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Nonadditive hard-sphere fluid mixtures: A simple analytical theory
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We construct a nonperturbative fully analytical approximation for the thermodynamics and the structure of
nonadditive hard-sphere fluid mixtures. The method essentially lies in a heuristic extension of the Percus-Yevick
solution for additive hard spheres. Extensive comparison with Monte Carlo simulation data shows a generally
good agreement, especially in the case of like-like radial distribution functions.
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I. INTRODUCTION

The van der Waals ideas [1] show that the most important
feature of the pair potential between atoms or molecules is the
harsh repulsion that appears at short range and has its origin
in the overlap of the outer electron shells. These ideas form
the basis of the very successful perturbation theories of the
liquid state. This, along with fruitful applications to soft matter
[2], explains the continued interest in hard-sphere reference
systems [3].

The simplest model for a fluid mixture is a system of ad-
ditive hard spheres (AHSs) for which the like-unlike collision
diameter (σij ) between a particle of species i and one of species
j is equal to the arithmetic mean σ add

ij ≡ 1
2 (σii + σjj ). A more

general model consists of nonadditive hard spheres (NAHSs),
where the like-unlike collision diameter differs from σ add

ij by
a quantity �ij = (σij − σ add

ij )/σ add
ij called the nonadditivity

parameter. As mentioned in the paper by Ballone et al. [4],
where the relevant references may be found, experimental
work on alloys, aqueous electrolyte solutions, and molten salts
suggests that homocoordination and heterocoordination [5,6]
may be interpreted in terms of excluded volume effects due
to nonadditivity (positive and negative, respectively) of the
repulsive part of the intermolecular potential. NAHS systems
are also useful models to describe real physical systems as
rare gas mixtures [7] and colloids [8–11]. For a short review
of the literature on NAHSs up to 2005 the reader is referred to
Ref. [12].

The well-known Percus–Yevick (PY) integral-equation the-
ory [1] is exactly solvable for a mixture of three-dimensional
(3D) AHS mixtures [13,14]. The solution has been recently
extended to any odd dimensionality [15]. On the other hand,
any amount of nonadditivity (�ij �= 0) suffices to destroy
the analytical character of the solution and so one needs to
resort to numerical methods to solve the PY or other integral
equations [4].

The aim of the present paper is to propose a nonperturbative
and fully analytical approach for 3D NAHS fluid mixtures,
which can be seen as a naı̈ve heuristic extension of the PY
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solution for AHS mixtures. In doing this, we are guided
by the exact solution of the one-dimensional (1D) NAHS
model [16–19] and some physical constraints are imposed:
the radial distribution function (RDF) gij (r) must be zero
within the diameter σij , the isothermal compressibility must be
finite, and the zero density limit of the RDF must be satisfied.
We find that this strategy gives very good results both for
the thermodynamics and the structure, provided that some
geometrical constraints on the diameters and the nonadditivity
parameter are satisfied. This makes our approach particularly
appealing as a reference approximation for integral equation
theories and perturbation theories of fluids.

The paper is organized as follows: In Sec. II we describe
the NAHS model outlining the physical constraints that we
want to embody in our approach. The latter is constructed
by a three-stage procedure (approximations RFA, RFA+, and
RFA(m)

+ ) in Sec. III. In Sec. IV we present the results for the
equation of state from our approximation, comparing them
with available Monte Carlo (MC) simulations. The results for
the structural properties are presented in Sec. V, where we
compare with our own MC simulations. Finally, Sec. VI is
devoted to some concluding remarks.

II. THE NAHS MODEL

An n-component mixture of NAHSs in the d-dimensional
Euclidean space is a fluid of Ni particles of species i (with
i = 1,2, . . . ,n), such that there are a total number of particles
N = ∑n

i=1 Ni in a volume V , and the pair potential between
a particle of species i and a particle of species j separated by
a distance r is given by

Uij (r) =
{∞, r < σij ,

0, r > σij ,
(2.1)

where σii = σi and σij = 1
2 (σi + σj )(1 + �ij ), so that �ii = 0

and �ij = �ji > −1. When �ij = 0 for all pairs (i,j ) we
recover the AHS system. In a binary mixture (n = 2), �12 =
�21 = � is the only nonadditivity parameter. If � = −1 one
recovers the case of two independent one-component hard-
sphere (HS) systems. In the other extreme case σ1 = σ2 = 0
with σ12 finite (so that � → ∞) one obtains the well known
Widom-Rowlinson (WR) model [20,21]. Another interesting
case is the Asakura-Oosawa model [22,23] (where σ2 = 0
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and � > 0), often used to discuss polymer colloid mixtures
and where the notion of a depletion potential was introduced.
The NAHS system undergoes a demixing phase transition for
positive nonadditivity [24–28]. A demixing transition might
also be possible, even for negative nonadditivity [29,30],
provided the asymmetry ratio σ1/σ2 is sufficiently far from
unity. In the present paper we will only consider the NAHS
system in its single fluid phase.

Let the number density of the mixture be ρ = N/V and
the mole fraction of species i be xi = ρi/ρ, where ρi = Ni/V

is the number density of species i. From these quantities one
can define the (nominal) packing fraction η = vdρMd , where
vd = (π/4)d/2�(1 + d/2) is the volume of a d-dimensional
sphere of unit diameter and

Mk ≡ 〈σ k〉 =
n∑

i=1

xiσ
k
i (2.2)

denotes the kth moment of the diameter distribution.
The NAHS model, in the thermodynamic limit N → ∞

with ρ ≡ N/V constant, admits an analytical exact solution
for the structure and the thermodynamics in d = 1 [16–19].
Moreover, the AHS model in odd dimensions is analytically
solvable in the PY approximation [13–15], the result reducing
to the exact solution of the problem for d = 1 but not for
d � 3.

A. Basic physical constraints on the structure

The RDF gij (r) must comply with three basic conditions:
(1) gij (r) must vanish for r < σij . More specifically, for

distances near σij ,

gij (r) = �(r − σij )[gij (σ+
ij ) + g′

ij (σ+
ij )(r − σij ) + · · ·],

(2.3)

where �(x) is the Heaviside step function.
(2) In the fluid phase the isothermal compressibility χ must

be finite. This implies (see below) that the Fourier transform
h̃ij (q) of the total correlation function hij (r) ≡ gij (r) − 1 has
to remain finite at q = 0 or, equivalently,∫ ∞

0
dr rαhij (r) = finite for 0 � α � d − 1. (2.4)

(3) In the low-density limit, the RDF is

lim
ρ→0

gij (r) = e−Uij (r)/kBT = �(r − σij ), (2.5)

kB and T being the Boltzmann constant and the absolute
temperature, respectively.

As a complement to Eq. (2.5), we give below the exact
expression of gij (r) to first order in density [31]:

gij (r) = �(r − σij )

{
1 + πρ

12r

n∑
k=1

xk�(σik + σkj − r)

×(r − σik − σkj )2[r2 + 2(σik + σkj )r

−3(σik − σkj )2] + O(ρ2)

}
. (2.6)

B. The two routes to thermodynamics

For an athermal fluid like NAHSs there are two main routes
that lead from the knowledge of the structure to the equation
of state (EOS) [1]. These may give different results for an
approximate RDF.

The virial route to the EOS of the NAHS mixture requires
the knowledge of the contact values gij (σ+

ij ) of the RDF,

Zv(η) = 1 + 2d−1

Md

η

n∑
i,j=1

xixjσ
d
ij gij (σ+

ij ), (2.7)

where Z = p/ρkBT is the compressibility factor of the
mixture, p being the pressure.

The isothermal compressibility χ , in a mixture, is in general
given by

χ−1 = 1

kBT

(
∂p

∂ρ

)
T ,{xj }

= 1

kBT

n∑
i=1

xi

(
∂p

∂ρi

)
T ,{xj }

= 1 − ρ

n∑
i,j=1

xixj c̃ij (0), (2.8)

where c̃ij (q) is the Fourier transform of the direct correlation
function cij (r), which is defined by the Ornstein-Zernike (OZ)
equation

h̃ij (q) = c̃ij (q) +
n∑

k=1

ρkh̃ik(q )̃ckj (q). (2.9)

Introducing the quantities ĥij (q) ≡ √
ρiρj h̃ij (q) and ĉij (q) ≡√

ρiρj c̃ij (q), the OZ relation becomes, in matrix notation,

ĉ(q) = ĥ(q) · [I + ĥ(q)]−1, (2.10)

where I is the n × n identity matrix. Thus Eq. (2.8) can be
rewritten as

χ−1 =
n∑

i,j=1

√
xixj [δij − ĉij (0)]

=
n∑

i,j=1

√
xixj [I + ĥ(0)]−1

ij . (2.11)

In Eq. (2.11), and henceforth, we use the notation A−1
ij to

denote the ij element of the inverse A−1 of a given square
matrix A.

In the particular case of binary mixtures (n = 2), Eq. (2.11)
yields

χ = [1 + ρx1ĥ11(0)][1 + ρx2ĥ22(0)] − ρ2x1x2ĥ
2
12(0)

1 + ρx1x2[̂h11(0) + ĥ22(0) − 2ĥ12(0)]
.

(2.12)

The compressibility route to the EOS can be obtained from

Zc(η) =
∫ 1

0
dx χ−1(ηx). (2.13)
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C. The one-dimensional system

The exact solution for nonadditive hard rods (d = 1) is
known [19,32,33]. First, let us introduce the Laplace transform

Gij (s) ≡
∫ ∞

0
dr e−srgij (r). (2.14)

In terms of this quantity the exact solution has the form

Gij (s) = 1√
xixj

n∑
k=1

Pik(s)Qkj (s), (2.15)

where

Pij (s) ≡ √
xixjKij

e−σij (s+ξ )

s + ξ
(2.16)

is proportional to the Laplace transform of the nearest-
neighbor probability distribution and

Q(s) ≡ [I − ρP(s)]−1. (2.17)

In Eqs. (2.15) and (2.16), ξ ≡ p/kBT = ρZ, while Kij =
Kji are state-dependent parameters that are determined as
functions of ξ from the condition (2.4), which implies
lims→0 sGij (s) = 1, as well as requiring the ratio Kij/Kik to
be independent of i [19]. Those conditions also provide the
exact EOS in implicit form, i.e., ρ as a function of ξ .

Of course, the above results also hold for additive hard rods.
In that case, the additive property σij = σ add

ij ≡ 1
2 (σi + σj )

allows us to rewrite the solution in other equivalent ways. To
that end, let us define

Lij = Kije
−ξσ add

ij , (2.18)

so that

Pij (s) = √
xixjLij

e
−σadd

ij
s

s+ξ
, (2.19)

Q−1
ij (s) = eaij s

√
xj

xi

s
s+ξ

Cij (s), (2.20)

where

aij ≡ 1
2 (σi − σj ) (2.21)

and

Cij (s) ≡
(

1 + ξ

s

)
δij − ρxi

s
Lij e

−σi s . (2.22)

Here we have made use of the property

σi = σ add
ij + aij . (2.23)

It is easy to prove that

Qij (s) = eaij s

√
xj

xi

s + ξ

s
C−1

ij (s), (2.24)

thanks to the property aik + akj = aij . Consequently, in the
additive case, Eq. (2.15) becomes

Gadd
ij (s) = e−σ add

ij s

s

n∑
k=1

LikC
−1
kj (s), (2.25)

where use has been made of the additivity property

σ add
ik − akj = σ add

ij . (2.26)

The additive solution turns out to be

Lij = ξ

ρ
= 1

1 − ρM1
. (2.27)

The fact that Lij = const allows one to rewrite Eq. (2.25) in
yet another equivalent form,

Gadd
ij (s) = e−σ add

ij s

s

n∑
k=1

LikB
−1
kj (s), (2.28)

where

Bij (s) ≡ δij − ρxi

s
Lijϕ0(σis)

= Cij (s) + ξ

s
(xi − δij ). (2.29)

In the first equality,

ϕ0(x) ≡ e−x − 1. (2.30)

While lims→0 sCij (s) = ξ (δij − xi) �= 0, but det[sC(s)] =
O(s), in the case of the matrix B(s) one has lims→0 sBij (s) = 0.
On the other hand, in both cases, lims→∞ Cij (s) =
lims→∞ Bij (s) = δij , so that lims→∞ seσ add

ij Gij (s) =
Lij = ξ/ρ.

It turns out that Eqs. (2.25), (2.27), and (2.28) are also
obtained from the PY solution for additive hard rods. Thus,
the PY equation yields the exact solution in the additive case,
but not in the nonadditive one.

It is important to bear in mind that, if one inverts the steps, it
is possible to formally get Eq. (2.15) from Eq. (2.25). In other
words, starting from the form (2.25) of the PY solution for the
1D AHS system, allowing Lij and ξ to be free, and carrying out
some formal manipulations, one arrives at an equivalent form,
Eq. (2.15), that, if heuristically extended to the NAHS case
(σij �= σ add

ij ), coincides with the exact solution to the problem.
However, it is not possible to recover (2.15) starting from the
form (2.28) since the property Lij = const, only valid in the
additive case, cannot be reversed.

D. PY solution for three-dimensional AHSs

In this subsection we recall the PY solution for AHSs in
three dimensions (d = 3) [13,14].

First, one introduces the Laplace transform of rgij (r),

Gij (s) ≡
∫ ∞

0
dr e−sr rgij (r). (2.31)

From Eq. (2.3) it follows that

seσij sGij (s) = σijgij (σ+
ij ) + [gij (σ+

ij ) + σijg
′
ij (σ+

ij )]s−1

+O(s−2). (2.32)

Next, Eq. (2.4) implies, for small s,

s2Gij (s) = 1 + H
(0)
ij s2 + H

(1)
ij s3 + · · · (2.33)

with H
(0)
ij = finite and H

(1)
ij = −h̃ij (0)/4π = finite, where in

general

H
(α)
ij ≡ 1

α!

∫ ∞

0
dr (−r)αrhij (r). (2.34)
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Finally, Eq. (2.5) yields

lim
ρ→0

Gij (s) = e−σij s

s2
(1 + σij s). (2.35)

Equations (2.31)–(2.35) hold both for NAHSs and AHSs.
The PY solution for AHSs can then be written as [13,14]

Gadd
ij (s) = e−σ add

ij s

s2

n∑
k=1

Lik(s)B−1
kj (s), (2.36)

where L(s) and B(s) are matrices given by

Lij (s) = L
(0)
ij + L

(1)
ij s, (2.37)

Bij (s) = δij + 2πρxi

s3

[
L

(0)
ij ϕ2(σis) + L

(1)
ij sϕ1(σis)

]
, (2.38)

where

ϕ1(x) ≡ e−x − 1 + x,
(2.39)

ϕ2(x) ≡ e−x − 1 + x − x2

2
.

Similarly to the 1D case, lims→0 sBij (s) = 0. In fact,
Eqs. (2.36)–(2.38) are the 3D analogs of Eqs. (2.28) and (2.29).
For the general structure of the PY solution with d = odd, the
reader is referred to Ref. [15].

Also as in the 1D case, lims→∞ Bij (s) = δij and so,
according to Eq. (2.32),

gadd
ij (σ+

ij ) = L
(1)
ij

σ add
ij

. (2.40)

Further, in view of Eq. (2.33), the coefficients of s0 and s

in the power series expansion of s2Gij (s) must be 1 and
0, respectively. This yields 2n2 conditions that allow us to
find [14]

L
(0)
ij = θ1 + θ2σj , L

(1)
ij = θ1σ

add
ij + 1

2θ2σiσj , (2.41)

where θ1 ≡ 1/(1 − η) and θ2 ≡ 3(M2/M3)η/(1 − η)2. It is
straightforward to check that Eq. (2.36) complies with the
limit (2.35).

The expressions (2.7) and (2.13) which follow from the
solution of the PY equation of AHS mixtures are

Zv
PY(η) = 1

1 − η
+ M1M2

M3

3η

(1 − η)2
+ M3

2

M2
3

3η2

(1 − η)2
, (2.42)

Zc
PY(η) = 1

1 − η
+ M1M2

M3

3η

(1 − η)2
+ M3

2

M2
3

3η2

(1 − η)3
. (2.43)

Usually, the virial route underestimates the exact results, while
the compressibility route overestimates them.

III. CONSTRUCTION OF THE APPROXIMATIONS

As stated in Sec. I, the main aim of this paper is to construct
analytical approximations for the structure and thermodynam-
ics of 3D NAHSs. On the one hand, the approximations will
be inspired by the exact solution in the 1D case (see Sec. II C).
On the other hand, they will reduce to the AHS PY solution
(see Sec. II D). Moreover, as a guide in the construction of
the approximations and also to determine the parameters,

the basic physical requirements (2.3)–(2.5) [or, equivalently,
(2.32), (2.33), and (2.35)] will be enforced.

The driving idea is to rewrite Eq. (2.36) in a form akin
to that of Eq. (2.15), by inverting the procedure followed in
Sec. II C. This method faces several difficulties. One of them
is that, as said before, Eq. (2.36) is the 3D analog of Eq. (2.28),
but not of Eq. (2.25), and it is not possible to recover directly
(i.e., without further assumptions) Eq. (2.15) from Eq. (2.28).
One could first try to rewrite Eq. (2.36) in a form akin to that of
Eq. (2.25), i.e., a form where the matrix B given by Eq. (2.38)
is replaced by a matrix C such that lims→0 sCij (s) �= 0. But,
given the intricate structure of Eq. (2.38) and the fact that
neither L

(0)
ij nor L

(1)
ij are constant, this does not seem to be

an easy task at all. Therefore, we will work from Eq. (2.36)
directly.

A. The AHS PY solution revisited

First, define

Pij (s) ≡ √
xixj e

−σ add
ij sLij (s), (3.1)

Qij (s) ≡ eaij s

√
xj

xi

B−1
ij (s), (3.2)

so that

Q−1
ij (s) = eaij s

√
xj

xi

Bij (s)

= δij + 2πρ
√

xixj

s3
eaij s

[
L

(0)
ij ϕ2(σis) + L

(1)
ij sϕ1(σis)

]
.

(3.3)

Inserting Eqs. (3.1) and (3.2) into Eq. (2.36) we finally get

Gij (s) = s−2

√
xixj

n∑
k=1

Pik(s)Qkj (s), (3.4)

where use has been made of the additive property (2.26).
We emphasize that Eq. (3.4) is fully equivalent to Eq. (2.36)

and thus it represents an alternative way of writing the PY
solution for AHSs. In both representations the coefficients
L

(0)
ij and L

(1)
ij are given by Eq. (2.41). On the other hand, since

the structure of Eq. (3.4) is formally similar to that of the exact
solution for 1D NAHSs, Eq. (2.15), it might be expected that
Eq. (3.4) is a reasonable starting point for an extension to 3D
NAHSs.

B. Approximation RFA

1. The proposal

A possible proposal for the structural properties of NAHSs
is defined by Eq. (3.4) with

Pij (s) = √
xixj e

−σij sLij (s), (3.5)

Q−1
ij (s) = δij + 2πρ

√
xixj

s3
eaij s

×[
L

(0)
ij ϕ2(bij s) + L

(1)
ij sϕ1(bij s)

]
, (3.6)

where Lij (s) is still given by Eq. (2.37) [with L
(0)
ij and L

(1)
ij yet

to be determined] and

bij ≡ σij + aij . (3.7)
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Equations (3.5) and (3.6) are obtained from Eqs. (3.1) and
(3.3), respectively, by the extensions σ add

ij → σij and σi → bij

[compare Eqs. (2.23) and (3.7)]. Note that Eq. (3.6) can also
be written as

Q−1
ij (s) = δij − 2πρ

√
xixj

s3
[Nij (s)eaij s − Lij (s)e−σij s],

(3.8)

where

Nij (s) ≡ L
(0)
ij

(
1 − bij s + b2

ij s
2

2

)
+ L

(1)
ij s(1 − bij s). (3.9)

Of course, the coefficients L
(0)
ij and L

(1)
ij are no longer given by

Eq. (2.41) but are obtained from the physical conditions

lim
s→0

s2Gij (s) = 1, (3.10)

lim
s→0

s−1[s2Gij (s) − 1] = 0, (3.11)

which follow from Eq. (2.33). To that purpose, it is convenient
to rewrite Eq. (3.4) as

s2
n∑

k=1

√
xixkGik(s)Q−1

kj (s) = Pij (s). (3.12)

Using Eqs. (3.5) and (3.6), Eq. (3.10) implies

1 + πρ

n∑
k=1

xkb
2
kj

(
L

(1)
kj − 1

3
L

(0)
kj bkj

)
= L

(0)
ij . (3.13)

Likewise, Eq. (3.11) gives

πρ

n∑
k=1

xkb
2
kj

[
akj

(
L

(1)
kj − 1

3
L

(0)
kj bkj

)
−1

3
bkj

(
L

(1)
kj − 1

4
L

(0)
kj bkj

)]
= L

(1)
ij − σijL

(0)
ij . (3.14)

Equations (3.13) and (3.14) imply that both L
(0)
ij and L

(1)
ij −

σijL
(0)
ij are independent of the subscript i, i.e.,

L
(0)
ij = Sj , L

(1)
ij = Tj + σijSj , (3.15)

where Sj and Tj are determined from Eqs. (3.13) and (3.14).
The solution is

Sj = 1 − πρ�j

(1 − πρ�j )(1 − πρ�j ) − π2ρ2μj |2,0�j

, (3.16)

Tj = πρ�j

(1 − πρ�j )(1 − πρ�j ) − π2ρ2μj |2,0�j

, (3.17)

where we have called

�j ≡ μj |2,1 − 1
3μj |3,0, (3.18)

�j ≡ 2
3μj |3,0 − μj |2,1, (3.19)

�j ≡ μj |3,1 − μj |2,2 − 1
4μj |4,0, (3.20)

and

μj |p,q ≡
n∑

k=1

xkb
p

kjσ
q

kj . (3.21)

In the additive case (bkj = σk) one has �j = 1
6M3 + 1

2M2σj ,
�j = 1

6M3 − 1
2M2σj , and �j = − 1

4M2σ
2
j , so that Sj = θ1 +

θ2σj and Tj = − 1
2θ2σ

2
j , in agreement with Eq. (2.41). In the

case of binary nonadditive mixtures (� �= 0), it can be easily
checked that the common denominator in Eqs. (3.16) and
(3.17) is positive definite. It only vanishes if � = −2σ2/(σ1 +
σ2) (assuming σ2 � σ1) and η = 1 + x2σ

3
2 /x1σ

3
1 .

Equation (3.15) closes the approximation (3.4)–(3.6). It
relies on the same philosophy as the so-called rational-function
approximation used in the past for HS and related systems
[15,34] and, therefore, we will use the acronym RFA to refer
to it. The explicit forms of Gij (s) for binary mixtures (n = 2)
are presented in Appendix A.

2. Low-density behavior

To first order in density, Eqs. (3.15)–(3.17) yield

L
(0)
ij = 1 + πρ�j + O(ρ2), (3.22)

L
(1)
ij = σij + πρ(σij�j + �j ) + O(ρ2). (3.23)

Thus,

Qij (s) = δij − 2πρ
√

xixj

s3
eaij s[ϕ2(bij s) + σij sϕ1(bij s)]

+O(ρ2). (3.24)

Insertion into Eq. (3.4) yields

Gij (s) = e−σij s

s2
(1 + σij s) + πρ

e−σij s

s2
[�j + (σij�j + �j )s] − 2πρ

s5

n∑
k=1

xke
−(σik+σkj )s(1 + σiks)(1 + σkj s)

+ 2πρ

s5

n∑
k=1

xke
−(σik−akj )s(1 + σiks)

[
1 − akj s − 1

2

(
σ 2

kj − a2
kj

)
s2

]
+ O(ρ2). (3.25)

Laplace inversion gives

gij (r) = �(r − σij ) + πρ

r
�(r − σij )(�jr + �j ) − πρ

12r

n∑
k=1

xk�(r − σik − σkj )(r − σik − σkj )2

×[r2 + 2(σik + σkj )r − 3(σik − σkj )2] + πρ

12r

n∑
k=1

xk�(r − σik + akj )(r − σik + akj )
[
r3 + (σik − akj )r2

− (
5σ 2

ik + 6σ 2
kj + 2σikakj − a2

kj

)
r + 3(σik + akj )

(
σ 2

ik + a2
kj − 2σ 2

kj

)] + O(ρ2). (3.26)
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As a consequence, approximation RFA is consistent with
the exact limits (2.5) and (2.35). To first order in density, the
approximation correctly accounts for singularities of gij (r)
at distances r = σij and r = σik + σkj , k = 1, . . . ,n [see
Eq. (2.6)]. On the other hand, we see from Eq. (3.25) that,
already to first order in density, approximation RFA introduces
spurious singularities at r = σik − akj �= σij . One might even
have dij ;k ≡ σik − akj − σij < 0. In particular, dii;k = σ add

ik �ik

becomes negative if �ik < 0. Analogously, dij ;i = −σ add
ij �ij

is negative if �ij > 0. Therefore, approximation RFA does
not verify in general the condition (2.3). It is worth noting,
however, that the hard-core condition (2.3) is also typically
violated by density-functional theories [35]. The inability
of approximation RFA to guarantee that gij (r) = 0 for r <

σij will be remedied by approximation RFA+ described in
Sec. III C.

3. Short-range behavior

Before presenting approximation RFA+, we will need to
restrict ourselves to cases where the first two singularities
of gij (r), as given by approximation RFA, are σij and τij ≡
min(σik − akj ; k = 1, . . . ,n; k �= j ). As proven in Appendix
B, the above requirement in the binary case (n = 2) implies
the constraint −σ2/(σ1 + σ2) � � � 2σ2/(σ1 + σ2), where,
without loss of generality, it has been assumed σ2 � σ1. This
region of applicability is shown in Fig. 1.

Appendix C gives the expressions for gij (r) in the range
0 � r � max(σij ,τij ) + ε, where ε is any positive value
smaller than the separation between max(σij ,τij ) and the
next singularity of gij (r), provided by approximation RFA
for binary mixtures. Extending to general n the arguments
presented there, we can write

Gij (s) = e−σij s�ij (s) + 2πρxκe
−τij s�iκj (s) + · · · , (3.27)

where k = κ is the index corresponding to τij , i.e., τij = σiκ −
aκj , and the ellipsis denotes terms headed by exponentials of

FIG. 1. (Color online) Plane � vs σ2/σ1 showing the shaded
region −σ2/(σ1 + σ2) � � � 2σ2/(σ1 + σ2) where the first two
singularities of gij (r), according to approximation RFA, are σij and
σik − akj with k �= j . The circles denote the systems analyzed in
Sec. V.

the form e−λs with λ > max(σij ,τij ). In Eq. (3.27),

�ij (s) ≡ 1

s2
Lij (s)Q̄jj (s), (3.28)

�ikj (s) ≡ 1

s5

Lik(s)Nkj (s)

D0(s)
, (3.29)

where

Q̄−1
ij (s) ≡ δij − 2πρ

√
xixj

s3
Nij (s), (3.30)

and D0(s) is the determinant of the matrix Q̄−1(s). Explicit
expressions of �ij (s) and D0(s) for binary mixtures are given
in Appendix C.

Taking the Laplace inversion of Eq. (3.27), one finds that,
in the interval 0 � r � max(σij ,τij ) + ε,

gij (r) = 1

r
�(r − σij )φij (r − σij )

+ 2πρ

r
xκ�(r − τij )γiκj (r − τij ), (3.31)

where φij (r) and γikj (r) are the inverse Laplace transforms of
�ij (s) and �ikj (s), respectively.

Note that φij (0) = lims→∞ �ij (s) = L
(1)
ij , while γikj (0) =

lims→∞ �ikj (s) = 0. Therefore, the contact values are

gij (σ+
ij ) = L

(1)
ij

σij

+ 2πρ

σij

xκ�(σij − τij )γiκj (σij − τij ). (3.32)

As expected, Eq. (3.32) reduces to Eq. (2.40) in the additive
case.

C. Approximation RFA+

This new option for gij (r) will differ from approximation
RFA only in the region min(σij ,τij ) � r � max(σij ,τij ). More
specifically,

gij (r)|RFA+ = gij (r)|RFA + 2πρ

r
xκ [�(r − σij )

−�(r − τij )]γiκj (r − τij ). (3.33)

On account of Eq. (3.31), Eq. (3.33) can be equivalently
rewritten as

gij (r)|RFA+ =

⎧⎪⎨⎪⎩
�(r − σij )gij (r)|RFA, τij < σij ,

gij (r)|RFA + �(r − σij )�(τij − r)

× 2πρ

r
xκγiκj (r − τij ), τij > σij .

(3.34)

We see from Eq. (3.34) that the idea behind approximation
RFA+ is twofold. On the one hand, it removes the unphysical
violation of the property gij (r) = 0 for r < σij that is present
in option RFA when τij < σij . On the other hand, if τij > σij ,
approximation RFA+ extrapolates to the region σij < r < τij

the functional form of gij (r) provided by approximation RFA
in the region between τij and the next singularity.

In the interval 0 � r � max(σij ,τij ) + ε,

gij (r)|RFA+ = 1

r
�(r − σij )[φij (r − σij )

+ 2πρxκγiκj (r − τij )]. (3.35)
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In particular,

gij (σ+
ij )|RFA+ = L

(1)
ij

σij

+ 2πρ

σij

xκγiκj (σij − τij ). (3.36)

D. Approximation RFA(m)
+

In approximation RFA+ the full functional form of γikj (r)
is used. This can create some artificial problems in the region
σij < r < τij when τij > σij and the distance τij − σij is
rather large (as happens in the WR model). Reciprocally, if
τij − σij is not large, it becomes unnecessarily complicated to
consider the entire nonlinear function γikj (r) in the interval
σij < r < τij . Thus, we now propose a variant of approxi-
mation RFA+, here denoted as RFA(m)

+ , whereby the full true
function γiκj (r) is preserved if τij < σij (in order to enforce
the physical constraint of a vanishing RDF for r < σij ) but is
replaced by its mth degree polynomial approximation γ

(m)
iκj (r)

if τij > σij . In summary, option RFA(m)
+ is defined by

gij (r)|RFA(m)
+

=

⎧⎪⎨⎪⎩
�(r − σij )gij (r)|RFA, τij < σij ,

gij (r)|RFA + �(r − σij )�(τij − r)

× 2πρ

r
xκγ

(m)
iκj (r − τij ), τij > σij .

(3.37)

Consequently, the contact values are

gij (σ+
ij )|RFA(m)

+

= L
(1)
ij

σij

+ 2πρ

σij

xκ

[
�(σij − τij )γiκj (σij − τij )

+�(τij − σij )γ (m)
iκj (σij − τij )

]
. (3.38)

The polynomial γ
(m)
ikj (r) is obtained by truncating after rm

the expansion of γikj (r) in powers of r . Such an expansion
is directly related to that of the Laplace transform �ikj (s) in
powers of s−1. For large s, �ikj (s) can be shown to be given by

�ikj (s) = s−2L
(1)
ik

[
L

(0)
kj

bkj

2
− L

(1)
kj

]
bkj + s−3

{
L

(0)
ik

[
L

(0)
kj

bkj

2
− L

(1)
kj

]
bkj − L

(1)
ik

[
L

(0)
kj bkj − L

(1)
kj

]

+ 2πρL
(1)
ik

[
L

(0)
kj

bkj

2
− L

(1)
kj

]
bkj

n∑
�=1

x�

[
L

(0)
��

σ�

2
− L

(1)
��

]
σ�

}
+ O(s−4). (3.39)

Consequently, the linear and quadratic approximations are

γ
(1)
ikj (r) = L

(1)
ik

[
L

(0)
kj

bkj

2
− L

(1)
kj

]
bkj r, (3.40)

γ
(2)
ikj (r) = γ

(1)
ikj (r) +

{
L

(0)
ik

[
L

(0)
kj

bkj

2
− L

(1)
kj

]
bkj − L

(1)
ik

[
L

(0)
kj bkj − L

(1)
kj

]

+ 2πρL
(1)
ik

[
L

(0)
kj

bkj

2
− L

(1)
kj

]
bkj

n∑
�=1

x�

[
L

(0)
��

σ�

2
− L

(1)
��

]
σ�

}
r2

2
. (3.41)

Of course, the three sets of approximations RFA, RFA+,
and RFA(m)

+ reduce to the PY solution in the additive case.
Obviously, RFA+ ≡ RFA(∞)

+ . In Sec. V we will generally use
RFA(1)

+ .

IV. COMPARISON WITH MONTE CARLO SIMULATIONS
FOR BINARY MIXTURES. THE EQUATION OF STATE

The compressibility factor Z is obtained via the virial and
compressibility routes by Eqs. (2.7) and (2.13), respectively.
In the case of the virial route one needs the contact values of
the RDF, which are given by Eqs. (3.32), (3.36), and (3.38) in
approximations RFA, RFA+, and RFA(m)

+ , respectively.
In the compressibility route, the isothermal compressibility

χ is obtained from Eq. (2.11), where ĥij (0) = ρ
√

xixj h̃ij (0) =
−4πρ

√
xixjH

(1)
ij , H

(1)
ij being the coefficient of s3 in the series

expansion of s2Gij (s) in powers of s [cf. Eq. (2.33)]. We
recall that Gij (s) is given by Eq. (3.4) in approximation RFA.

In approximations RFA+ and RFA(m)
+ , Eqs. (3.33) and (3.37)

imply that

H
(1)
ij

∣∣
RFA+

= H
(1)
ij

∣∣
RFA − 2πρxκ

∫ τij

σij

dr rγiκj (r − τij ), (4.1)

H
(1)
ij

∣∣
RFA(m)

+

= H
(1)
ij

∣∣
RFA − 2πρxκ

∫ τij

σij

dr r
[
�(σij − τij )γiκj (r − τij )

+�(τij − σij )γ (m)
iκj (r − τij )

]
. (4.2)

In any case, for the sake of simplicity, we will restrict ourselves
in most of this section to approximation RFA.

A. Dependence of the EOS on nonadditivity

Here we study the dependence of the EOS on the nonad-
ditivity parameter � by fixing all the other parameters of the
mixture (density, composition, and size ratio).
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FIG. 2. (Color online) Compressibility factor as a function of the
nonadditivity parameter for a symmetric binary mixture of NAHSs
at ρσ 3 = 0.2 and two different compositions. The MC data are taken
from Refs. [36,37].

1. Symmetric binary mixtures

Symmetric mixture are obtained when σ1 = σ2 = σ . There-
fore, in the additive case (� = 0) one recovers the one-
component HS system, i.e., g11(r) = g22(r) = g12(r) = g(r),
regardless of the value of x1.

Figure 2 compares the compressibility factor obtained from
MC simulations [36,37] with that predicted by approximation
RFA for some representative symmetric systems. We observe
that approximation RFA reproduces quite well the exact
simulation data at all values of the nonadditivity parameter.
At this low density (ρσ 3 = 0.2,η 
 0.105) the virial and
compressibility routes are not distinguishable on the scale of
the graph.

2. Asymmetric binary mixtures

Asymmetric mixtures correspond to σ1 �= σ2. In that case,
when � = 0 one recovers the AHS mixture.

Figure 3 shows the � dependence of Z for negative
nonadditivity and an equimolar (x1 = x2 = 1

2 ) asymmetric
mixture (σ2/σ1 = 1/3) at a relatively large density (η = 0.5).

0

2

4

6

8

10

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Z

Δ

RFA [v]
RFA [c]

RFA [v]/3+2[c]/3
MC

FIG. 3. (Color online) Compressibility factor as a function of the
nonadditivity parameter for an equimolar asymmetric binary mixture
of NAHSs with a size ratio σ2/σ1 = 1/3 at a packing fraction η = 0.5.
The symbols [v] and [c] stand for the virial and compressibility routes,
respectively. The MC data are taken from Ref. [38].

In this case the virial route of approximation RFA under-
estimates the values of Z, while the compressibility route
overestimates them. This is also a typical behavior of the
PY equation for AHSs. It is thus tempting to try the Z =
1
3Zv + 2

3Zc interpolation recipe [39–42], which is known to
work well in the additive case. From Fig. 3 we see that indeed
the interpolation formula, as applied to approximation RFA,
reproduces quite well the exact simulation data, except for
� � −0.8.
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1.3

1.4

1.5
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FIG. 4. (Color online) Compressibility factor as a function of
the size ratio σ2/σ1 for binary asymmetric NAHS mixtures with
x2 = 1

2 , � = −0.05, and η = 0.5 (top panel); x2 = 1
4 , 1

2 , � = 0.2, and
η = 0.2 (middle panel); x2 = 1

4 , 1
2 , � = 0.5, and η = 0.075 (bottom

panel). In the bottom panel only the theoretical data obtained from
the virial route are shown since they practically coincide with those
obtained from the compressibility route. The MC data are taken from
Ref. [38].
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B. Dependence of the EOS on the size ratio

Next, we study the dependence of Z on the size ratio σ2/σ1

by fixing all the other parameters of the mixture (density,
composition, and nonadditivity).

The three panels of Fig. 4 show Z vs σ2/σ1 for a
slightly negative nonadditivity � = −0.05 (top panel), a
moderate positive nonadditivity � = 0.2 (middle panel), and
a larger positive nonadditivity � = 0.5 (bottom panel). We
observe again that the interpolation recipe Z = 1

3Zv + 2
3Zc

for approximation RFA agrees well with the exact simulation
data, with the exception of a region close to the size symmetric
mixture (σ2/σ1 = 1) for positive nonadditivity and moderate
density (middle panel).

C. Contact values

In Sec. V we will analyze the RDF gij (r) predicted by
approximations RFA and RFA(1)

+ . Before doing so, and as a
bridge between the thermodynamic and structural properties,
it is worth considering the contact values. Table I provides
the contact values for some binary equimolar symmetric
NAHS mixtures (σ1 = σ2 = σ , x1 = x2 = 1

2 ), as obtained
from MC simulations [4], numerical solutions of the PY
integral equation [4], and our approximations RFA [Eq. (3.32)]
and RFA(1)

+ [Eq. (3.38)]. Since for binary symmetric mixtures
τ11 = τ22 = σ12 = σ (1 + �) and τ12 = σ , it turns out that
g11(σ+) = g22(σ+) is common in approximations RFA and
RFA(1)

+ if � < 0, while g12(σ+
12) is common in both approxi-

mations if � > 0.

TABLE I. Contact values for some binary equimolar symmetric
NAHS mixtures. The MC and PY data were taken from Ref. [4]. The
labels correspond to systems common to those listed in Table II.

Label � ρσ 3 Source g11(σ+) g12(σ+
12)

D 0.05 0.8 MC 5.305 3.762
PY 4.451 3.516
RFA 4.006 3.617
RFA(1)

+ 4.580 3.617
0.0 0.8 MC 3.971 3.971

PY 3.581 3.581
RFA 3.581 3.581
RFA(1)

+ 3.581 3.581
−0.05 0.8 MC 3.117 3.801

PY 2.925 3.394
RFA 2.971 3.148
RFA(1)

+ 2.971 3.445
A −0.1 1.0 MC 3.394 5.363

PY 3.209 4.395
RFA 3.497 3.883
RFA(1)

+ 3.497 4.763
−0.3 1.0 MC 2.168 2.798

PY 2.141 2.543
RFA 2.441 2.251
RFA(1)

+ 2.441 2.875
B −0.5 1.0 MC 2.103 1.528

PY 2.060 1.493
RFA 2.139 1.407
RFA(1)

+ 2.139 1.279

From Table I we observe that approximation RFA(1)
+ is

superior to the PY theory in estimating the true contact values,
both for positive and negative nonadditivity, except in the cases
of g11(σ+) for ρσ 3 = 1 and � = −0.3 and of g12(σ+

12) for
ρσ 3 = 1 and � = −0.5.

V. COMPARISON WITH MONTE CARLO SIMULATIONS
FOR BINARY MIXTURES. THE STRUCTURE

The RDF of approximation RFA is analytically and
explicitly given in Laplace space by Eqs. (3.4)–(3.6) and
(3.15)–(3.21). In real space, rgij (r) is easily found by taking
the inverse Laplace transform of Gij (s) through the numerical
scheme described in Ref. [44]. To get gij (r) in approximation
RFA(m)

+ , one needs to make use of Eq. (3.37), where γ
(m)
ikj (r)

is explicitly given by Eqs. (3.40) and (3.41) for m = 1 and
m = 2, respectively [45]. Notice that, while the true RDF
has to be symmetric under exchange of species indices, the
RDF obtained from approximation RFA or RFA+ is, except
for symmetric and equimolar mixtures, not symmetric, i.e.,
gij (r) �= gji(r) if i �= j . Although this artificial asymmetry is
generally small from a practical point of view, it represents a
penalty we pay for our extension of the AHS solution of the PY
equation. To cope with this shortcoming, we just redefine the
like-unlike RDF as the symmetrized one 1

2 [gij (r) + gji(r)].
In a binary mixture, τ11 = σ12 + a12 = σ1 + 1

2 (σ1 + σ2)�,
τ22 = σ12 − a12 = σ2 + 1

2 (σ1 + σ2)�, and τ12 = 1
2 (σ1 + σ2).

Therefore, τ11 < σ1 and τ22 < σ2 for � < 0, while τ12 < σ12

for � > 0. In what follows, we will truncate gij (r)|RFA for
r < σij when τij < σij .

In order to evaluate the merits and limitations of the
structural properties predicted by our approximations, we
have performed canonical MC simulations of the binary
NAHS system with N = 2196 particles and 105N MC steps
per run. The cell index method has been used [46]. The
statistical error on the RDF is within the size of the symbols
used in the graphs reported.

We have chosen six representative systems, all within the
region −σ2/(σ1 + σ2) � � � 2σ2/(σ1 + σ2) assumed in the
construction of approximation RFA+. Those six systems are
represented in Fig. 1 and their respective values of composition
and density are displayed in Table II. Three of the mixtures
have a negative nonadditivity (A, B, and C), while the other
three have a positive nonadditivity (D, E, and F). Moreover,
there are four equimolar symmetric mixtures (A, B, D, and
E) and two asymmetric ones (C and F). In those two latter

TABLE II. The six binary NAHS mixtures considered in the
analysis of the structure. The last column gives the compressibility
factor as obtained from our MC simulations.

Label σ2/σ1 � x1 ρσ 3
1 η ZMC

A 1 −0.1 1/2 1.0 0.5236 8.648
B 1 −0.5 1/2 1.0 0.5236 3.429
C 4/5 −0.444 1/3 1.0 0.3533 2.335
D 1 0.05 1/2 0.8 0.4189 9.083
E 1 0.25 1/2 0.3 0.1571 2.556
F 4/5 0.25 1/3 0.3 0.1060 1.876

041201-9
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FIG. 5. (Color online) RDF for system A of Table II.

cases, however, both species contribute almost equally to the
(nominal) packing fraction η since x1σ

3
1 /x2σ

3
2 = (5/4)3/2 =

125/128 
 0.98.

A. Negative nonadditivity

1. Symmetric mixtures

Figures 5 and 6 display the RDF for systems A and
B, respectively. System A is only slightly nonadditive and
we observe that both approximations RFA and RFA(1)

+ do a
very good job. On the other hand, while RFA and RFA(1)

+
coincide for g11(r) with r > σ1, they differ for g12(r) in the
interval σ12 = 0.9σ1 � r � τ12 = σ1. In fact, approximation
RFA presents an artificial discontinuity of the first derivative
g′

12(r) at r = σ1. This is corrected by approximation RFA(1)
+ ,

which presents a good agreement with the MC results for
r < σ1. In spite of this, we observe that approximation RFA(1)

+
underestimates the contact value g12(σ+

12), in agreement with
the entry of Table I corresponding to case A.

In the case of system B the nonadditivity is larger and,
according to Fig. 6, the performance of our approximations
is still good for g11(r) but worsens for g12(r). In fact,
g12(r)|RFA turns out to be better than g12(r)|RFA(1)

+
in the region

σ12 = 0.5σ1 � r � τ12 = σ1, in agreement with the entry of
Table I corresponding to case B. In any case, it is interesting to
remark that approximation RFA(1)

+ succeeds in capturing the
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FIG. 6. (Color online) RDF for system B of Table II.

nonmonotonic behavior of g12(r) very near r = σ12 observed
in the simulations.

2. Asymmetric mixture

The only case representing an asymmetric mixture with
negative nonadditivity (system C) is shown in Fig. 7. Again,
the MC like-like RDF are very well reproduced by the two
approximations. In the case of the like-unlike function g12(r),
approximation RFA(1)

+ clearly improves approximation RFA
in the region σ12 = 0.5σ1 � r � τ12 = 0.9σ1. Apart from
that, both approximations overestimate g12(r) between r =
τ12 = 0.9σ1 and the location of the first minimum at about
r 
 1.25σ1. In Fig. 7 we have taken g12(r) → 1

2 [g12(r) +
g21(r)], as explained at the beginning of this section. Prior
to this symmetrization, the maximum relative deviation be-
tween g12(r) and g21(r) occurs at r 
 0.75σ1 and is less
than 5%.

B. Positive nonadditivity

1. Symmetric mixtures

Let us consider now positive nonadditivities, starting with
symmetric mixtures. Figures 8 and 9 show the results for
systems D and E, respectively. For a small nonadditivity
� = 0.05, both approximations provide very good results,
except for g11(r) near contact (see also Table I). Notice,
however, that approximation RFA(1)

+ improves approximation
RFA in the narrow region σ1 � r � τ11 = 1.05σ1.
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FIG. 7. (Color online) RDF for system C of Table II.

For a larger nonadditivity (system E), Fig. 9 shows the
excellent job made by approximation RFA(1)

+ in the interval
σ1 � r � τ11 = 1.25σ1. In the case of the like-unlike corre-
lation function, however, the approximations overestimate the
values between σ12 and the first minimum (r 
 2σ1).

2. Asymmetric mixture

Figure 10 displays the three functions gij (r) for the
asymmetric system F. As in case E, approximation RFA(1)

+
nicely reproduces the exact results from the simulation for
the like-like correlations and corrects the unphysical kink
of approximation RFA occurring at τ11 = 1.225σ1 and τ22 =
1.025σ1. Interestingly enough, although the values of � and
ρσ 3

1 are the same in systems E and F, the performance of the
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FIG. 8. (Color online) RDF for system D of Table II.

approximations for g12(r) is much better in case F (asymmetric
mixture) than in case E (symmetric mixture). This might be
partially due to the fact that the packing fraction η is smaller
in system F than in system E. For the asymmetric system F, we
have found that the maximum relative deviation between g12(r)
and g21(r) takes place at r = σ12 = 9

8σ1 and is less than 0.5%.

C. The Widom-Rowlinson model

As recalled in Sec. I, the WR model corresponds to an
equimolar symmetric binary NAHS mixture where σ1 = σ2 =
0 and σ12 �= 0. The model is then fully characterized by the
reduced density, ρσ 3

12. The critical demixing reduced density
for this model is around 0.75 [47,48].

The nonadditivity parameter of the WR model is � =
σ12/σ

add
12 − 1 → ∞, so it lies well outside the “safe” region

for our approximation RFA+ (see Fig. 1). To compensate for
this, we replace here approximation RFA(1)

+ by approximation
RFA(2)

+ .
We see from Figs. 11 and 12 that approximation RFA(2)

+
does a much better job than expected at the two densities
considered. The main drawbacks of the theory are that the
contact value g11(0) is dramatically overestimated and the
behavior of g12(r) for r � σ12 is qualitatively wrong. In spite
of this, it is remarkable that approximation RFA(2)

+ captures
well the global properties of the RDF in this extreme system.
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FIG. 9. (Color online) RDF for system E of Table II.

VI. SUMMARY AND CONCLUSIONS

The importance of the NAHS model in liquid state theory
cannot be overemphasized. When the reference or effective
interaction among the microscopic components (at an atomic
or a colloidal level of description) of a statistical system is
modeled as of hard-core type, there is no reason to expect
that the interaction range σij corresponding to the pair (i,j ) is
enslaved to be the arithmetic mean of the interaction ranges σi

and σj corresponding to the pairs (i,i) and (j,j ), respectively.
Therefore, in an n-component NAHS mixture the number of
independent interaction ranges is n(n + 1)/2, in contrast to
the number n in an AHS mixture. It is then not surprising
that, while an exact solution of the PY theory exists for AHS
systems [13], numerical methods are needed when solving
the PY and other integral-equation theories for NAHSs [4].
Therefore, analytical approaches to the problem can represent
attractive and welcome contributions.

In this paper we have constructed a nonperturbative fully
analytical approximation for the Laplace transforms Gij (s) of
rgij (r), where gij (r) is the set of RDF of a general 3D NAHS
fluid mixture. Our approach follows several stages. The start-
ing point is the analytical PY solution for AHSs, Eqs. (2.36)–
(2.38). Exploiting the connection between the exact solutions
for 1D NAHS and AHS mixtures [see Eqs. (2.15) and (2.28)],
the AHS PY solution is rewritten in an alternative form,
Eqs. (3.1)–(3.4). Our approximation RFA consists of keeping
the form (3.4), except that σ add

ij in Eq. (3.1) is replaced by σij

[cf. Eq. (3.5)] and σi in Eq. (3.3) is replaced by bij ≡ σij + aij
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FIG. 10. (Color online) RDF for system F of Table II.

[cf. Eq. (3.6)]. Moreover, the parameters L
(0)
ij and L

(1)
ij are no

longer given by Eq. (2.41) but are determined by enforcing
the condition (2.4) or, equivalently, Eq. (2.33). This results in
Eqs. (3.15)–(3.21), and so the problem becomes completely
closed and analytical in Laplace space. The equation of state
is obtained either via the virial route (2.7) through the contact
values (3.32) or via the compressibility route (2.11) through
the coefficients H

(1)
ij in the expansion of s2Gij (s) in powers of

s, Eq. (2.33).
The penalty we pay for “stretching” the AHS PY solution

to the NAHS domain in the way described above is that gij (r)
may not be strictly zero for r < σij or may exhibit first-order
discontinuities at artificial distances. To deal with this problem,
we have restricted ourselves to mixtures such that the first
two singularities of gij (r) are σij and τij ≡ min(σik − akj ;
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FIG. 11. (Color online) RDF for the WR model at ρσ 3
12 =

0.28748. The MC data are taken from Ref. [43].

k = 1, . . . ,n; k �= j ). In the binary case (n = 2) this restric-
tion corresponds to −σ2/(σ1 + σ2) � � � 2σ2/(σ1 + σ2) (see
Fig. 1). Next, we have constructed a modified approximation
RFA+ whereby either gij (r) is truncated for r < σij if τij < σj

or the behavior of gij (r) for r � τij is extrapolated to the
interval σij < r < τij if τij > σj [cf. Eq. (3.34)]. From a
practical point of view, the latter extrapolation can be replaced
by a polynomial approximation (e.g., linear or quadratic),
yielding approximation RFA(m)

+ [cf. Eq. (3.37)]. This is
sufficient to guarantee that the slope of gij (r) is continuous
everywhere for r > σij .

For comparison with MC data of the equation of state we
have used approximation RFA since its local limitations at the
level of the RDF are largely smoothed out when focusing on
the thermodynamic properties. The results show that, if the
density is low enough as to make both thermodynamic routes
practically coincide, our approximation accurately predicts the
MC data, as shown in Fig. 2 and in the bottom panel of Fig. 4.
For larger densities, the virial and compressibility routes tend
to underestimate and overestimate, respectively, the simulation
values, this being a typical PY feature. As in the AHS case, the
simple interpolation rule Z = 1

3Zv + 2
3Zc provides very good

results, except for large nonadditivities (see Fig. 3 and the top
and middle panels of Fig. 4).

Regarding the structural properties, approximation RFA(1)
+

is found to perform quite well. The contact values are generally
more accurate than those obtained from the numerical solution
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FIG. 12. (Color online) RDF for the WR model at ρσ 3
12 = 0.4.

The MC data are taken from Ref. [43].

of the PY integral equation, at least for symmetric mixtures, as
shown in Table I. Comparison with our own MC simulations
shows a very good agreement, except in the case of the
like-unlike RDF for distances smaller than the location of the
first minimum for large nonadditivities (see Figs. 5–10). On
the other hand, even in the case of the WR model (� → ∞,
well beyond the “safe” region of Fig. 1) our approximation
RFA(2)

+ does a much better job than expected, as illustrated in
Figs. 11 and 12.

In conclusion, one can reasonably argue that our approxi-
mation RFA, along with its variants RFA+ and RFA(m)

+ , repre-
sent excellent compromises between simplicity and accuracy.
We have tried other alternative analytical approaches (simpler
as well as more complex) also based on the PY solution for
AHSs, but none of them has been found to present a behavior
as sound and consistent as those proposed in this paper. We
expect that they can be useful in the investigation of such
an important statistical-mechanical system (both by itself and
also as a reference to other systems) as the NAHS mixture.

The work presented in this paper can be continued along
several lines. In particular, we plan to explore in the near
future the predictions for the demixing transition from our
approximations. It is also worth exploring the NAHS theory
that arises when the starting point is not the PY solution for
AHSs but the more advanced RFA proposed in Ref. [14], which
contains free parameters that can be accommodated to fit any
desired EOS in a thermodynamically consistent way.
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APPENDIX A: EXPLICIT EXPRESSIONS OF Gi j (s)
FOR BINARY MIXTURES IN APPROXIMATION RFA

By performing the inversion of the matrix (3.8) and carrying
out the matrix product in Eq. (3.4) one gets

G11(s) = s−2

D(s)

{
L11(s)

[
1 − 2πρx2

s3
N22(s)

]
e−σ1s + 2πρx2

s3
L11(s)L22(s)e−(σ1+σ2)s

−2πρx2

s3
L12(s)L21(s)e−2σ12s +2πρx2

s3
L12(s)N21(s)e−(σ12+a12)s

}
, (A1)

G12(s) = s−2

D(s)

{
L12(s)

[
1 − 2πρx1

s3
N11(s)

]
e−σ12s + 2πρx1

s3
L11(s)N12(s)e−(σ1+σ2)s/2

}
, (A2)

where the quadratic functions Nkj (s) can be found in Eq. (3.9) and

D(s) =
[

1 − 2πρx1

s3
N11(s)

] [
1 − 2πρx2

s3
N22(s)

]
− (2πρ)2x1x2

s6
N12(s)N21(s)

+ 2πρx1

s3
L11(s)

[
1 − 2πρx2

s3
N22(s)

]
e−σ1s + 2πρx2

s3
L22(s)

[
1 − 2πρx1

s3
N11(s)

]
e−σ2s

+ 4π2ρx1x2

s6
[L11(s)L22(s)e−(σ1+σ2)s − L12(s)L21(s)e−2σ12s

+L12(s)N21(s)e−(σ12+a12)s + L21(s)N12(s)e−(σ12−a12)s] (A3)

is the determinant of the matrix Q−1. The expressions for G22(s) and G21(s) can be obtained by the exchange 1 ↔ 2.

APPENDIX B: ORDERING OF SINGULAR DISTANCES
IN APPROXIMATION RFA FOR BINARY MIXTURES

By “singular” distances we will refer to those values of
r where the RDF gij (r) or any of its derivatives have a
discontinuity. Physical singularities are located, for instance,
at r = σij and r = σik + σkj , k = 1, . . . ,n. Apart from that,
approximation RFA introduces spurious singularities at other
distances.

Let us particularize to a binary mixture. The physical lead-
ing singularity of gij (r) should be located at r = σij . However,
according to Eq. (A1), the leading singularity of g11(r) takes
place at r = min(σ1,σ12 + a12,2σ12). Analogously, the leading
singularity of g22(r) is located at r = min(σ2,σ12 − a12,2σ12).
Finally, Eq. (A2) shows that the leading singularity of g12(r)
is r = 1

2 min(2σ12,σ1 + σ2). Note that we have assumed σ12 −
a12 > 0, so that the denominator D(s), Eq. (A3), does not
affect the leading singularity of gij (r).

It is thus important to determine the relative ordering of
the values σ1, σ2, σ12 − a12, σ12 + a12, 2σ12, and σ1 + σ2.
Such an ordering depends on the values of � and R ≡ σ2/σ1,
where, without loss of generality, we assume that σ2 � σ1.
A detailed analysis shows that the �-R plane can be split
into 13 disjoint regions with distinct order for the above

singular distances. Those regions are indicated in Fig. 13,
while Table III shows the order applying within each region.

FIG. 13. (Color online) Plane � vs R ≡ σ2/σ1 showing the
regions with different ordering of the distances σ1, σ2, σ12 − a12,
σ12 + a12, 2σ12, and σ1 + σ2.
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TABLE III. Order of the singular distances σ1, σ2, σ12 − a12, σ12 + a12, 2σ12, and σ1 + σ2 in each of the regions of Fig. 13.

Region Order

Ia 0 � σ2 � σ12 − a12 � σ1 � σ12 + a12 � σ1 + σ2 � 2σ12

Ib 0 � σ2 � σ1 � σ12 − a12 � σ12 + a12 � σ1 + σ2 � 2σ12

Ic 0 � σ2 � σ12 − a12 � σ1 � σ1 + σ2 � σ12 + a12 � 2σ12

Id 0 � σ2 � σ1 � σ12 − a12 � σ1 + σ2 � σ12 + a12 � 2σ12

Ie 0 � σ2 � σ1 � σ1 + σ2 � σ12 − a12 � σ12 + a12 � 2σ12

IIa 0 � σ12 − a12 � σ2 � σ12 + a12 � σ1 � 2σ12 � σ1 + σ2

IIb 0 � σ12 − a12 � σ12 + a12 � σ2 � σ1 � 2σ12 � σ1 + σ2

IIc 0 � σ12 − a12 � σ2 � σ12 + a12 � 2σ12 � σ1 � σ1 + σ2

IId 0 � σ12 − a12 � σ12 + a12 � σ2 � 2σ12 � σ1 � σ1 + σ2

IIe 0 � σ12 − a12 � σ12 + a12 � 2σ12 � σ2 � σ1 � σ1 + σ2

IIf σ12 − a12 � 0 � σ2 � 2σ12 � σ12 + a12 � σ1 � σ1 + σ2

IIg σ12 − a12 � 0 � 2σ12 � σ2 � σ12 + a12 � σ1 � σ1 + σ2

IIh σ12 − a12 � 0 � 2σ12 � σ12 + a12 � σ2 � σ1 � σ1 + σ2

Note that σ12 − a12 is negative in Regions IIf, IIg, and IIh, i.e.,
if −1 � � � −2R/(1 + R), thus invalidating those regions
from the preceding analysis.

We observe that σ1 and σ2 are indeed the leading singulari-
ties of g11(r) and g22(r), respectively, for positive nonadditivity
(regions Ia–Ie). Reciprocally, σ12 is the leading singularity of
g12(r) for negative nonadditivity (regions IIa–IIh).

In order to construct approximation RFA+, we want to
restrict ourselves to those regions such that the two leading
singularities of g11(r) are σ1 and τ11 ≡ σ12 + a12. Inspection
of Table III shows that Regions IIc–IIh are discarded by this
criterion. In the remaining regions the leading singularity of
g11(r) is min(σ1,σ12 + a12) but the next one is not necessar-
ily max(σ1,σ12 + a12) since the latter value competes with
min(σ1,σ12 + a12) + min(σ2,σ12 − a12,2σ12), where the term
min(σ2,σ12 − a12,2σ12) comes from the denominator D(s)
[cf. Eq. (A3)]. It can be checked that max(σ1,σ12 + a12) �
min(σ1,σ12 + a12) + min(σ2,σ12 − a12,2σ12) in Regions Ic–
Ie. Therefore the two first singularities of g11(r) are σ1 and
τ11 = σ12 + a12 in Regions Ia, Ib, IIa, and IIb only. It turns out
that in those four regions the two leading singularities of g22(r)
are σ2 and τ22 ≡ σ12 − a12, and the two leading singularities
of g12(r) are σ12 and τ12 ≡ 1

2 (σ1 + σ2).
In summary, Regions Ia, Ib, IIa, and IIb are the only ones

where the two leading singularities of gij (r) are σij and τij ≡
σik − akj with k �= j .

APPENDIX C: SHORT-RANGE FORMS OF gi j (r) FOR
BINARY MIXTURES IN APPROXIMATION RFA

In what follows we assume that −σ2/(σ1 + σ2) � � �
2σ2/(σ1 + σ2), which corresponds to Regions Ia, Ib, IIa,
and IIb of Fig. 13. As discussed in Appendix B, this
guarantees that the first two singularities of gij (r) are σij and
τij ≡ σik − akj with k �= j . The aim of this Appendix is to give
the expressions of gij (r) in the region 0 � r � max(σij ,τij ) +
ε, where ε is smaller than the separation between max(σij ,τij )
and the next singularity.

It is convenient to assign a bookkeeping parameter z to e−s ,
so that, for instance, e−σij s becomes zσij e−σij s . We will set z = 1
at the end of the calculations. Therefore, the denominator D(s)

given by Eq. (A3) becomes

D(s) = D0(s) + o(z0), (C1)

where

D0(s) =
[

1 − 2πρx1

s3
N11(s)

] [
1 − 2πρx2

s3
N22(s)

]

− (2πρ)2x1x2

s6
N12(s)N21(s). (C2)

In Eq. (C1), o(zn) denotes terms that are negligible versus zn

in the (formal) limit z → 0, i.e., limz→0 z−no(zn) = 0. From
Eq. (A1) we see that the two leading terms in G11(s) are of
orders zσ1 and zσ12+a12 :

G11(s) = �11(s)e−σ1szσ1 + 2πρx2�121(s)e−(σ12+a12)s

×zσ12+a12 + o(zσ1 ) + o(zσ12+a12 ), (C3)

where

�11(s) ≡ s−2

D0(s)
L11(s)

[
1 − 2πρx2

s3
N22(s)

]
(C4)

and �ikj (s) is given by Eq. (3.29). Analogously,

G12(s) = �12(s)e−σ12szσ12 + 2πρx1�112(s)e−(σ1+σ2)s/2

× z(σ1+σ2)/2 + o(zσ12 ) + o(z(σ1+σ2)/2), (C5)

G21(s) = �21(s)e−σ12szσ12 + 2πρx2�221(s)e−(σ1+σ2)s/2

×z(σ1+σ2)/2 + o(zσ12 ) + o(z(σ1+σ2)/2), (C6)

G22(s) = �22(s)e−σ2szσ2 + 2πρx1�212(s)e−(σ12−a12)s

×zσ12−a12 + o(zσ2 ) + o(zσ12−a12 ), (C7)

where

�12(s) ≡ s−2

D0(s)
L12(s)

[
1 − 2πρx1

s3
N11(s)

]
, (C8)

�21(s) ≡ s−2

D0(s)
L21(s)

[
1 − 2πρx2

s3
N22(s)

]
, (C9)

�22(s) ≡ s−2

D0(s)
L22(s)

[
1 − 2πρx1

s3
N11(s)

]
. (C10)
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RICCARDO FANTONI AND ANDRÉS SANTOS PHYSICAL REVIEW E 84, 041201 (2011)

Laplace inversion of Eqs. (C3) and (C5)–(C7) shows that in
the interval 0 � r � max(σij ,τij ) + ε we obtain

g11(r) = 1

r
�(r − σ1)φ11(r − σ1) + 2πρx2

r
�(r − σ12 − a12)

×γ121(r − σ12 − a12), (C11)

g12(r) = 1

r
�(r − σ12)φ12(r − σ12)

+2πρx1

r
�

(
r − σ1 + σ2

2

)
× γ112

(
r − σ1 + σ2

2

)
,

(C12)

g21(r) = 1

r
�(r − σ21)φ21(r − σ12)

+2πρx2

r
�

(
r − σ1 + σ2

2

)
× γ221(r − σ1 + σ2

2
),

(C13)

g22(r) = 1

r
�(r − σ2)φ22(r − σ2) + 2πρx1

r
�(r − σ12 + a12)

×γ212(r − σ12 + a12), (C14)

where we have already set z = 1. In Eqs. (C11)–(C14), φij (r)
and γikj (r) are the inverse Laplace transforms of �ij (s) and
�ikj (s), respectively.

Since φij (0) = lims→∞ �ij (s) = L
(1)
ij , the contact values in

approximation RFA are

g11(σ+
1 ) = L

(1)
11

σ1
, (C15)

g12(σ+
12) = L

(1)
12

σ12
+ 2πρx1

σ12
γ112

(
σ12 − σ1 + σ2

2

)
, (C16)

g21(σ+
12) = L

(1)
21

σ12
+ 2πρx2

σ12
γ221

(
σ12 − σ1 + σ2

2

)
, (C17)

g22(σ+
2 ) = L

(1)
22

σ2
, (C18)

in Regions Ia and Ib (� > 0). On the other hand, in Regions IIa
and IIb (� < 0),

g11(σ+
1 ) = L

(1)
11

σ1
+ 2πρx2

σ1
γ121 (σ1 − σ12 − a12) , (C19)

g12(σ+
12) = L

(1)
12

σ12
, (C20)

g21(σ+
12) = L

(1)
21

σ12
, (C21)

g22(σ+
2 ) = L

(1)
22

σ2
+ 2πρx1

σ2
γ212 (σ2 − σ12 + a12) . (C22)

A more compact form is provided by Eq. (3.32).
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