curve (b)] with a = 6, obtained by Eq. (13) with
σ0 = 13.57 Å

2
and p = 11.1.

Figure 4 shows the heating of electrons in Ne (left) and
Ar (right) by the action of an external electric field E/n �= 0.
The curves (a)–(c) are for different values of E/n. The initial
distribution function is a Maxwellian at Tb = 290.1K that
evolves to the final Davydov distribution, Eqs. (5) and (6), at a
temperature TSS > Tb, as shown in Figs. 4(A) and 4(B) in the
case of E/n = 0.15 Td. For Ne, the initial Maxwellian evolves
as a sequence of unimodal distributions, while for Ar the
relaxation includes intermediate bimodal distributions. This
difference is the result of the Ramsauer-Townsend minimum
in the e-Ar momentum-transfer cross section. According to
the Fokker-Planck equation (24), the time dependence of the
distribution function is determined by B(x) as given by Eq. (3),
and

A(x) = 2

[
xσ̂ (x)

B(x)
− 1

x2

]
xB(x). (25)

(A)

(B)

FIG. 3. Variation of (A) B(x) [Eq. (3)] and (B) A(x) [Eq. (25)]
vs reduced speed for electrons in Ar with E/n in Td equal to (a) 0
and (b) 0.15; 1 Td = 10−17V cm2; other curves correspond to higher
values of the field; curves (a) computed with σ0 = 0.23 Å

2
and other

curves computed with σ0 = 155 Å
2
; dashed lines indicate positions

of the maximum for the initial Gaussian (x0 = 5.5) and steady-state
Maxwellian (x0 = 1) distributions shown in Fig. 2(A); tabulated
e-Ar momentum-transfer cross section [23] was fitted to an analytic
expression.

Both A(x) and B(x) are shown in Fig. 3 [curves (b)] for the
e-Ar system. The action of the external electric field changes
the concavity of B(x) at E/n = 0 [Fig. 3(A) curve (a)], and
in particular the minimum at x = 3.1 becomes a maximum.
Also, A(x) has a maximum and a minimum at approximately
x = 1.5 and 3, respectively. Thus, the relaxation of electrons
in Ar with an external electric field is somewhat reverse to
the case discussed above for the zero field case. Initially
the Maxwellian distribution function is peaked at x = 1
and is heated to a Dayvdov distribution with a maximum
approximately at x = 6, after going through these critical
points of A(x) and B(x). The maximum of the distribution
slowly decreases around the reduced speed x = 1, and the
fast migration of electrons coming into and leaving from
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(A) (B)

(C) (D)

(E) (F)

FIG. 4. The nonzero electric field time variation of x2f (x,t), T (t)/TSS, and �SS(t) for electrons in Ne (left) and Ar (right). E/n in Td is
(a) 0.15, (b) 0.35, (c) 0.55; initial Maxwellian distribution at T (0) = Tb = 290.1 K; for Ne t0 = 44, σ0 = 18.0 Å

2
and TSS in units of Tb is

(a) 20, (b) 41, (c) 60; for Ar t0 = 10, σ0 = 155 Å
2

and TSS in units of Tb is (a) 20, (b) 30, (c) 38; t0 in units of 1011cm−3 s.

a neighborhood of x = 3 produces intermediate bimodal
distributions.

The time dependence of the electron temperature relative
to TSS > Tb is shown in Figs. 4(C) and 4(D) for several values
of E/n. The increasing values of TSS with E/n for Ne and
Ar show the heating of the electrons by the electric field.
The Kullback-Leibler entropy, �SS(t), shown in Figs. 4(E)

and 4(F) is initially negative and increases monotonically
to zero in accordance with the H -theorem discussed in
Sec. III.

In Fig. 5 we show the thermalization of electrons in Ne
for E/n = 0 and with an initial Maxwellian distribution at
T (0) = 20Tb. The distribution function evolves as sequence
of unimodal distributions to the steady-state Maxwellian, as
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(A) (B)

(C) (D)

FIG. 5. The time dependence of x2f (x,t), T (t)/Tb, �SS(t), and �LM(t) for electrons in Ne (solid curves); E/n = 0; initial Maxwellian
distribution at T (0) = 20Tb with Tb = 290.1 K; t = t ′/t0 with t0 = 669 in units of 1011 cm−3 s; Tb = 290.1K; (a) hard sphere (σ0 = 1.18 Å

2
);

(b) Maxwell molecules (a = 4, σ0 = 10 Å
2
); (D) (dashed line) hard-sphere cross section. For Maxwell molecules �LM(t) = 0 for all t .

shown in Fig. 5(A). The temperature relaxation is shown
in Fig. 5(B), and the Kullback-Leibler entropy �SS(t) is
given in Fig. 5(C). The latter evolves from the initial value
�SS(0) = −24 as given by Eq. (19) monotonically to zero.
A good approximation is obtained by the hard-sphere model
[dashed curve (a)] with σ0 = 1.17 Å

2
. This value was chosen

by the same criterion used earlier for the relaxation of electrons
in Ne with an initial Gaussian distribution.

In Fig. 5(D) we show the evolution of �LM(t). Since
the initial distribution function is a Maxwellian at T (0),
�LM(0) = 0. Electron-Ne collisions do not preserve the
Maxwellian distribution during the relaxation process, and
therefore �LM(t) < 0 for t > 0. The departure from the local
Maxwellian is the result of the energy dependence of B(x)
in the Fokker-Planck equation, Eq. (7). It is a maximum at
about t = 0.13 for which �LM(t) attains a minimum shown
in Fig. 5(D). For subsequent times, e-Ne collisions cause the
distribution function to approach the global Maxwellian at
the bath temperature Tb, in accordance with the H -theorem.
As a consequence, �LM(t) increases to zero after it reaches its
minimum value. The relaxation of �LM(t) takes approximately
the same time as �SS(t), which is shown in Table I(b). For the

MM model �LM(t) ≡ 0 for all times due to the canonical
invariance property.

A useful interpretation of the canonical invariance property
arises from the unique feature of the Fokker-Planck operator
for MM, which is defined by the right-hand side of Eq. (2),
or equivalently Eq. (24), with B(x) = 1. The quantity in
square brackets in Eq. (24) is a flux J (x) in speed space,
and the Fokker-Planck equation is thus a diffusion equation,
namely, ∂h/∂t = ∂J/∂x. If we substitute the local Maxwellian
hLM(x,t) = x2fLM(x,T (t)) into both sides of Eq. (24) with
B(x) = 1, we have that

fLM[x,T (t)]

[
x2

T (t)/Tb

− 3

2

]
1

T (t)

dT (t)

dt

= −4fLM[x,T (t)]

[
x2

T (t)/Tb

− 3

2

] [
1 − Tb

T (t)

]
, (26)

which yields

dT (t)

dt
= −4 [T (t) − Tb] . (27)
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(A) (B)

(C) (D)

FIG. 6. Relaxation of electrons in Ar with an initial Maxwellian distribution at T (0) = 20Tb; see caption to Fig. 5; t0 = 6752 in units of
1011cm−3 s; Tb = 290.1 K; (a) hard sphere (σ0 = 0.23 Å

2
); (b) Maxwell molecules (a = 6, σ0 = 13.57 Å

2
).

The solution of Eq. (27) is given by Eq. (15) with a = 1.
Thus, for the MM model the Fokker-Planck equation reduces
to the time rate of change of the temperature. The flux in speed
space, J (x), as given by the right-hand side of Eq. (26) alters
the speed distribution function in the same way as does the
change in T (t). This is not the case for other cross sections,
where the corresponding flux in speed space changes the shape
of the initial Maxwellian distribution function.

The relaxation of electrons in Ar for E/n = 0 and with
an initial Maxwellian distribution at T (0) = 20Tb is shown
in Fig. 6. The main characteristic that results from this
change of initial condition with respect to the Gaussian is
the rapid and more pronounced deformation of the initial
Maxwellian into bimodal distributions at intermediate times,
as shown in Fig. 6(A). The evolution of the temperature
and the Kullback-Leibler entropy �SS(t) is similar to those
in Figs. 2(B) and 2(C), respectively. The evolution of
�LM(t) is shown in Fig. 6(D). It is initially zero and has a
minimum at approximately t = 0.04, where the departure of
distribution function from a local Maxwellian is a maximum.
For larger times, this function presents several changes in

concavity, which is a consequence of the bimodal nature
of the intermediate distribution functions. This is in turn a
consequence of the deep Ramsauer-Townsend minimum of
the e-Ar momentum-transfer cross section. As for the e-Ne
system, the relaxation to a local Maxwellian for e-Ar requires
about the same time as for the distribution function to relax to
the equilibrium Maxwellian; see Table I(b).

V. RELAXATION TIME FOR A MULTI-EXPONENTIAL
RELAXATION

There are numerous physical situations such as in the
present study where the time evolution of some quantity is
given by a sum of exponentials. As shown in Sec. II, each
term in the sum for the distribution function, Eq. (10), and
the temperature, Eq. (11), is characterized by an eigenvalue of
the linear Fokker-Planck operator. The aim of this section is
to characterize the relaxation process for both the distribution
function and the temperature in terms of a single relaxation
time indicative of the time scale of the processes. As mentioned
earlier, the fitting of data to multi-exponential functions
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FIG. 7. Lower-order eigenvalues of the discretized Fokker-
Planck operator; α = 0; λn in units of t−1

0 . (a) Ne (σ0 = 0.37 Å
2
),

(b) hard spheres (σ0 = 0.37 Å
2
), (c) Ar (σ0 = 1.19 Å

2
), and (d)

Maxwell molecules (a = 1, σ0 = 40 Å
2
).

has been studied extensively and is an ill-defined problem
[40,48–50,56]. In the event that the eigenvalue spectrum
has a separation for a pair of eigenvalues by more than an
order of magnitude, the relaxation would be characterized
by more than one time scale, and a single relaxation time
might not be an adequate description. For the systems studied
here, there is no evidence for such a behavior. In Fig. 7
we show the variation of the lowest eigenvalues of the
Fokker-Planck operator versus n for the e-Ne and e-Ar cross
sections, curves (a) and (c), respectively. The convergence
of the eigenvalues versus the number of quadrature points
was obtained to four significant figures. Also shown are the
lowest eigenvalues for the MM [curve (b)] and hard-spheres
cross sections [curve (d)]. For the MM cross section, λn varies
linearly with n as discussed previously [28,45]. For the other
cross sections, the separation between successive eigenvalues
does increase, although it is not pronounced. Therefore, we
expect that for the e-Ne and e-Ar systems the thermal-
ization can be characterized by single average relaxation
times.

From an inspection of the relaxations of T (t)/Tb, �SS(t)
and �LM(t) reported in the previous section, we can quali-
tatively conclude that for each system studied the approach
to equilibrium is approximately on the same time scale for
all these quantities, and therefore the distribution functions
approach equilibrium on about the same time scale as does
the temperature. We are interested in characterizing these
relaxations with a single relaxation time and thus quantifying
this conclusion. However, the assignment of a single relaxation
time to the various time-dependent quantities is not a uniquely
well defined procedure. The times τ1.01 and τ1.1 employed
in many comparisons of theory and experiment for electron
relaxation [4,5,16,23,46,47] appear not be appropriate for this
objective as they are representative of the long-time behavior,
especially τ1.01. We are interested in a definition that represents
an average over the time history of the process.

We consider two definitions of a relaxation time both based
on a single exponential relaxation. If the quantity of interest is
denoted by F (t), we define

τ1 = 1

F (0)

∫ ∞

0
F (t) dt (28)

and

τ2 =
∫ ∞

0 tF (t) dt∫ ∞
0 F (t) dt

. (29)

These definitions have been used in the study of other
relaxation processes, which include ferromagnetic relaxation
[57], Brownian motion in double-well potentials [58], and
fluorescence [59]. In the particular case in which F (t) is a
multi-exponential function of N terms,

F (t) =
N∑

n=1

cne
−λnt , (30)

the values of τ1 and τ2 give, respectively, the relaxation times
of pure exponentials C1e

−t/τ1 and C2e
−t/τ2 whose area are the

same as the area under F (t), with C1 and C2 such that

τ1 =
N∑

n=1

cn

λn

/
N∑

n=1

cn (31)

and

τ2 =
N∑

n=1

cn

λ2
n

/
N∑

n=1

cn

λn

. (32)

In particular, C1 = F (0). Therefore, τ1 and τ2 are just the
weighted mean of the relaxation times λ−1

n for the terms in the
sum of Eq. (30), where the weights are given by the coefficients
cn and cn/λn, respectively. If F (t) is a pure exponential, then
τ1 and τ2 are equal and coincide with the single relaxation time
that parametrizes F (t).

In Table II we provide the values of τ1 and τ2 for the
quantities T (t)/Tb, �SS(t) and �LM(t) for the e-Ne and e-Ar

TABLE II. Relaxation times in units of 1011cm−3 s for T (t)/Tb,
�SS(t) and �LM(t); E/n = 0; (a) f (x,0) = A exp[−β(x − x0)2] with
β = 20 and x0 = 5.5, (b) initial Maxwellian with T (0) = 20Tb; for
Ne, HS, and MM see Figs. 1–5, for Ar see Figs. 2–6; bold numbers
denote the ratio of rows for T (t)/Tb and �SS(t); according to the
definition of τ1, missing entries are the result of �LM(0) = 0 for the
initial Maxwellian.

(a) (b)

Process Ne Ar HS MM Ne Ar HS MM

τ1

T (t)/Tb 67 454 51 4.98 60 363 47 4.98
�SS(t) 46 352 38 4 41 278 34 4.08
�LM(t) 72 398 41 2.96 — — — —

1.5 1.3 1.3 1.3 1.5 1.3 1.4 1.2
τ2

T (t)/Tb 167 608 81 4.90 170 590 80 4.90
�SS(t) 93 470 49 3.67 93 452 47 3.69
�LM(t) 162 455 69 3.34 238 600 133 10.7

1.8 1.3 1.7 1.3 1.8 1.3 1.7 1.3
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(A) (B)

(C) (D)

FIG. 8. Time variation of log[(T (t) − Tb)/(T (0) − Tb)] and log[�SS(t)/�SS(0)] (solid curves) for electrons in Ne (left) and Ar (right);
E/n = 0; see caption to Figs. 1(B) and 1(C) and Figs. 2(B) and 2(C). Dashed curves are straight lines through the origin with slopes (a) −1/τ1

and (b) −1/τ2.

systems with an initial (a) Gaussian and (b) Maxwellian
distribution function. The relaxation times were computed
with the finite difference solution of the Fokker-Planck
equation and the time integrations in Eqs. (28) and (29). For
e-Ne, the results correspond to Figs. 1(B)–1(D) and 5(B)–5(D),
and for e-Ar the values reported correspond to Figs. 2(B)–2(D)
and 6(B)–6(D). A good check is to compare the values τ1 and
τ2 of the temperature relaxation for the MM cross section,
since in this case the temperature relaxes as a pure exponential
irrespective of the initial distribution, and therefore τ1 and τ2

must equal 1/(4a) in units of t0. For a = 4 and t0 = 78.45 we
have τ = 4.9 in units of 1011cm−3 s, which is in agreement
with the four entries for MM. As shown in the table, the
relaxation times for T (t)/Tb and �SS(t) are in the same order
regardless of the initial distribution. Thus, the approach of T (t)
and f (x,t) to a steady state occurs approximately on the same
time scale for each system. According to τ1, the temperature of
e-Ne relaxes 1.5 times faster than the Leibler-Kullback entropy
�SS(t) does, while this value is 1.3 for the e-Ar system. A
similar result is found for τ2, which gives 1.8 for e-Ne and
1.3 for e-Ar. These values are very close to those for the
hard-sphere and MM momentum-transfer cross sections, as
shown in the table.

We show in Fig. 8 the time dependence of log[(T (t) −
Tb)/(T (0) − Tb)] and log[�SS(t)/�SS(0)] in comparison with
the linear dependencies (dashed straight lines) with relaxation
times τ1 [curve (a)] and τ2 [curve (b)] given by the values
reported in Table II(a) for an initial Gaussian distribution

function. The results for e-Ne are on the left, whereas the
results for e-Ar are on the right of the figure. Although the
effective exponentials C1e

−t/τ1 and C2e
−t/τ2 are not intended

to fit these quantities, the figures suggest that they are good
representatives for the relaxation processes taking place in
these systems. For e-Ne, curves (a) seem to provide a better
description for small times while curves (b) give a better
overall description. The curves (a) seem to underestimate the
relaxation curves. For the e-Ar system, curves (a) and (b) are
closer to each other, suggesting that the system might relax
on average closer to a single exponential. Note that in this
analysis only T (t)/Tb is a multi-exponential function, and thus
in this case τ1 and τ2 are given by the relations in Eqs. (31)
and (32), respectively. These expressions provide a direct link
between the relaxation of T (t)/Tb and the eigenvalue spectrum
of the Fokker-Planck operator L defined in Eq. (7). This
connection is less obvious but still present for the quantities
�SS(t) and �LM(t). The set of curves corresponding to an
initial Maxwellian distribution are not shown since they are
very similar to the curves for the initial Gaussian distribution,
except for �LM(t). For this quantity, the relaxation time τ1

can not be used, since �LM(0) = 0 (which explains the empty
entries in Table II).

We investigate the relaxation times for electrons in Ne and
Ar heated by an external electric field. In Table III we show
the values of τ1 and τ2 for the temperature ratio T (t)/TSS

and the Kullback-Leibler entropy �SS(t) versus E/n. The
initial distribution is a Maxwellian at the bath temperature
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TABLE III. Relaxation times in units of 1011cm−3 s versus E/n

in Td; 1 Td = 10−17 V cm2; see caption to Fig. 4; bold numbers
denote the ratio of columns T (t)/TSS and �SS(t).

τ1 τ2

E/n T (t)/TSS �SS(t) Ratio T (t)/TSS �SS(t) Ratio

Ne
0.01 28.22 13.19 2.14 25.42 14.92 1.70
0.15 5.580 1.284 4.35 6.779 2.546 2.66
0.35 3.740 0.723 5.17 4.488 1.661 2.70
0.55 2.906 0.529 5.49 3.427 1.258 2.72
1 1.974 0.344 5.74 2.267 0.816 2.78

Ar
0.001 11.98 11.59 1.03 7.988 7.965 1.00
0.005 12.34 11.52 1.07 8.102 7.901 1.03
0.01 12.72 10.97 1.16 8.184 7.669 1.15
0.03 9.562 5.527 1.73 6.794 4.948 1.37
0.15 2.263 0.588 3.85 3.104 1.125 2.76
0.25 1.592 0.347 4.59 2.408 0.865 2.78

Tb = 290.1 K. As the table shows, the relaxation times for
e-Ne decrease with the increase of E/n. Previous studies [5]
have shown that for atomic moderators such as Ne with
a momentum-transfer cross section that varies slowly with

energy, the eigenvalues of the Fokker-Planck operator increase
with increasing field. This is in agreement with our result
since the relaxation times are determined by the inverse of
the eigenvalues. The relaxation times of the Kulback-Leibler
entropy decreases with E/n as well. It relaxes slightly faster
than the temperature but in the same order, as shown in
Table III by the ratio of the relaxation times of T (t)/TSS and
�SS(t) (numbers in bold). However, this ratio seems to increase
with E/n.

It has also been shown [5] that for atom moderators such
as Ar whose cross sections depend strongly with the energy
and exhibit a Ramsauer minimum, the eigenvalues of the
Fokker-Planck operator first decrease with E/n and then
increase for larger values of E/n. This behavior is in agreement
with the relaxation times of the temperature for the e-Ar system
reported in Table III. We see that τ1 and τ2 increase for small
values of E/n and then decrease steadily with E/n. This
phenomenon seems to occur by the change in the concavity
of the coefficient B(x) in the Fokker-Planck equation (7), due
to the action of the external field. As shown in Fig. 3(A),
the position of the local extrema of B(x) for E/n = 0 [curve
(a)] are exchanged when E/n �= 0 [e.g., curve (b)]. Actually,
another minimum appears at x satisfying xσ̂ (x) = α (not
shown in the figure). This continuous transition in the shape
of B(x) versus E/n implies that for small values of the

(A) (B)

(C) (D)

FIG. 9. The nonzero electric field time variation of log[(T (t) − TSS)/(T (0) − TSS)] and log[�SS(t)/�SS(0)] (solid curves) for electrons in
Ne (left) and Ar (right); see caption to Fig. 4; E/n in Td is equal to (a) 0.15, (b) 0.35, (c) 0.55, and (d) 1. Dashed curves are straight lines
through the origin with slope −1/τ2.
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field the extrema of B(x) are less pronounced and might
even disappear. This means that for such external fields the
Ramsauer minimum is fully compensated, the distribution
function widens and the rate of change of the temperature
decreases, which produces an increase in the relaxation times
for T (t)/Tb. If the electric field increases beyond these values
[which for e-Ar is between 0.01 Td and 0.03 Td according
to Table III, in agreement with Fig. 3(B) in Ref. [5]], then
the maximum and minimum of B(x) are more pronounced,
and the effect of the Ramsauer minimum is again considerable
[e.g., see curve (b) in Fig. 3(A) for E/n = 0.15 Td). Then the
intermediate bimodal distributions appear, the rate of change of
the temperature increases, and therefore the relaxation times of
T (t)/Tb decreases. As for �SS(t), there is no evidence that the
relaxation times change monotonicity with E/n. According to
Table III they decrease steadily with increasing field.

The effective exponentials associated with T (t)/TSS and
�SS(t) with relaxation times τ2 (dashed straight lines) reported

in Table II are shown in Fig. 9 for several values of the
field. They are on the average very good representatives for
the evolution of these quantities, mostly for the temperature
relaxation, Fig. 9(A) for e-Ne and Fig. 9(B) for e-Ar. The
approximation improves with increasing field, specially for
e-Ne, as shown in Figs. 9(A) and 9(C). For e-Ar, stronger
deviations from linearity occur than for the e-Ne system at
early values of time. This is attributed to the Ramsauer-
Townsend minimum of the e-Ar momentum-transfer cross
section. For the field range used, the quantities shown decrease
with E/n at each time, and thus the relaxation is faster with
the increase of E/n.
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