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Exact quantum master equation for a molecular aggregate coupled to a harmonic bath
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We consider a molecular aggregate consisting of N identical monomers. Each monomer comprises two
electronic levels and a single harmonic mode. The monomers interact with each other via dipole-dipole forces. The
monomer vibrational modes are bilinearly coupled to a bath of harmonic oscillators. This is a prototypical model
for the description of coherent exciton transport, from quantum dots to photosynthetic antennae. We derive an exact
quantum master equation for such systems. Computationally, the master equation may be useful for the testing of
various approximations employed in theories of quantum transport. Physically, it offers a plausible explanation
of the origins of long-lived coherent optical responses of molecular aggregates in dissipative environments.
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I. INTRODUCTION

Quantum systems coupled to a “bath” of harmonic oscil-
lators are paradigmatic models in nonequilibrium quantum
statistical mechanics [1–6]. The primary goal of the theory
of quantum dissipative systems is the derivation of so-called
master equations, which govern the dynamics of the reduced
density matrix of a “system” of interest, starting from the
Liouville–von Neumann equation for the combined system-
bath ensemble. A well-known example is Redfield theory
(or modifications thereof [7]), which is valid in the limit of
weak system-bath coupling [1–8]. A master equation can
also be derived in the limit of strong system-bath coupling
[9,10]. More advanced treatments have lead to hierarchies of
master equations [11], which are valid beyond weak system-
bath coupling and the Markovian approximation. With these
methods, the time evolution of the reduced density matrix can
be computed to high accuracy by the solution of truncated
infinite chains of equations for auxiliary density matrices.

There exist very few system-bath models for which “exact”
closed-form quantum master equations have been derived. A
master equation is called exact if the time evolution of all
operators representing observables of the system is identical
with the time evolution described by the Liouville–von
Neumann equation for the system-bath ensemble. An obvious
example is the so-called phase-noise case, in which the system
Hamiltonian commutes with the system-bath coupling [12].
Nontrivial exact quantum master equations are known for the
free particle, the harmonic oscillator, as well as for two or N

identical oscillators bilinearly coupled to the harmonic bath
[13–19]. The system-bath Hamiltonians that are quadratic in
Bose or Fermi operators also allow for an analytical description
of the system dynamics (see, e.g., Refs. [20–22]).

In the present communication, we present the deriva-
tion of an exact quantum master equation for a molecular
aggregate consisting of N identical molecular monomers.
Each monomer comprises two electronic levels and a single
harmonic vibrational mode, which is coupled to a harmonic
bath. This model is prototypical for the description of
the transport of excitons, from quantum dots to photosyn-
thetic antennae and DNA [4,23–27]. Apart from curiosity
(as R. J. Baxter put it [28], “the model is relevant and it
can be solved, so why not to do so and see what it tells

us?”) our motivation is threefold. Conceptually, the derived
master equation is an exact master equation for a system with
electronic intermonomer couplings, intramonomer electron-
vibrational couplings as well as vibrational dissipation. None
of these couplings are assumed to be weak. Computationally,
the exact master equation may be useful for the testing of
various approximations (e.g., weak system-bath coupling, or
weak electron-vibrational coupling, or weak intermonomer
coupling) which are frequently employed in theories of quan-
tum transport [4,24–27,29–31]. Fundamentally, the master
equation offers a plausible explanation of the origins of
long-lived coherent optical responses of molecular aggregates
in dissipative environments [32–41].

We use units in which h̄ = 1.

II. DERIVATION OF THE MASTER EQUATION

Consider the total Hamiltonian H , which consists of the
system (S) Hamiltonian, the bath (B) Hamiltonian, and their
coupling:

H = HS + HB + HSB. (1)

The system comprises N electronic two-level systems, each of
which possesses a vibrational mode:

HS = Hex(B†
a,Ba′ ,Xj − Xj ′)

+
N∑

k=1

(
P 2

k

2M
+ M�2X2

k

2
+ ξB

†
kBkXk

)
. (2)

Here B
†
a and Ba′ are the exciton creation and annihilation

operators obeying the Pauli commutation rules [Ba,B
†
a′ ] =

δaa′ (1 − 2B
†
aBa′ ). Xk , Pk = −id/dXk , M , and � denote the

positions, momenta, masses, and frequencies of the harmonic
oscillators. The parameter ξ controls the strength of the
intramonomer exciton-vibrational coupling. The excitonic
Hamiltonian Hex may depend parametrically on the Xj − Xj ′ .
We need not specify Hex, but we require that it conserves
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the number of excitons and thus commutes with the number
operator N̂ :

[Hex,N̂ ] = 0, N̂ ≡
N∑

k=1

B
†
kBk. (3)

We allow for variable couplings between the identical
monomers, since the monomers are fixed (e.g., in protein
matrices) and interact via (usually, dipole-dipole) forces,
which depend on the relative positions and orientations of
the monomers.

The system interacts with a harmonic bath via bilinear
system-bath coupling

HSB + HB =
NB∑
i=1

[
p2

i

2mi

+ miω
2
i

2

N∑
k=1

(
xi − ciXk

miω
2
i

)2
]

. (4)

Here xi , pi = −id/dxi , mi , and ωi denote the positions,
momenta, masses, and frequencies of the bath oscillators, and
ci are the system-bath coupling coefficients. All N monomers
are assumed to be identical, and the influence of the bath (4) on
the system dynamics is determined by a single spectral density

g(ω) = π

2

NB∑
i=1

c2
i

miωi

δ(ωi − ω). (5)

Otherwise, the masses M , frequencies �, electronic cou-
plings ξ , and system bath-coupling coefficients ci acquire a
k-dependence, and an exact master equation cannot be derived.
However, the master equation derived below remains true
for different oscillators provided Mk ∼ �k ∼ ξk ∼ ci,k for
any k.

In the description of energy-transport and relaxation phe-
nomena in excitonic systems, the vibrational bath is usually
assumed to couple electronic degrees of freedom directly,
inducing fluctuations of the site energies [26,27]. In the present
study, as well as, e.g., in Refs. [4,42,43], each monomer is
coupled to the bath through its vibrational reaction mode.
As has been shown in Refs. [44–48], the two methods
are, in principle, equivalent: By introducing an appropriate
canonical transformation, one can switch from one description
to another by incorporating the system modes into the bath
or by singling-out several (high-frequency) modes from the
bath and treating them explicitly. The present choice of the
system-bath coupling through the monomer vibrational modes
is motivated by three major reasons. First, it allows us to derive
an exact master equation. Second, the explicit treatment of
high-frequency modes strongly coupled to electronic two-level
systems allows us to assume that the remaining bath modes
are coupled to the monomers rather weakly. This may become
important for the extension of the present theory beyond the
system-bath Hamiltonian (4). Third, the explicit consideration
of high-frequency vibrational modes facilitates the study of
vibrationally coherent effects in the system responses and
spectroscopic signals (see, e.g., Refs. [4,42,43]).

Let us introduce new variables specifying the system
oscillators, the “center-of-mass” coordinate R and the “internal
coordinates” Qj :

R = 1

N

N∑
j=1

Xj ; Qj = Xj+1 − Xj, j = 1,2, . . . ,N − 1.

(6)

The transformation (6) is described by the N × N matrix S:

Qj =
N∑

k=1

SjkXk, R =
N∑

k=1

SNkXk. (7)

The transformation back to the original coordinates Xk is given
by the inverse matrix:

Xj =
N−1∑
k=1

(S−1)jkQk + (S−1)jNR. (8)

We were unable to derive an explicit analytical expression
for S−1 for arbitrary N (for any finite N this can be done
numerically). For the following derivations, it is sufficient to
realize that S−1 obeys the conditions

N∑
j=1

(S−1)jk ≡ 0, (k = 1,2, . . . ,N − 1);

(9)
(S−1)jN ≡ 1 (j = 1,2, . . . ,N ),

which are elementary consequences of Eq. (8). According
to Eq. (6), the original momenta are connected to the new
momenta PR ≡ −id/dR and PQ,j ≡ −id/dQj as follows:

Pj = 1

N
PR − PQ,j + PQ,j−1. (10)

The change of the system vibrational variables (6) is borrowed
from the theory of Gaussian polymers (see, e.g., Ref. [49]).
It is linear, nonsingular (det S = 1), but not canonical. The
transformation (6) is just a technical tool, and we can return
to the original canonical Xj representation at the end of
the derivation. The choice (6) of the internal coordinates is
natural for a linear array of monomers. Other choices may be
preferable in different situations. The transformation (6) can
also be applied to the derivation of the master equation for
N identical oscillators bilinearly coupled to a harmonic bath,
generalizing thereby the approach of Ref. [19].

By insertion of Eqs. (8) and (10) into Eqs. (2) and (4), we
obtain the system Hamiltonians in the new variables

HS = H
(R)
S + H

(Q)
S , (11)

H
(R)
S =

(
P 2

R

2MN
+ MN�2R2

2
+ ξNN̂R

)
, (12)

H
(Q)
S = Hex(B†

a,Ba′ ,Qj ) +
N∑

k=1

(PQ,k−1 − PQ,k)2

2M

+
N−1∑
k,l=1

Gkl

M�2QkQl

2
+

N∑
k=1

N−1∑
l=1

ξB
†
kBk(S−1)klQl

(13)
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(by definition, PQ,0 = PQ,N ≡ 0). Here N̂ is the exciton
number operator (3) and

Gkl =
N∑

j=1

(S−1)jk(S−1)j l . (14)

The bath and the system-bath coupling Hamiltonians also split
into contributions associated with the variables R and Q:

HSB + HB = H
(R)
SB + H

(Q)
SB , (15)

where

H
(R)
SB =

NB∑
i=1

[
p2

i

2mi

+ N
miω

2
i

2

(
xi − ciR

miω
2
i

)2 ]
(16)

and

H
(Q)
SB =

N−1∑
k,l=1

Gkl

�BQkQl

2
. (17)

Here

�B =
NB∑
i=1

c2
i

miω
2
i

, (18)

so that H
(Q)
SB is the bath-induced renormalization of the

potential energy (the so-called Lamb shift). Combining the
Hamiltonians, we have

H = H
(R)
� + H

(Q)
� , (19)

H
(R)
� ≡ H

(R)
S + H

(R)
SB , H

(Q)
� ≡ H

(Q)
S + H

(Q)
SB (20)

(the subscript � indicates total system-bath Hamiltonians).
Due to the requirement (3) the Hamiltonians (19) commute[

H
(R)
� ,H

(Q)
�

] = 0. (21)

Equations (19)–(21) summarize the first main result of the
present paper. In words, they show that the parent Hamiltonian
(1) can be transformed into the Hamiltonian (19), which is
the sum of two mutually commuting Hamiltonians, H

(R)
� and

H
(Q)
� . H

(Q)
� depends on the internal coordinates Qj and is

independent of the bath variables. The bath enters H
(Q)
� only

through the bath-induced potential, H
(Q)
SB . H

(R)
� depends on

the center-of-mass coordinate R, through which the system is
bilinearly coupled to the bath. The discrete degrees of freedom
enter H

(R)
� exclusively via the number operator N̂ . After the

expansion in the eigenfunctions of N̂ , the Hamiltonian H
(R)
�

becomes harmonic. It is this latter fact that allows us to exactly
integrate the bath out and derive an exact master equation.

For doing that, let us introduce the total (system-bath)
density matrix ρ̃(t), which obeys the Liouville–von Neumann
equation

∂t ρ̃(t) = −i
[
H

(R)
� + H

(Q)
� ,ρ̃(t)

]
. (22)

Since the Hamiltonians H
(R)
� and H

(Q)
� commute, we can,

following Ref. [18], introduce a new density matrix

∂t ρ̃
(R)(t) = −i

[
H

(R)
� ,ρ̃(R)(t)

]
, (23)

which is connected to the original density matrix via the unitary
transformation

ρ̃(t) ≡ exp
(−iH

(Q)
� t

)
ρ̃(R)(t) exp

(
iH

(Q)
� t

)
. (24)

Since H
(R)
� (as well as H

(Q)
� ) commutes with the num-

ber operator N̂ , it can be expanded in the eigenfunctions
of N̂ :

H
(R)
� ≡

N∑
n=0

|n〉 〈n| H (R)
�,n. (25)

Here

H
(R)
�,n ≡ 〈n| H (R)

� |n〉 , N̂ |n〉 = n |n〉 . (26)

Therefore, Eq. (23) can be rewritten in the form

∂t ρ̃
(R)
mn (t) = −iH

(R)
�,mρ̃(R)

mn (t) + iρ̃(R)
mn (t)H (R)

�,n,
(27)

ρ̃(R)(t) ≡
N∑

n,m=0

|n〉 〈m| ρ̃(R)
mn (t).

Suppose that the density matrix at t = 0 commutes with
the number operator N̂ . Hence it can be expanded in the
eigenfunctions of N̂ as follows:

ρ̃(R)(0) =
N∑

n=0

|n〉 〈n| ρ̃(R)
nn (0). (28)

ρ̃(R)
nn (0) are not limited to pure states: They can represent

a linear combination of pure states belonging to the same
n. The initial condition (28) is adequate for many practical
purposes. Usually, the system is in its ground electronic state
(n = 0) or can be promoted to its first excited electronic state
(n = 1) by a laser pulse. Preparation of higher-order states
(n > 1) is also possible via multiple and/or strong laser pulses.
The level of description based on Eq. (28) is appropriate
for describing sequential (strong-pulse) spectroscopic signals,
given the pulses are temporally well separated [50]. If
Eq. (28) is not fulfilled, we have to consider Eq. (27) for
n �= m. In this case, ρ̃(R)

mn (t) is propagated via the Hamiltonian
H

(R)
�,n in the bra and via the Hamiltonian H

(R)
�,m �= H

(R)
�,n

in the ket, and an exact master equation is impossible to
derive.

Given the initial condition (28), we restrict ourselves to the
consideration of Eq. (27) with n = m,

∂t ρ̃
(R)
nn (t) = −i

[
H

(R)
�,n,ρ̃

(R)
nn (t)

]
. (29)

The Hamiltonian H
(R)
�,n (26) is the sum of the system Hamil-

tonian H
(R)
S (12) (in which we must substitute N̂ by its

eigenavalue n) and the system-bath Hamiltonian H
(R)
SB (16). Let

us now define the renormalized system oscillator mass M =
NM , the renormalized bath oscillator frequencies ω̄2

i = Nω2
i ,

and the renormalized system-bath coupling coefficients c̄i =
Nci , as well as introduce the shifted center-of-mass coordinate
R = R + nξ/(M�2), and the shifted bath coordinates x̄i =
xi + nξc2

i /(M�2miω
2
i ). After all these transformations, the
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Hamiltonian H
(R)
�,n assumes the form

H
(R)
�,n = H

(R)
� ≡ P 2

R

2M
+ M�2R

2

2

+
NB∑
i=1

[
p2

i

2mi

+ miω̄
2
i

2

(
x̄i − c̄iR

miω̄
2
i

)2]
. (30)

Apparently, H
(R)
� is n-independent; it describes a harmonic

oscillator of the mass M and frequency � bilinearly coupled
to the harmonic bath. The Liouville–von Neumann equation
(29) thus becomes

∂t ρ̃
(R)(t) = −i

[
H

(R)
� ,ρ̃(R)(t)

]
, (31)

ρ̃(R)(t) being the total density matrix in the transformed
variables. According to Refs. [13–16], the bath can be
integrated out in Eq. (31) exactly, yielding the master equation
for the reduced density matrix ρ(R)(t) ≡ TrB{ρ̃(R)(t)}:

∂tρ
(R)(t) = −i

[
H

(R)
S ,ρ(R)(t)

] + �(t)ρ(R)(t). (32)

Here H
(R)
S ≡ P 2

R/(2M) + M�2R
2
/2, and the dissipation op-

erator is defined as follows:

�(t)ρ(R)(t) ≡ −ia(t)[R
2
,ρ(R)(t)] − ib(t){R,[PR,ρ(R)(t)]}

+ c(t){R,[PR,ρ(R)(t)]} − d(t){R,[R,ρ(R)(t)]}.
(33)

In the above equation, {.,.} denotes the anticommutator, and
a(t), b(t), c(t), d(t) are real functions that are explicitly de-
fined in Refs. [13–16]; they are determined through the spectral
density of the renormalized bath introduced in Eq. (30):

ḡ(ω) = π

2

NB∑
i=1

c̄2
i

miω̄i

δ(ω̄i − ω) = Ng

(
ω√
N

)
(34)

[g(ω) is given by Eq. (5)]. Returning to the original variables
R yields

∂tρ
(R)
nn (t) = −i

[
H

(R)
S,n ,ρ(R)

nn (t)
] + �n(t)ρ(R)

nn (t). (35)

Here ρ(R)
nn , H

(R)
S,n , and �n(t) are obtained from ρ(R), H

(R)
S , and

�(t) by the replacement of R with R + nξ/(M�2).
Combining Eqs. (23) and (24) and using Eq. (33), we obtain

the desired exact master equation for the reduced (system)
density matrix ρ(t) ≡ TrB[ρ̃(t)]:

∂tρ(t) = −i
[
H

(R)
S + H

(Q)
� ,ρ(t)

] + �(t)ρ(t), (36)

�(t) ≡ ∑
n |n〉 �n(t) 〈n|. Equivalently, the master equation

can be rewritten as

∂tρ(t) = −i
[
HS + H

(Q)
SB ,ρ(t)

] + �(t)ρ(t), (37)

H
(Q)
SB [Eq. (17)] being the bath-induced renormalization of the

system potential. Equations (36) and (37) can be transformed
back to the original Xi-representation, if desired. Very similar

master equations can be derived assuming that the operators
B

†
a and Ba′ obey either the Bose or the Fermi commutation

relations.
From the computational point of view, H

(Q)
� cannot be

factorized into commuting sub-Hamiltonians for the Qk . For
small N (see Ref. [51] for the vibronic trimer) a suitable matrix
representation of H

(Q)
� can be introduced. Alternatively, one

can invoke the generalized Fulton-Gouterman transformation
[52,53], which diagonalizes H

(Q)
� in the electronic Hilbert

space, reducing the problem to the numerical evaluation of
eigenvalues and eigenfunctions of the transformed Hamilto-
nian.

III. DISCUSSION

The master equation (37) is mathematically exact and
equivalent to the Liouville–von Neumann equation with
the initial Hamiltonian (1)–(4). According to the master
equation (37), the density matrix in the Q subspace, ρ(Q)(t) ≡
Tr(R)[ρ(t)], does not experience dissipation. Indeed,

∂tρ
(Q)(t) = −i

[
H

(Q)
� ,ρ(Q)(t)

]
(38)

because the contributions due to H
(R)
S and �(t) are traced out

(compare with Ref. [19]). The decoherence-free subspace [54]
hence spans the entire Q subspace. Physically, this is a striking
manifestation of quantum interference. Analogous effects have
recently been studied in Ref. [55].

The presence of the decoherence-free Q subspace cannot be
ubiquitous in real aggregates. The key simplifying assumption
is that all monomers are coupled to a single harmonic bath
[the Hamiltonian (4)]. More generally, we can assume that
each monomer is coupled to its own bath,

HSB + HB =
NB∑
i=1

N∑
k=1

[
p2

i,k

2mi

+ miω
2
i

2

(
xi,k − ciXk

miω
2
i

)2 ]
.

(39)

The influence of these baths on the system dynamics is
determined by the spectral density gjk(ω) (1 � j,k � N

enumerate different monomers). Apparently, the single bath
(4) corresponds to gjk(ω) = g(ω) given by Eq. (5) and is
thus equivalent to N fully correlated baths. Uncorrelated
baths yield gjk(ω) = g(ω)δjk . Partially correlated baths can
also be defined by introducing the correlation parameter
0 � γ � 1 as follows: gjk(ω) = g(ω)[δjk + γ (1 − δjk)]. The
fully correlated and uncorrelated baths correspond to γ =1
and 0, respectively. If γ �= 1, no decoherence-free subspaces
exist and the entire system relaxes to equilibrium. The above
analysis suggests that the relaxation in the R subspace has
a characteristic rate ν ∼ g(ω), while the relaxation in the Q

subspace has a rate νγ ∼ ν(1 − γ ).
It is impossible to derive an exact master equation in

the case of partially correlated baths. However, the master
equation (37) may be augmented with phenomenological
dissipative operators that describe relaxation in the Q sub-
space. This can be done, for example, by switching to the
eigenvalue representation in the Q subspace and introducing
the corresponding Redfield operator. Another option is to use
the dissipation operator −νγ (1 − ρ(Q)

eq Tr(Q){. . .}) [56]. Here

041139-4



EXACT QUANTUM MASTER EQUATION FOR A MOLECULAR . . . PHYSICAL REVIEW E 84, 041139 (2011)

ρ(Q)
eq is the equilibrium Boltzmann distribution corresponding

to the Hamiltonian H
(Q)
� .

The problem of bath correlations can be analyzed from a
microscopic perspective [57]. If the harmonic potentials in the
Hamiltonians HSB and HB are considered as linearizations of
anharmonic interaction potentials between the particles of the
system and the bath, one arrives at the Hamiltonian (4), because
the identical particles of the system should interact via the
same (in our case, harmonic) potentials with the bath particles.
The domain of validity of such a primitive linearization of the
interaction potentials is, however, limited to short times. On
the other hand, we can consider the harmonic bath and the
bilinear system-bath coupling in the spirit of a normal mode
analysis [58,59]. Each particle of the system then experiences
different local potentials from the bath particles, no matter
whether the particles are identical or not. This is tantamount
to introducing different (possibly correlated) local harmonic
baths for each monomer, which ensure relaxation of all
(Q and R) degrees of freedom. On physical grounds, one
expects that intramolecular vibrational baths should be close
to the fully correlated limit, while environmental vibrational
baths should be less correlated.

Uncorrelated baths are the default choice in many simula-
tions, although there exist strong experimental indications that
this assumption is not universally applicable [32–34,60,61],
and partially correlated baths are more appropriate for describ-
ing coherent energy and exciton transport [62–76]. The present
analysis suggests that relaxation of molecular aggregates in
the R and Q subspaces is governed by two different rates
ν and νγ . For fully correlated baths, νγ = 0. One hence
expects that νγ < ν for partially correlated baths. The slow
relaxation in the Q subspace manifests itself in slow decays
of the populations and coherences of the aggregate density
matrix. This may be one of the reasons of the existence of
long-lived coherent optical responses in dissipative excitonic
systems [32–41].
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