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The time reversal of stochastic diffusion processes is revisited with emphasis on the physical meaning of
the time-reversed drift and the noise prescription in the case of multiplicative noise. The local kinematics
and mechanics of free diffusion are linked to the hydrodynamic description. These properties also provide an
interpretation of the Pope-Ching formula for the steady-state probability density function along with a geometric
interpretation of the fluctuation-dissipation relation. Finally, the statistics of the local entropy production rate
of diffusion are discussed in the light of local diffusion properties, and a stochastic differential equation for
entropy production is obtained using the Girsanov theorem for reversed diffusion. The results are illustrated for

the Ornstein-Uhlenbeck process.
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I. INTRODUCTION

Stochastic diffusion processes are used to model a variety
of phenomena, from Brownian particles and macromolecules
to turbulent dispersion and economic and environmental
fluctuations [1-5]. Several theoretical and practical problems
require reconstructing backward in time either the whole
process or some specific trajectories thereof (e.g., in nonequi-
librium statistical mechanics [6—15], control theory [16,17],
and turbulent dispersion [18-21]). Related issues appear in
reciprocal diffusion and Brownian bridges [4,5,22,23], as well
as in the probabilistic interpretation of quantum mechanics,
in relation to the so-called Schrodinger problem [22-31] of
finding the stochastic dynamics that “interpolates” between a
pair of given probability distributions at two different times.
With regard to the statistical mechanics of nonequilibrium
systems, recent developments (e.g., [10,14]) have shown that
the local entropy production can be expressed as the relative
entropy between forward and backward velocities [6,10-15].
Since thermal fluctuations can be modeled as Gaussian noise,
detailed analysis of stochastic diffusion is thus of great interest.

The purpose of this work is to discuss some fundamental
kinetic quantities of diffusion processes, in particular the mean
local velocities (e.g., drift, current, osmotic, and thermal)
and acceleration, and their behavior under time-reversal.
Local kinematic and dynamic properties are essential for a
microscopic description of diffusion, but their definition and
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analysis require particular attention because of infinitely fast
fluctuations of the white-noise forcing [1]. While numerous
papers have explored such links before, the angle from which
we view these topics is complementary to previous works
and draws connections between nonequilibrium statistical me-
chanics (e.g., [6-15]) and stochastic mechanics and reciprocal
diffusion (e.g., [22-31]). Our hope is that a holistic treatment
of the subject will help improve intuition. The insights so
obtained are linked to the hydrodynamic description, the
Pope-Ching formula for the stationary distribution [32], and
expressions for the rate of entropy production.

We discuss the time reversal of free (or uncontrolled)
diffusion, in the presence of multiplicative noise and from
the standpoint of two stochastic calculi (Itd and Hanggi-
Klimonotovich) [33-35]. From a thermodynamic viewpoint,
the multiplicative noise corresponds to inhomogeneous tem-
perature distributions [36], whose nonequilibrium behavior
is known to be only partly captured by a white-noise
(i.e., Smoluchowski), local-equilibrium approximation [37].
Within this approximation, the kinetic (Hanggi-Klimontovich)
noise prescription has the advantage that its drift naturally
incorporates the effects of the thermophoretic force due to
inhomogeneous temperature distributions. For simplicity we
restrict our analysis to one-dimensional problems.

Section II reviews the It6 and Hanggi-Klimontovich in-
terpretations of stochastic differential equations and relates
their coefficients to the entropy production rate, while Sec. 11
develops the equations for time-reversed diffusion, and
Sec. IV relates local velocity and acceleration to the for-
ward and backward diffusion coefficients. Section V draws
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the connections between entropy production and the local
velocity and acceleration of the forward and reversed diffusion
processes. Finally, Sec. VI illustrates the ideas on the Wiener
and Ornstein-Uhlenbeck processes, and Sec. VII summarizes
our conclusions.

II. FORWARD DIFFUSION

Consider a diffusion process evolving forward in time [2],
described by the stochastic differential equation (SDE) in the
1t6 form

dX = a(X)dt + b(X)dW (1), (1)

where dW(¢) is the increment of the Wiener process (white
Gaussian noise) evolving in time ¢, and a(X) and b(X) are
the drift and diffusion terms, respectively, here assumed to
be time-invariant for simplicity. The state dependence of the
diffusion term b(X) is often referred to as multiplicative noise.
The probability density function (PDF) of X evolves according
to the Fokker-Planck (FP) equation,
ap

d 19?
—=—— ——(b*p), 2
” ax(ap)+ 7 302" p) 2

where p may refer to either the transition PDF, p(x,t|x¢,0),
with initial condition §(x — x), or the one-time PDF, p(x,t) =
f Ppo(x0) p(x,t|x0,0)dxp, with generic initial condition py(x)
[2]. We will assume that a transient solution exists for the free
process for any time ¢ until an arbitrary time 7 (0 <t < T),
which will be the origin of the reversed time, t = T — ¢.

The Itd interpretation of the noise requires interpreting
Eq. (1) in a causal way [2], whereby the coefficient of the
noise is evaluated at the beginning of the time increment under
consideration:

X+ At) — X@) =a(X@)At +b(X@)AW(E). (3)

Accordingly, one can show [2] that (AX) = a(x)At and
(AX?) = b*(x)At + o(At) for small At, where AX is com-
puted in a causal or forward way:

AX = (X[ + A1) — X)) x(@t)=x- 4

As a result, the local forward velocity AX /At is a Gaussian
random variable with mean a and variance b?/ At for At — 0
[2] (for simplicity, we will often dispense with writing
explicitly the arguments of the various averaged quantities).

We also consider the (acausal) kinetic Hanggi-
Klimontovich (HK) prescription [33-35], for which the noise
coefficient is evaluated at the end of the discretized time
interval of interest. A stochastic differential equation to be
interpreted in this sense will be written

dX = h(X)dt + b(X) »dW(t), (5)

which is to be understood as the Ar — O limit of the
discretization,

X+ At) — X(1) = (X)) At + b(X(t + AD)AW(). (6)
This prescription is equivalent to Eq. (1) if we take
h =a — bo,b. (7

In general, & is a combination of the first- and second-order
moments of AX and is equal to (AX)/At only in the case
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of additive noise. The kinetic prescription gives rise to the
transport form of the Fokker-Plank equation,

ap ad d (b*ap
L py+ —(22L), 8
ot 8x(p)+8x<28x ®

where b?/2 is the so-called diffusivity. Such noise inter-
pretation has been used, albeit without explicit mention, in
previous works dealing with thermodynamic interpretations
of stochastic diffusion [7,8,13].

As also discussed in [38], when modeling the stochastic
dynamics of Brownian particles, drift and diffusion have to be
consistent with a fluctuation dissipation relation, and this is
more naturally seen in the HK prescription [see, e.g., Eq. (71)
later in this paper], which gives Eq. (8) and the exponential
form of the PDF (canonical Boltzmann distribution). This has
to do with the fact that when a particle is immersed in a
nonhomogeneous environment, the temperature distributions
of the bath and the particle properties are imposed and
these, in turn, determine the drift and the diffusion terms of
the Brownian particle. The particular form of the stochastic
calculus chosen in the SDE becomes then a matter of formal
convenience, as long as the results are consistent with the
underlying physics.

A. Hydrodynamic description and local entropy balance

The previous forward FP Eqs. (2) and (8) can be rewritten in
hydrodynamic form as a continuity equation for the probability
density,

ap aJ 0
—_——=—_——— = —— s 9
o0 = ox - ax P ©
and the corresponding equation for the probability current,
19 2 op
Jx,t) =ap — =—(b*p) =hp — — =, 10
(.0)=ap — 2= (b p) =hp — === (10)
or the current velocity,
J ab b2l
) == =a—b— — =L (1n
p dx 2 ox
which with the kinetic prescription becomes
b*dInp
HN=h— — . 12
v(x,1) > ox (12)

It is also interesting to rewrite the previous equations
in the form of a local evolution equation for the entropy.
Following [9,12], we define a local entropy density per unit
number of trajectories, s = — In p (as opposed to an entropy
per unit volume which would be — p In p). Since the ensemble
of trajectories at a point behaves as a fluid with velocity v [see
Eq. (9)], the comoving local entropy balance is given by the
material derivative of s [12]:

ds 0s as dlnp dlnp  dv

= V— = — —v =—. (13)
dt ot ox ot ox ox
Using the definition of the current velocity Eq. (12) to express
the derivative in the convective term, Eq. (13) becomes

ds 1op 2vh 207

P PR R

(14)
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Thus the infinitesimal “fluid element” moving with velocity v
has entropy balance

ds ds, N (15)
E— (7,
dt dt

where % = —%g—’t’ - zb%h is the entropy flux (the first term

is due to net influx or outflux of trajectories in dx due to
unsteady conditions, while the second can be interpreted as
due to the heat flux into the medium [12]) and o is the local
entropy production rate. We will focus on the entropy density
production rate, following Refs. [9,12],

o =2— (16)

where o > 0, in agreement with the second law of thermo-
dynamics. It will be shown later that o is linked to the local
time-symmetry properties of the diffusion process, given by
the relative entropy between the PDF of forward and backward
trajectories [10,15]. Moreover, for vanishing noise b* = 0)
but nonzero v, the entropy density production becomes infinite
because in that case the backward and forward trajectories
become perfectly distinguishable.

B. Steady state

With natural boundaries, the equilibrium steady-state PDF
of the process is given by the potential solution (i.e., probability
current identically zero)

N X /
PEC) = i e [2/ ax) } N exp[—®(x)],

b2(x")
17)
where the effective potential is
X h(x/)
d(x) = —2/ b2(x’)dx/’ (18)

and N is a normalizing constant (as noted in Ref. [34], the
kinetic prescription yields the steady-state PDF in a purely
exponential form). Moreover, at steady state Eqs. (7) and (17)
give

—3,In pg = 8,5 = —2[a/b* — 3, Inb] = —2h/b*, (19)
so that, using Eq. (11),
b? 29
v= 285 —sp) = —— —1n £, (20)
2 2 0x  pE

It is also possible to have a nonequilibrium steady state
(NESS) on an interval (x;,x;), involving a constant nonzero
current J* [2,3]. In general, this gives

J* x zeCD(x’) ,
_ﬁ/ bz(x/)dx:|, 1)

where formally a NESS potential can be introduced as

Pess(x) = N exp[—P(x)] |:1

Pess(x) = N” exp[—W (x)]. (22)

Note that the range of admissible values of the current J* may
be restricted by the requirement that the PDF is nonnegative.
Within these limits, the current can be altered by adding
or removing trajectories at the boundaries. A special case
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corresponds to the periodic conditions or diffusion on a circle
[2,39-41].
For NESS, one can write the previous equation as
2
ongss(x. %) = b — 2 CILPNESS (23)
2 ox
where pngss is linked to the current J* by Eq. (21). Solving
the previous equation allows us to express the NESS potential
as

X h N /, J*
W(x) = _2/ (x") — vNEss(x )dx/, 24)
b2(x")
which tends to the effective potential when reducing the value
of J*, and therefore of vngss, to zero. The previous equation
can also be written as

Y(x) = ®(x) — E(x), (25)

where E(x) = —2 [* DS gy,

In equilibrium steady state (J* = 0), zero entropy produc-
tion rate, zero current velocity, and reversibility of trajectories
are equivalent properties, and all the terms of the entropy
balance go to zero. As a result, steady states of 1D free
diffusion with natural boundaries are always time-reversible,
equilibrium states. For NESS [J* # 0, x € (x},x,)] instead,
the material derivative of s is nonzero, and the entropy balance
Eq. (14) implies

ds _ dvness _ 2UNEss
dt — d9x b

(Ungss — h). (26)

III. REVERSED DIFFUSION

Several aspects of reversed diffusion equations have been
previously discussed in the literature [16,31,42,43]. Here we
aim at defining local kinematic properties of reversed diffusion
and their link to the local entropy balance. One way to
approach this goal is to note that one can write down an
evolution equation in the form of Fokker-Planck equation for
the probability density of the state of the system, but with
respect to the reversed time T = T — ¢, by simply changing
the sign of the time derivative in the usual FP Eq. (2) and
readjusting the terms as needed, i.e.,

dp(x,7) 9’
e = __[ P D]+ 5ﬁ[bz px, 0], (27)

where if we choose the diffusion coefficient in reversed time
to match the forward diffusion coefficient, b2 = b2, then we
choose the drift coefficient in reversed time as

1

e e ML
Anderson [16] derived equations equivalent to Eqs. (27) and
(28) for the two-point joint PDF using the forward and
the backward diffusion equations. Equation (27) must have
the final solution of the forward process p(x,T) as initial
condition p(x,7 = 0), while its drift term Eq. (28), containing
the drift and the solution of the forward Eq. (2), “guides”
the solution of the reversed problem back to the original
initial condition p(x,t = T) = p(x,0). Thus Eq. (27) is not
of predictive value but will merely be used to describe the
statistics of time-reversed trajectories. For now, we simply

*p(x,T —1)]. (28)
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observe that by the construction and uniqueness of solutions
to a parabolic equation of the form of Eq. (27) with the
specified initial condition p(x,7 =0) = p(x,T), we must
have p(x,7) = p(x,t = T — 1). Other choices of p(x,tr = 0)
could also be used with the reversed FP Eq. (27) for the
purpose of reconstructing statistical subensembles (including
diffusion bridges) of the free diffusion trajectories Eq. (1) with
initial positions distributed according to p(x,0), but we will
not pursue this here.

Before assigning a meaning to the coefficients in Eq. (27),
we must first address the fact that one could construct a
reversed-time FP equation of the same form as Eq. (27) for
arbitrary choices of reversed-time diffusion coefficient %132 by
choosing a corresponding drift coefficient:

1 .
i[(b2 +b)px, T —1)]. (29)

4=t T —1)ox

These equations with b # b, however, are nothing but a point-
less reformulation of partial differential equation, whereas the
choice Eq. (28) corresponding to b = b does describe actual
statistics of reversed time trajectories. First of all, the solution
trajectories of a stochastic differential equation or any Markov
process can be shown directly by the definition to be Markov
processes also in reversed time. Second, the reversed time
trajectories will have the same qualitative local character and
smoothness as the forward time trajectories, so we infer that the
infinitesimal generator of the time-reversed trajectories should
again be a second-order differential operator corresponding to
a diffusion process with some drift coefficient @ and diffusion

22
coefficient %b . Now, the diffusion coefficient must be the

same in both time directions (b = b), as it characterizes
the roughness of the paths, so that the size of independent
increments cannot depend on the direction in which they are
traversed. This same idea is behind the absolute continuity of
probability measures of solution paths to SDEs with respect
to each other if and only if their diffusion coefficients agree
(e.g., Ref. [44], Ch. 7). The drift coefficient can, and generally
will, suffer a bias and be different in reversed time due to the
steering needed to bring the trajectories to the appropriate final
probability distribution (the initial condition for the forward
equation). We can see that the appropriate drift coefficient is
the formula of Eq. (28) obtained above as follows: because
the time-reversed trajectories are again a diffusion process,
the probability density for the time-reversed trajectories must
satisfy a Fokker-Planck equation with the correct drift and
diffusion coefficients
ap(x,7) 0 1 9°

2 A 2’2 A .
T = i+ 555l Pl (G0)

agreement between Eqs. (27) and (30), together with the

observation that we must have b = b, forces

~ L p o = — a0 (31)
ax dx

This in turn implies that (& — @)p(x,7) is a constant, which

must be zero under the reasonable assumption that p decays

for large |x| faster than & and & grow. This then implies that

a = a, meaning that Eq. (28) is indeed the drift coefficient in

the diffusion process describing the time-reversed trajectories.
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We can therefore write a SDE (in the It6 form) for the time-
reversed trajectories, with time-dependent drift, corresponding
to Eq. (27)

dX = a(X,v)dt + b(X)dW (z), (32)
or using the kinetic prescription
dX = h(X,7v)dt + b(X) *»dW(2), (33)
where

h=a—bdb=—a+bdb+b*dInp
b2
=—h+b*,Inp=—v+ gax Inp, (34)

with the last equality following from Eq. (11). Equation (34)
is the generalization to the case of multiplicative noise of the
so-called “dual condition” for additive noise [42]. Note that
the previous drift can also be written as

h=h-2v. (35)

As with Eq. (27), the previous SDEs must have their initial
positions distributed statistically according to the final PDF
of the free forward process, p(x,T). We also used “hats” for
the reversed time Wiener process as reminders of the fact that,
when different realizations of the Wiener process are used
for the forward and reversed processes, only the ensemble of
trajectories is reconstructed, without achieving specific strong
correspondence among backward and forward trajectories.
To have a strong correspondence between trajectories, the
same realization that generated the forward process must be
used also in the reversed time t; in such a case, however,
the increments of the time-reversed Wiener process are not
independent of the “previous” (in 7) values of X, but rather of
the “future” ones (see also Ref. [16]).

It is also instructive to consider the stochastic interpretation
of the time-reversed drift and diffusion. Similarly to the
interpretation of Eqgs. (1) and (2) in the forward time ¢, it
is possible to have causal or forward (in 7) interpretation of
the increments of X of the stochastic process for Egs. (27) and
(32). Thus, with

AX = (X(t + A1) = X(O)2()=x- (36)

it follows that (AX) = aAt and ((AX)?) = b%(X)At for
At — 0. In other words, for At — 0, A)?/Ar is Gaussian
with mean @ and variance b%/Ar.

The reversed-diffusion drift @ can be written in a form that
separates the contributions due to the evolution of the forward
PDF p(x,T — t) from the one solely due to the forward drift
and diffusion,

ob dln T -1
a=—(a—222) P =0 5
ox ax
Note that the correction Zb% is present only in the case of
multiplicative noise. The time-reversed drift g is also linked to

the current velocity,

. 2 1o , 2J
a=a——|ap—=-——W'p)|=a— —=a—-2v, (33
p 2 0x p
which is similar in form to Eq. (35). This form of relationship

between forward drift, reversed drift, and current velocity is
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valid for any prescription with respect to their specific drifts,
including the one of Stratonovich (i.e., if the Stratonovich drift
is g =a — 1bo;b, then § = g — 2v).

In terms of the hydrodynamic description, the reversed-time
diffusion is simply

ap

a
= ——(0) 3
Py a5 0D); (39)

where, using the definition of the current velocity Eq. (11)
along with Eq. (34),

b2

ﬁ:—h+?8xlnp=—v. (40)
For steady states with zero current [i.e., corresponding to
the potential solution (17)], v = 0 and, thus, @ = a. Hence,
the reversed equation is exactly the same as the forward
equation (thus the process is in equilibrium with zero entropy
production). This confirms what was previously mentioned
regarding the time reversibility (i.e., equilibrium) of all 1D
diffusion steady-states with natural boundary conditions (zero
current) [Eq. (16)]. This is not the case for NESS, where

a=a— 2vNESS~

IV. LOCAL STOCHASTIC VELOCITY
AND ACCELERATION

Because of the nature of the white-noise fluctuations, the
trajectories of X(¢) are nondifferentiable and cross a given
level x an infinite number of times during an infinitesimal time
interval [1]. This makes the definition of the local velocity and
acceleration possible only when defined with respect to a finite
time interval. Consider a finite but small temporal interval At,
as shown in Fig. 1, and define, using the centered differences
around X (t):

K| = KO+ A1/2) - )i(: — Aoy

Setting X(t) = X(t) = x, the numerator in the previous
expression can be seen as (X(r + Ar/2) — X(¢)) — (X(t —
A1)2) — X(1)) = (X(t + At/2) — x) — (X (1 + At/2)—x) =
AXpr2 — AXA,/Z. Because of the Markov property
for both backward and forward processes, these two
terms are independent. Moreover, based on Egs. (4) and
(36), we have that AXa. ~ N[aAt/2,b*At/2] and
AXpip ~ NlaAt/2,b*>At/2], where N stands for normal

x(1)

ult alt

vAt

t—At t t+At

FIG. 1. Sketch of the geometric meaning of the various mean
velocities.
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distributions with mean and variance given by its respective
arguments. Their difference thus gives

. b?
X|lx ~N|v,— |, 42
o] ()
where we have used the fact that a — a@ = 2v, which follows
from Eq. (38). Based on this, the local current velocity from
Eq. (11), v = (X|x), can also be interpreted as half the
difference between the forward and backward drift:

a—a 43)
vV =
2
We can also define a local acceleration
X| A’X (44)
X =—
At?
where
APX = (X(1 + At = 2X (1) + X (1 — AD)|x()=x

= AX + AX. (45)

It thus follows that
. a+a 2b° 2(a —v) 2b°
Ko~ N[ E8 22 N 2222 22 1 46
X [ At (At)3] [ Al (ALY (46)
One can also introduce a fluctuation velocity defined as the
ensemble average of the arithmetic mean of forward and
backward instantaneous velocities,

1< AX+AX> a+a

u=—( lim = , 47
2\ At—0 At 2

where the averaging allows the actual passage to the limit.

The fluctuation velocity u is directly related to the mean local

acceleration as

(X|x,t) = (a + &)/ At = 2u/At. (48)

Since the process is nondifferentiable, the mean local acceler-
ation does not converge to a finite limit as At — 0.

It should be noted that Eq. (3) only includes leading-order
terms corresponding to a forward Euler discretization of a
differential equation. Higher order terms are neglected, the
most important of which is a non-Gaussian random term with
mean zero and variance proportional to (At)?, of the form

t+At
b[X(t)]b’[X(t)]/ W) — WOldW({E'),  (49)

and uncorrelated with the b[X(#)]AW(¢) term in Eq. (3),
plus a standard second-order deterministic error term
a[X(O1d' [ X(O](A1)? (see, e.g., Ref. [45], Sec. 5.5). Thus,
the stochastic velocity X|x is more precisely a sum of
the large Gaussian random variable written above plus a
non-Gaussian random variable with O(Ar) mean and O(1)
variance. Similarly, the stochastic acceleration X|x is a
sum of the large Gaussian random variable written above,
plus a non-Gaussian random variable with O(1) mean and
O(1/At) variance. Such corrections are not small, but they
are not as large as the Gaussian random components explicitly
described. While under some circumstances they could be
important, when the manipulations of these random variables

041142-5



PORPORATO, KRAMER, CASSIANI, DALY, AND MATTINGLY

is essentially multiplicative they do not play a leading order
role, and therefore do not affect the previous conclusions.

A. Kramers equation (steady state)

We now consider the particular case of a diffusion process
corresponding to Langevin particle dynamics. First we con-
sider the Kramers equation as a foundational model based on
Newton’s law (e.g., Ref. [2], p. 155)

X=V
{de = F(X)dt — BVdt + /2kg BTdW(¢). °0)

Here m is mass, V is the velocity variable, F/(X) is the applied
force, B is a friction constant, T is the absolute temperature
(assumed to be constant in this subsection for simplicity),
and kp is Boltzmann’s constant. Because the thermal noise
appears here as a force in the velocity equation, the mean-
square velocity and acceleration are well-defined and can be
shown to satisfy (see, e.g., Ref. [46])

ks

. T F
(X ke = 2= and )
m

(X|x,t)ke =

(SD

In the Smoluchovski approximation, corresponding to
friction dominating inertia (y = B/m — oo; e.g., Ref. [2],
p.- 197), we obtain a reduced equation,

F(X 2kgT
ax = FXO 2k T (52)
B B
corresponding to a diffusion Eq. (1) with coefficients
F(X 2kgT
PRAC O T (53)

B

From these expressions, and using the results of the previous
section, Eqgs. (46) and (42), for steady state (as previously
noticed, @ = a in steady state),

2

. b
(X*x,t)sm = ~ G4

In terms of the a and b coefficients, we can write the
corresponding statistics for the full Kramers equation as

. 2a
(X|x,t)sm = A and

2
(X|x,t)r =ay and (X?|x,t)k = %y. (55)
Now these statistics need not agree between the two models,
because the Kramers statistics are obtained from a finite value
of y with At — 0, whereas the Smoluchowski statistics are
obtained from a finite value of Ar with y — oo. Nonetheless,
the statistics do agree in a sort of intermediate regime, where
y = B/m = 2/At is taken small, meaning that the friction
parameter in the Kramers equation is balanced with the
time interval used to compute statistics in the Smoluchowski
equation. This can be understood as either Ar or2/y serving as
a smoothing time scale (either through sampling or dynamics)
in evaluating the velocity and acceleration statistics.

B. Canonical form of the transient solution and link
with the Pope-Ching formula

Equations (2) and (27) can be linked to Nelson’s stochastic
dynamics [26,27], as well as be used to introduce a generalized
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wave equation. These considerations in turn allow a geometric
interpretation of the various mean velocities introduced before.
We begin by rewriting both equations at the same instant
t and making the time derivative explicit. We also use the
fact that p(t =T —¢t) = p(t), p(r+ At =T —t — At) =
p(t — At), and that the time increment At is equal to At.
With this in mind, Egs. (2) and (27) become, respectively,

plx,t + At) — p(x,t) _

d 1 92
—a (ap) + = —(b*p), (56)
X

At 2 ox2
p(x,t — At) — p(x,t) J 1 3% .
X =—--@p+ Ea—xz(lﬂp), (57)

with small Az. As already noticed by Nelson [27], taking
the difference of the previous equations and dividing by two
immediately yields the hydrodynamic Eq. (9). The sum of
Egs. (56) and (57) instead yields
A%p
At?
after having noticed that the sum of the drifts provides the
fluctuation velocity u, while for the diffusion terms (from
Sec. III) one has (b*> + b?)/2 = b>. Using Eqs. (42) and (48),
and dividing by Af, one has formally a generalized wave
equation as in Refs. [32,48]:

9%p . 3 .

2 = (X|x.t —((X? ) 59

7 = (Klknp + (XK. (59)
However, because of the diffusive limit, this is only formally
a wave equation, since the coefficients on the right-hand side
blow up as Atz | 0. In this limit, Eq. (58) is actually

AP 2 oyt (58)
T o9x “p 9x2 p),

0= —Lupy + 22 60)
= —— u —_— N
ox P 0x? p

which can be solved, considering that the first integration
constant is always zero because the externally imposed
currents (if any) in Egs. (56) and (57) cancel out. The solution,

p(x.t) = N(t) exp |:2/X M(X/’t)dx/i|

b(x)? b(x")?
_ Thx') —v(x')
= N(t)exp [2/ —b(x’)2 dx :|, (61)

provides an exponential form of the transient PDF, in agree-
ment with the fact that a canonical distribution should exist in
the diffusion approximation (which physically corresponds to
a local and quasistatic equilibrium). Note that Eq. (61) could
have also been obtained directly from Eq. (28).

In steady state, the fluctuation velocity # = a — vNgss and
the PDF in Eq. (21) can also be written as

X h _
Prgss(x) = N exp (2 / %dﬂ), (62)

in agreement with Eq. (24). In terms of local velocity and
acceleration,

N *(X]y)
PNess(X) = X CXP/ (ley)dy’ (63)

where the expression in the exponent is well-defined in the
At | 0 limit, whereas in the prefactor the normalization
constant N would scale in proportion to 1/A¢. Equation (63)
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was previously obtained by Pope and Ching with reference
to general twice-differentiable stationary signals [32,47,48].
Note that (X|x) depends on J* for NESS. With zero current
velocity, Eq. (38) gives @ = a, and thus (X|x) = 2a/At,which
in turn yields the equilibrium solution Eq. (17).

C. Geometric interpretation of fluctuation velocity

Several local mean velocities have been introduced in the
course of the previous sections: the drift a, defined after Eq. (3),
the current velocity v [see Eq. (11)], the reversed drift a
[Egs. (28) and (37) and (38)], and the fluctuation velocity
u [Eq. 47)],

a+a 1 9

= =a—v=——(@* 64
u > v 2p3x( p). (64)

where the last equality is due to Eq. (37). At equilibrium
steady state (e.g., v = 0), the fluctuation velocity u is equal
to the drift a. Combining Egs. (64), (41), and (47) makes
the geometric meaning of this velocity more clear, showing
that u is the average rate of vertical displacement from the
straight line connecting the end points (X(z + At)),(X(t —
At)) of trajectories passing through x at time 7. This geometric
interpretation is shown in Fig. 1.

By considering Eq. (11), the fluctuation velocity can also
be split into two parts,

u=ug-+ur, (65)

where the first component is related to the change in trajectory
concentration (thus related to an osmotic potential), and for
this reason called osmotic velocity by Nelson [27],

. b? 81n p(x,t)
2 ax

while the other component is related to the drift due to the
multiplicative noise. This may be termed thermal velocity
because of its relation to thermophoresis [36,49-52]) and it
is linked to the gradient of the non-uniform noise intensity or
local temperature b? (see Sec. 1),

uo , (66)

ur=-— =bb. (67)

The previous observations also allow the decomposition of
current velocity into its three components,

v=a— (uo +ur), (68)

implying that at any instant there is a momentum (per unit
mass) balance among these different components (note also
that 7 = a — ur). When each term of the previous equation is
multiplied by p, one obtains the respective components of the
probability current of Landauer [Ref. [36], Eq. (4.1)].

At equilibrium (v = 0) the drift velocity balances the sum
of osmotic and thermal velocities, which is another way
of stating the fluctuation-dissipation relation or generalized
Einstein relation,

b?dln PE(x)
2 ox

1 9b?

, 69
2 0x (69)

a=ugg+ur=
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or with the kinetic prescription Eq. (7),
_ b? 3 1n pe(x)

h 70
2 0x (70)
In NESS instead [cf. Eq. (23)],
bz dln pNEss(x) b2 AV
— S = ——. 71
Uo.NESS = — ox UNESS = = (71)

V. ENTROPY PRODUCTION

It was shown in Sec. III that when the current velocity v
is different from zero, the system is out of equilibrium with
positive entropy production rate o. Both the current velocity
Eq. (11) and the entropy production rate Eq. (16) are mean
quantities. In Sec. IV we discussed the statistical properties
of the random variable underlying the current velocity. In
a similar manner, we can now discuss the properties of the
random variable associated with the entropy production rate.
This is especially important, since the random fluctuations
around the mean entropy production rate have been the subject
of intense study in the context of the fluctuation theorem in
nonequilibrium statistical mechanics [10,11,14].

Recent developments (e.g., Refs. [10,14]) have shown

that the local entropy production rate can be expressed as
the relative entropy between forward and backward velocity
distributions, py(x|x,r) and p;(x|x,r), conditioned on the
current state x and time 7 [14,15]. Noting that p; (x|x,r) =
px(—x|x,0),
_PxGIxn)
px(—x|x,1)
gives a trajectory-based or “microscopic/local” interpretation
of the mean entropy production rate. The explicit 1/Ar¢ factor
is needed to obtain a nontrivial At — 0 limit of the expression
on the right-hand side; the PDF for the particle velocity X is
understood here to be regularized with respect to a small but
finite time interval At as in Sec. IV. Equation (72) complies
with the intuitive interpretation of time reversibility, in that
a process is time-symmetric only if the same distributions of
slopes are found going either forward or backward in time.
Therefore, in relation to the diffusion process with locally
Gaussian increments of interest here, Eq. (72) also provides
a local interpretation of Eq. (16). It can be shown that the
relative entropy between two Gaussian distributions with the
same variance b’/ At and opposite means (v and —v) is equal
to twice the square of the mean (v?) divided by the variance
(b%/ At), which inserted in Eq. (72) gives Eq. (16).

We can also show that the PDF pz(z) of the random variable
whose average gives the entropy production rate,

o(x,t) = i/a')'cp)‘(()'c|x,t)ln (72)

At

1 (X |x,t
201y = g PEED_ 73)
At px(—=x|x,t)
satisfies the so-called fluctuation theorem [15,53-55],
pay(=y) = par(Me™”, (74)

where AY = Z At is the random fluctuation during a regular-
ized time step At whose average gives the entropy produced
during that time step. While this is valid in great generality
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[15], we can derive it simply in our case using the Gaussian
distribution for X |x [Eq. (42)] to write

20(x,1) -
D X|x, (75)

Z(x,t) =

which can be seen to be itself approximately Gaussian,

20
Z ~ N(O’,E). (76)

Equation (74) now follows by explicit manipulation of the
Gaussian distribution

AY ~ N (o At,20 At). )

The random variable exp( fot Z(X(@",t")dr’) is also related
to the Radon-Nykodim derivative between Eq. (1) and its
reverse, Eq. (32), through the Girsanov theorem (e.g., Ref. [5],
p- 164). The latter relates the probabilistic properties of two
diffusion processes taking place on a common interval [0,¢].
In the present case, the two processes are the free forward
diffusion

dX = adt + bdW, (78)

and a time-reversed one, with the same diffusion term [see
Eq. (38)]:

dX = adt + bdW(v) = adt — 2vdt + bdW(v), (79)

both with the same (possibly random) initial conditions.
According to the Girsanov theorem, the ratio of their path
measures on [0,7] (i.e., their Radon-Nykodim derivative) is

dp P 2u(Xpt'
_X = exp f M dXt,
Py L B(X 1)

- {/’ 200X, ) WXy 1)) —
P b2(X, 1)

L 2u(Xp ! (X, )7
:exp{/ Mth,_i__/\ [M] dt/}'
o b(Xy,t) 2 Jo L b(Xp,t)

(80)

a(Xy,1)] dr }

The above expression is evaluated at a random path X, [refer-
ring for short here to X(#)] and so is also a random variable.
This Radon-Nikodym derivative can also be expressed, in a
NESS, in terms of a single Stratonovich integral [5], as in
Eq. (3.64) of Ref. [8],

dPx /" 2v(Xy,t)
— = eX R —
ary P L BRX)
as can be shown through using the transformation rule between

Stratonovich and It6 integrals (now suppressing all arguments
indicating evaluation along the random paths X;),

"2v " 2v 1 "9 [2v
/(;ﬁOdXﬂ:/ —dX, + E/o ax[ ]d[XX](t)
/—adt—l—/ 2v —bdWy

o b

+-[Zi[2”}d[x X1(1),
2 0 ox

o dXt/], (81)
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and then using Eqgs. (11) and (13) to write the correction
term involving the quadratic variation of the diffusion process
d[X, X](t") = b*(Xy,1') as

L[ a2 TR vl
- diX.X1(t) = dx o 0x p2dy
3 [, o = [ =25
z/" _8lnp_U81np_2v(a—v)+v81np dr
0 ot’ 0x b2 ax

- /tzv(v—;a)dt’,
0 b

where the partial time derivative vanishes because we are
here considering NESS. We stress that Eq. (80) applies
for evolving probability distributions, while the Stratonovich
integral Eq. (81) only applies for NESS.

If we discretize the time integrals in Eq. (80) with the
same time step At as in our regularization for local velocities
and accelerations, then upon comparison with Eq. (76), we
note that each summand in the discretized integral is, to
leading order, statistically equivalent to Z(X,,t")At for the
corresponding value of . More precisely, the summands in the
discretized integrals of Eq. (80) form a Markov process with
respect to the filtration generated by the underlying Wiener
process W (t), as does the sequence [Z(XnA,,nAt)],[f:/gtJ , with
the same transition density, as can be checked from Egs. (75)
and (41). Consequently, in the At — 0, we can write

dP !

Y(t) =In—X = / Z(X,,t)dt'. (82)
de( 0

Finally, taking statistical expectation, and noting that the first

term is zero, being a regular Itd integral, one obtains

d Py 1" Qu(X))?
<1 dPx> <5 0 b(X,) dt>
=/ /00 p(x,t)o (x,t)dxdt', (83)
0 —00

which is the global entropy production over the considered
time interval.

The previous considerations also provide an interesting
SDE for the entropy production. By taking the logarithm and
differentiating Eq. (80), one obtains

v(X)7? 20(X)
b(XJ 0

which should be coupled to Eq. (1), and where the two
equations are driven by the same Wiener noise and are
interpreted in the Itd sense. The previous SDE describes the
stochastic production of entropy.

A stochastic path representation of entropy production
has also been given in Refs. [7,8] (see also Ref. [13]) for
n-dimensional systems in NESS, using the Girsanov theorem
and an action functional related to the ratios of probabilities
of forward and backward paths. To make contact with these
derivations, it is useful to rewrite the FP equation of free
diffusion, making the possible presence of currents at NESS
explicit. Using Eq. (71), Eq. (8) becomes

dY =2|: dw;, (84)

P 2 (g + ypl (L) s
— = ——|(Vv JR— —_—
Y I NESS T UO,NESS) P ax \ 2 ax
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or in terms of an Itd6 SDE similar to Eq. (3.53) of Ref. [8],
recalling Eqs. (7) and (71),

dX = [vngss — 3070, W(x) + 30,67 ]dt + bdW.  (86)

Note how the first two terms of the drift depend on J*, and that
the first term tends to zero, while the second one tends to #,
as J* — 0.In NESS, the drift of the reversed SDEisad = a —
2uNEss, as previously pointed out (see end of Sec. III), so that
applying the Girsanov theorem as before, the developments of
Ref. [8] applied to Eq. (86) agree with our entropy production
rate at NESS.

V1. SIMPLE EXAMPLES

In the classical example of the Wiener process [2],

dX = VDdW (1), (87)

we have ¢ =0 and b* = D constant. As is well known,
for deterministic initial condition X(t = 0) = x¢, the cor-

o
0301

025
0.20;
0.15
0.10;

0.05F

I

!

!

> 1

!

n

1

L . |

B -.-.A

~

FIG. 2. (Color online) Top panel: Local entropy production
o (x,t) for the OU process as a function of time for x = 2 (dashed),
x = 1(solid), and x = 0 (dotted); parameters: xo = 1, D = 1,k = 1.
Bottom panel: two-dimensional contour plot of o (x,?); parameters:
D=1,k=1.
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responding FP equation is simply the heat equation with
delta-concentrated initial data, with solution

1 (€3 —Jco)2

£ = ————e i, 88
p(x,1) me (88)

Thus, in this case,

D dln p(x,t) X=X

7t =O_ )
v(x1) 2 ox 21

(89)

which is just half the mean velocity of the particle up to time
t,and o = ("Z_Dxt"z)z.
The second example is the Ornstein-Uhlenbeck (OU)

process, with linear drift and constant diffusion [2]:

dX = —kXdt + DdW(t). (90)

For deterministic initial condition X (¢ = 0) = xo, the proba-
bility density for the solution at time ¢ (see Ref. [2], p. 76) is
a Gaussian with mean and variance

D
tou = xpe X vargy = ﬂ(l — e 1), 1)

respectively.

X(®)

0.2 0.4 0.6 0.8 1.0 1.2

Y (1)

250
200
150
100

50

‘1“‘1“‘1“‘1“‘1“‘1‘1—'
0.2 0.4 0.6 0.8 1.0 1.2

FIG. 3. (Color online) Different numerical realizations of the
OU process and the corresponding entropy production Eq. (84).
Parameters: xo =4, D =1,k = 1.
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The velocity and local instantaneous entropy production
rate are
k(x — xpe™¥)  k(x — xpe*)

V) = —kx + Tt = oS (9

and

2k%(x — xpe)?
0=—""

D(ezkt — 1)2 (93)

Thus, there is a curve x = xge’, where locally entropy
production is zero and trajectories have the same distribution
of slopes when looked at forward and backward in time. This is
shown in Fig. 2. The results of the entropy balance are plotted
in Fig. 3. It is interesting to note how the entropy production
rate approaches zero at long time, consistently with the fact
that the total entropy produced saturates at equilibrium.

VII. CONCLUSIONS

We have discussed several aspects of time-reversal of
diffusion processes, with special attention to the interpreta-
tion of their local properties and their relations to entropy
production. In particular, a stochastic differential equation for
the instantaneous entropy production rate has been introduced
and illustrated in the case of the Ornstein-Uhlenbeck process
(Fig. 3).

We have emphasized the elements of the local stochas-
tic dynamics responsible for entropy production and time
irreversibility. Limiting our considerations to 1D makes the

PHYSICAL REVIEW E 84, 041142 (2011)

derivation more transparent and shows the main differences
between equilibrium and nonequilibrium steady states due
to nonzero velocity current. Recent developments have em-
phasized how entropy production can be usefully separated
into a nonequilibrium steady state and transient contribution
[40,56-58], using the NESS current as a reference. Our
analysis allows a local view of such contributions through
the term v(x,7) — vnNgss(x).

The general expressions allowed by the 1D context also
show the difference between the equilibrium potential ®(x)
and the NESS potential W(x) [cf. Egs. (18) and (24)], where
the first one can be obtained by simple integration of the kinetic
drift i(x), while the second one requires a double integration
including the probability current. Such a point was previously
pointed out for the general n-dimensional case [59,60] and is
related to a decomposition of the drift into a reversible and
irreversible part around NESS [similar to Eq. (86)], which is
in turn a form of Helmholtz decomposition of a velocity field
[61] (see also Refs. [62—64]). In future works we will further
elaborate on this for multidimensional diffusion processes,
processes with jumps, and controlled diffusions that bridge
between prescribed initial and final conditions.
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