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Analytic solution of the fractional advection-diffusion equation for the time-of-flight
experiment in a finite geometry
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A general analytic solution to the fractional advection diffusion equation is obtained in plane parallel geometry.
The result is an infinite series of spatial Fourier modes which decay according to the Mittag-Leffler function,
which is cast into a simple closed-form expression in Laplace space using the Poisson summation theorem. An
analytic expression for the current measured in a time-of-flight experiment is derived, and the sum of the slopes of
the two respective time regimes on logarithmic axes is demonstrated to be −2, in agreement with the well-known
result for a continuous time random-walk model. The sensitivity of current and particle number density to the
variation of experimentally controlled parameters is investigated in general, and the results applied to analyze
selected experimental data.
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I. INTRODUCTION

Modern solid state electronics is largely based upon inor-
ganic, crystalline materials, such as silicon and germanium, the
transport properties of which are generally well understood [1].
The same applies to gaseous electronics, for which there is a
one-to-one correspondence with crystalline condensed matter
[2]. On the other hand, organic semiconductors are attracting
increasing interest because of their desirable properties, such
as transparency, flexibility, and the prospect of economic
advantage over inorganic electronics [3]. Organic materials,
which may be amorphous, exhibit electrical properties that
are generally qualitatively and quantitatively quite different
from inorganic materials [4]. For example, charge carriers
in a time-of-flight experiment exhibit long-lived, spatially
dispersed structures. Furthermore, the roles of the mobility
and diffusion coefficients μ and DL, respectively, are not at
all clear-cut, as they are in crystalline structures or gases.
Such anomalous or “dispersive” behavior arises because the
scattering of charge carriers may be accompanied by trapping
in localized states for times τ , as determined by a “relaxation
function” φ(τ ), which has an asymptotic time dependence
∼τ−γ , with fractional exponent γ .

The recent interest in “fractional kinetics” derives mainly
from the seminal paper of Scher and Montroll [5], whose
discussion in terms of a continuous time random walk has
spawned an extensive literature in its own right [4,6–11]. In this
literature, it is often assumed that the charge carrier number
density n(z,t) may be found as the solution of a fractional
diffusion equation, which for the present purposes we will refer
to as the “Caputo” form of the fractional advection diffusion
equation

C
0 D

γ
t n + W

∂n

∂z
− DL

∂2n

∂z2
= 0, (1)

where C
0 D

γ
t is the Caputo fractional partial derivative with

respect to t of order γ . The Caputo derivative (see Appendix A)
accounts for trapping in localized states. This is appropriate
for a thin sample of amorphous material confined between
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two large-plane parallel boundaries, with all spatial variation
confined to the normal direction, which defines the z axis of
a system of coordinates. In addition it is assumed that the
small signal limit prevails, and that both the drift velocity
W = μE, also directed along the z axis, and the longitudinal
diffusion coefficient DL derive entirely from an externally
applied field E. For nondispersive transport, γ → 1 such that
C
0 D

γ
t n → ∂n

∂t
, and Eq. (1) assumes the familiar classical form

[12]. The present article focuses on new techniques for the
solution of Eq. (1) for the purposes of better understanding the
factors influencing the experiment.

Before proceeding with the detailed analysis, it is important
to bear in mind that Eq. (1) is only approximate. Just as
the kinetic theory of classical charge carrier transport in
crystalline semiconductors and gases has been developed to
a sophisticated level through the solution of Boltzmann’s
kinetic equation, a more general and accurate picture of
anomalous transport in amorphous media should be obtained
through the solution of a fractional kinetic equation in phase
space, in which the microscopic collision operator accounts
for the scattering and trapping processes. Projection onto
configuration space is achieved by integration over velocity
space, yielding (with approximations) Eq. (1) plus expressions
for macroscopic properties such as μ and DL. The phase-space
approach is beyond the scope of the present work, and the
reader is referred to Ref. [13] for such considerations.

Whatever the medium, gaseous or condensed matter,
crystalline or amorphous, the advection diffusion equation (1)
is usually assumed to provide the link between the theory
and experiment, its limitations not withstanding. Thus, on
the one hand, the solution of the Boltzmann kinetic equation
provides theoretical values of μ and DL, and on the other, the
solution of Eq. (1) for n(z,t), with appropriate boundary and
initial conditions, enables experimental data to be unfolded
to furnish empirical values of the same transport properties.
A comparison of theoretically derived and experimentally
measured transport properties then gives information about the
fundamental microscopic nature of the interaction of charge
carriers with the medium including the trapping or detrapping
process. This procedure is standard for electrons and ion
“swarms” in gases [12], but the application of the idea to
amorphous media awaits the further development of fractional
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Boltzmann phase-space kinetics. That is part of our long term
theoretical program, but in the meantime, we focus in the
present article on the more practical imperative of developing
an accurate and efficient means of solving Eq. (1).

To this end, a simple and numerically efficient solution
of Eq. (1) would be highly desirable. Previously reported
solutions of fractional diffusive systems for bounded media
have been expressed in terms of infinite series solutions
[8,14,15]. We show that the series solution to Eq. (1) with
absorbing boundaries may be collapsed into a simple closed
form solution in Laplace space by building upon the experience
gained in the solution of the nondispersive diffusion equation
in gaseous electronics, specifically, for the pulsed radiolysis
drift tube experiment [2]. The structure of this article is as
follows. In Sec. II, we model the time-of-flight experiment [16]
and obtain a formal analytic solution of Eq. (1) as a series of
Mittag-Leffler functions, which is cast into a tractable form,
suitable for practical purposes, using the Poisson summation
theorem. In Sec. III, we express the current measured in a
time-of-flight experiment in terms of this analytic solution, and
show analytically that the sums of the slopes in distinct time
regimes add up to −2 on a log-log plot, as first predicted by
Scher and Montroll [5] and as observed in many experiments
[4]. In Sec. IV, we explore the way that current varies with
experimental parameters, and go on to fit selected experimental
data. We show that our solution demonstrates the power-law
decay characteristic of dispersive transport.

II. ANALYTIC SOLUTIONS OF THE FRACTIONAL
DIFFUSION EQUATION

In this article, we will use Eq. (1) to model a disordered
semiconductor in a time-of-flight experiment [16]. The rela-
tionship between the various forms of the fractional advection
diffusion equation using both Caputo and Riemann-Liouville
forms of the fractional derivative operator is discussed in
Appendix A. A one-dimensional equation, such as Eq. (1), is
appropriate for a thin sample of disordered material confined
between two large-plane parallel boundaries, which we shall
take to be at z = 0 and L, respectively. All spatial variation
is confined to the normal direction, which defines the z axis
of a system of coordinates. In addition it is assumed that the
small signal limit prevails, and that both the drift velocity
W = μE (where μ is the mobility) and the longitudinal
diffusion coefficient DL derive entirely from an externally
applied field E.

In the idealized time-of-flight experiment, a sharp pulse of
n0 charge carriers is released from a source plane z = z0 at
time t = t0, that is,

n(z,t0) = n0δ(z − z0), (2)

and the fractional advection diffusion equation is solved using
the methods and techniques described below. The solution for
other experimental arrangements (e.g., for sources distributed
in space and/or emitting for finite times) can be found by the
appropriate integration of this fundamental solution over z0

and/or t0, respectively. The solution for perfectly absorbing
boundaries, for which

n(0,t) = 0 = n(L,t), (3)

is

n(z,t) = n0

∞∑
m=1

ϕm(z)Eγ [−ωm (t − t0)γ ], (4)

where the spatial modes are

ϕm(z) ≡ eλ(z−z0)

L
(cos [km(z − z0)] − cos [km(z + z0)]),

and where

λ ≡ W

2DL

, (5a)

ωm ≡ DL

(
λ2 + k2

m

)
, (5b)

km ≡ mπ

L
. (5c)

In Eq. (4), Eγ (z) is the Mittag-Leffler function of order γ :

Eα,β (z) ≡
∞∑

k=0

zk

(αk + β)
, Eα(z) ≡ Eα,1(z). (6)

Equation (4) gives an exact solution, however, this expres-
sion is somewhat difficult to manipulate due to the presence
of the Mittag-Leffler function. Furthermore, a large number of
terms are needed for this series to converge, and the numerical
evaluation of the Mittag-Leffler function to a suitable precision
is computationally difficult.

As is well known, fractional models obey a correspon-
dence principle, where nonfractional behavior is recov-
ered in the appropriate limits. In this case, in the limit
γ → 1 the Mittag-Leffler function reduces to an exponen-
tial [i.e., E1(z) = ez] and Eq. (4) reduces to Eq. (3b) in
Ref. [2]. In the classical, nonfractional limit [2], it was
shown that the series convergence could be substantially
improved through the application of the Poisson summation
theorem (PST)

∞∑
m=−∞

f (mT ) = 1

T

∞∑
m=−∞

F

(
m

T

)
, (7)

where F (k) is the Fourier transform of f (x). This article
will demonstrate that the PST can also be applied to the
fractional advection diffusion equation with similar benefits.
Attempting to apply the PST directly to Eq. (4) results in
an intractable Fourier transform involving the Mittag-Leffler
function. On the other hand, the Mittag-Leffler function has
a simple Laplace domain representation. Transformed into
Laplace space, Eq. (4) becomes

n̄(z,s) = n0

∞∑
m=1

ϕm(z)
sγ−1

sγ + ωm

, (8)

where, without loss of generality, we have taken t0 = 0.
Applying the Poisson summation theorem to Eq. (8) gives

the equivalent form

n̄(z,s) = αeλz

∞∑
m=−∞

[e−β|2Lm−(z−z0)| − e−β|2Lm−(z+z0)|], (9)
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where the space-independent parameters α and β are defined
as

α(s) ≡ n0s
γ−1e−λz0

2
√

DL

√
sγ + DLλ2

, (10)

β(s) ≡
√

sγ + DLλ2

√
DL

. (11)

Simplifying Eq. (9), we obtain the closed-form expression

n̄(z,s) =αeλz

[
e−β|z−z0| − e−β|z+z0| − 4 sinh(βz) sinh(βz0)

e2βL − 1

]
.

(12)

A necessary condition for convergence to the closed-form
expression Eq. (12) is

|exp(−2βL)| < 1, (13)

which defines the region of convergence of the Laplace domain
function Eq. (12).

It should be emphasized that Eq. (12) is a general result,
valid for the fractional and nonfractional cases. For normal
transport (i.e., crystalline semiconductors or gaseous elec-
tronics) γ = 1, and Eq. (9) has an analytic inverse Laplace
transform that reduces to Eq. (7) of Ref. [2], where it was
obtained using time domain methods. For dispersive transport
γ < 1, and an analytical inverse Laplace transform is difficult
to find, so the applications presented below required numerical
inversion of the Laplace transform.1

III. CURRENTS AND THE SUM RULE

A. Number, number density, and charge carrier current
in the time-of-flight experiment

A typical time-of-flight experiment measures the external
current as photogenerated carriers are driven through the
sample by an applied electric field. Under the condition that the
experimental time scale is much less than the RC (where R is
the resistance and C the capacitance) time of the measurement
circuit, the observed current is the space-averaged conduction
current

I = 1

L

∫ L

0
j (z,t)dz. (14)

Expressed in terms of the number density n(z,t), the
photocurrent is

I (t) = q
d

dt

{
1

L

∫ L

0
zn(z,t)dz −

∫ L

0
n(z,t)dz

}
, (15)

1Numerical inverse Laplace transformation was achieved using
the MATLAB code published on the Mathworks File Exchange by
Srigutomo [17]. For large values of the parameter β [defined in
Eq. (11)], the multiple precision (MP) toolbox for MATLAB [18]
was required to obtain numerical convergence. The MP toolbox
uses the open-source GNU Multiple Precision Arithmetic Library
(http://gmplib.org/).

where q is the charge on each carrier. The origin of Eq. (15) is
detailed in Appendix B. Substituting the time domain n(z,t)
solution Eq. (4) into Eq. (15), the current is found to be

I (t) =
∞∑

m=1

κmt−1Eγ,0 (−ωmtγ ) , (16)

with

κm = 2qn0e
−λz0kmDL

L2ω2
m

sin (kmz0)

× [2λDL(eλL(−1)m − 1) − Lωm].

Alternatively, a closed-form expression may be found in
Laplace space by substituting Eq. (12) into Eq. (15).

B. Sum rule for asymptotic slopes

Experimental time-of-flight current traces plotted on double
logarithmic axes often demonstrate two distinct straight line
regimes (see, for example, Fig. 5), a distinctive shape which has
been described as the “signature” of dispersive transport [4].
In many materials, the sum of the slopes on logarithmic axes
of these two regimes is very close to −2 (Refs. [4,19]), a
prediction originally made for a continuous time random walk
model by Scher and Montroll [5]. In what follows, we prove
that our expression for the current, Eq. (16), demonstrates the
same “sum of slopes” criterion.

The small argument asymptote of the Mittag-Leffler func-
tion can be written down from its power-series definition
Eq. (6). The result is

Eγ,0(−ωmtγ ) ∼ −ωmtγ ,

where we have neglected terms of order O([ωmtγ ]2) and
higher. Substituting this into Eq. (16) we find the early time
current to be

Iearly(t) ≈
∞∑

m=1

−κmt−1ωmtγ ∼ tγ−1.

Conversely, for the long time current, we use the large |z|
asymptote valid for negative real z [20]

Eα,β(z) = −
p∑

k=1

z−k

 (β − αk)
+ O(|z|−1−p).

If t is large, then by taking p = 1 we obtain the following form
for the long time current

Ilate(t) ≈ −
∞∑

m=1

κmt−1 (−ωmtγ )−1

 (−γ )

∼ t−(1+γ ), γ �= 1.

In summary, the asymptotic forms of the current for γ �= 1 are

I (t) ∼
{
t−(1−γ ), earlytimes,
t−(1+γ ), latetimes,

(17)

in agreement with the sums of slopes condition.
It is noteworthy that these asymptotes are independent of the

boundary conditions imposed on the system. When solving the
fractional diffusion equation n(z,t) is assumed to be factorable
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as n(z,t) = Z(z)T (t). The time-dependent function, T (t) can
be expressed in terms of Mittag-Leffler functions

n(z,t) =
∑
m

Zm(z)Eγ (cmtγ ) , (18)

where cm are the separation eigenvalues found by applying the
boundary conditions to the differential equation for Z(z). The
asymptotes of the Mittag-Leffler functions [20] are such that
physically acceptable solutions must have cm < 0 so that n(z,t)
remains bounded as t → ∞. Imposing only the requirement
that the boundary conditions result in a negative separation
constant, using Eq. (15) the current must take the form

I (t) =
∑
m

{
t−1Eγ,0 (cmtγ )

∫ L

0

(
z

L
− 1

)
Zm(z)dz

}
.

Using the asymptotic limits detailed above, the time depen-
dence may be brought outside the summation, and the the
same temporal asymptotes detailed above then follow. This
result is independent of the spatial boundary conditions and
hence independent of the specific form of Z(z).

C. Transit time

The transit time can be obtained from the expression for the
total number of charge carriers within the medium. Defining

N̄ (s) ≡
∫ L

0
n̄(z,s)dz,

we find in Laplace space

N̄ = n0

s

[
1 − e−(λ+β)z0 − sinh (βz0)

sinh (βL)
e−λz0 (eλL − e−βL)

]
.

(19)

To simplify the mathematics and obtain an estimate for the
transit time, we neglect diffusion by taking the limit DL → 0:

N̄DL=0 = n0

s

(
1 − exp

[−sγ (L − z0)

W

])
. (20)

In the classical case with γ = 1, the above equation has the
expected inverse Laplace transform

N
(classical)
DL=0 (t) = n0

[
1 − H

(
t − L − z0

W

)]
,

where H (t) is the Heaviside step function.
For the dispersive case, where γ < 1, Laplace inversion by

complex contour integration gives

NDL=0(t) = n0

∞∑
m=1

ηm,γ

(
L − z0

Wtγ

)m

, (21)

where

ηm,γ ≡ (−1)m+1 sin (mπγ )  (γm)

πm!
.

In the special case of γ = 1/2, the power series Eq. (21) is
equivalent to the closed-form expression

N
(γ=0.5)
DL=0 (t) = n0 erf

(
L − z0

2W
√

t

)
, (22)

where erf is the Gaussian error function. It is interesting to note
that Eq. (22) demonstrates great dispersion despite it being a
zero diffusion limit of the true behavior of the system.

A clear transit time cannot be precisely defined because
the packet of charge carriers becomes widely dispersed.
Nevertheless, there exist two regimes of current transport
behavior, and the boundary between these regimes defines
a “transit time” for the material. It can be seen that two distinct
regimes will emerge from Eq. (21), according to the magnitude
of the term in parentheses. The transit time, defining the
transition between regimes, is therefore approximately given
by

L − z0

Wt
γ

Tr

∼ 1.

Solving for the transit time tTr

tTr ∼
(

L − z0

W

)1/γ

. (23)

This is in agreement with the expected experimental length
and field dependence [4,5,19].

IV. RESULTS

A. Impact of model parameters on the density
and current profiles

The model discussed above has five parameters: the
fractional drift velocity W , the fractional diffusion coefficient
DL, the fractional order γ , the initial source location z0, and
the length of the sample L. These parameters are constrained
such that 0 < γ � 1, 0 < z0 < L, and DL > 0. The effects of
varying the first three of these parameters will be discussed
below. The remaining two, the initial location and length of
the sample, have obvious implications for the number density
profiles.

1. Variation in fractional order γ

The fractional order γ is a dimensionless quantity which
defines the degree of the trapping within the medium, with
a smaller value corresponding to greater and longer lasting
traps. The maximum value of γ = 1 corresponds to “normal
transport,” which is governed by the classical (nonfractional)
diffusion advection equation.

The impact of γ on the electric current is demonstrated
in Fig. 1. For nondispersive transport (γ = 1), the result is
essentially a time-independent (displacement) current until
a sharp cutoff where the charged particles exit the system
through the electrode. The finite drop-off time is a reflection
of the diffusion in the system. For dispersive transport, the
departure of the current traces from the classical profiles is
enhanced as the fractional order decreases. The fractional
order γ defines the slopes of the two regimes, and hence,
characterizes the fundamental shape of the current trace. The
relevant relations are given in Eq. (17) above.

Number density profiles corresponding to the aforemen-
tioned current solutions are shown in Fig. 2. Solutions for
γ = 1 exhibit a moving Gaussian “pulse” of charge carriers,
spreading according to DL and drifting according to W . This
is shown in Fig. 2(a).
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FIG. 1. (Color online) Impact of the fractional order γ on the
temporal current profiles. Each curve is the current resulting from the
respective number density solution of Fig. 2.

For γ < 1, the signature of fractional or dispersive behavior
appears. In this mode, the number density profile retains a
“memory” of the initial sharp spike at z = z0. This peak
in the density profile does not drift with W , as it does in
the nondispersive case. This long persistence of the initial
condition has previously been mentioned in the literature
[5,8,21]. The smaller the value of γ , the more dispersive
the transport. Indeed, for strongly dispersive systems, the spike
at z = z0 is the most prominent feature of the entire charge
distribution for much of its lifetime. This sharp spike is most
clearly illustrated in the contour plots of Figs. 2(c) and 2(d).

2. Impact of the drift velocity W and diffusion coefficient DL

The fractional drift velocity has units of m/sγ , and describes
the tendency of the charged particles to drift in the positive
z direction. The fractional diffusion coefficient has units of
m2/sγ , and describes the tendency of the charged particles to
diffuse down the concentration gradient. The effects of varying
W and DL are demonstrated in Fig. 3 for a weakly dispersive
system (γ = 0.8) and in Fig. 4 for a strongly dispersive system
(γ = 0.4). The relevant parameters are indicated in the figure
captions. For both systems, an increased W sweeps the charge
carriers further to the right, and an increased DL spreads the
swarm over a wider area.

B. Experimental results

To demonstrate the process by which this model may be
fitted to time-of-flight experimental data, we consider the data
for trinitrofluorenone and polyvinylcarbazole (TNF-PVK)
presented as Fig. 6 of Ref. [5]. The data were digitized from the
scanned plot, and the slopes of the two regimes were used to
furnish an estimate for γ . We used L = 1 to give a normalized
length scale and selected the initial source location z0 to be
0.2 since the model is largely insensitive to the location of the
source, provided it is sufficiently far from the electrodes to
avoid substantial “back diffusion.”
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FIG. 2. (Color online) Impact of the fractional order γ of the
trapping distribution on the space-time evolution of the number
density. In these plots, W = 40/L (s−γ ) and DL = 1/L2 (s−γ ).

The intercept of the two straight lines was taken to be the
transit time tTr, and the following equation was used to furnish
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FIG. 3. (Color online) Space-time evolution of the number
density profile for γ = 0.8. Here W and DL are normalized to the
length of the apparatus and are hence both specified in units of s−γ .
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FIG. 4. (Color online) Space-time evolution of the number
density profile for γ = 0.4. Notice that these figures use a different
time scale to those in Fig. 3. Here W and DL are normalized to the
length of the apparatus and are hence both specified in units of s−γ .
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FIG. 5. Experimental time-of-flight current trace data for
trinitrofluorenone-polyvinylcarbazole, digitized from Ref. [5]. The
solid line is the model fit.

an estimate of W , which provided a starting point for curve
fitting:

tTr ∼ 1

2

(
L − z0

W

) 1
γ

, (24)

the factor of 1/2 being an empirical correction that gives better
results when compared with the order of magnitude estimate
Eq. (23). The final remaining parameter was initially taken as
DL ≈ W/20.

The parameter estimates discussed above were used as the
starting point for nonlinear least-squares curve fitting. The
MATLAB curve fitting toolbox was used. The result of the model
fitting is shown in Fig. 5.

V. CONCLUSION

We have demonstrated a fractional advection diffusion
equation modeling the hopping transport observed in many
disordered semiconductors. We have shown that the infinite
series of Fourier modes Eq. (4) for the bounded solution can
be collapsed into a closed-form expression using the Poisson
summation theorem Eq. (12). It is this closed-form expression
that then facilitates the extraction of model parameters from
the experimental data using a simple curve fitting routine.
We have modeled a time-of-flight experiment by assuming the
initial condition n(z,t0) = n0δ(z − z0). We have calculated the
resultant electric current, and shown that the sum of slopes on
logarithmic axes is −2, as predicted by other models and as
verified by the experiment. It is possible to extend this solution
to sources of finite duration or finite width by integrating with
respect to t0 or z0, respectively.
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APPENDIX A: CAPUTO AND RIEMANN-LIOUVILLE
FORMS OF THE FRACTIONAL ADVECTION

DIFFUSION EQUATION

1. Fractional derivatives

The two forms of fractional derivative commonly used to
describe subdiffusive systems are the Caputo derivative and the
Riemann-Liouville derivative. In what follows, we describe
fractional partial derivatives with respect to t in terms of an
arbitrary function f (t,x,y, . . .). For clarity of presentation,
the functional dependence of f on the other variables is
suppressed, and we write simply f (t).

The Caputo derivative of order 0 < α < 1 is defined as [22]

C
0 Dα

t f (t) ≡ 1

(1 − α)

∫ t

0
(t − τ )−α f ′(τ )dτ, (A1)

where f ′(τ ) is the ordinary partial derivative ∂f/∂t evaluated
at t = τ . The Laplace transform of the Caputo derivative is∫ ∞

0
e−st C

0 Dα
t f (t) dt = sαf̄ (s) − sα−1f (0), (A2)

where f̄ (s) is the Laplace transform of f (t), and f (0) is the
initial condition.

The Riemann-Liouville fractional derivative of order 0 <

α < 1 is defined as [22]

RL
0 Dα

t f (t) ≡ 1

(1 − α)

∂

∂t

∫ t

0
(t − τ )−α f (τ )dτ. (A3)

The Laplace transform of a Riemann-Liouville derivative is∫ ∞

0
e−st RL

0 Dα
t f (t) dt = sαf̄ (s) − f0,

where f0 is a fractional initial condition

f0 ≡ 1

 (1 − α)
lim
t→0

∫ t

0

f (τ )

(t − τ )α
dτ. (A4)

2. Fractional advection-diffusion equations

The first model for dispersive transport was due to Scher
and Montroll [5], who used a continuous time random walk
(CTRW) where the waiting time probability density function
has divergent mean. A continuous time random walk is
characterized by a hopping probability density function (pdf)
ψ(z,t). We consider the decoupled case ψ(z,t) = λ(z)w(t)
where λ(z) is the jump length pdf and w(t) is the waiting
time pdf. Under these conditions, the CTRW has the Fourier-
Laplace space solution [23]

n̄(k,s) = 1 − w̄(s)

s

n0(k)

1 − λ(k)w̄(s)
, (A5)

where Fourier-transformed functions are denoted by the
explicit dependence on the Fourier variable k, and n0(k) is
the Fourier-transformed initial condition.

We postulate a CTRW where the waiting time pdf has a
divergent mean. Such a pdf has the small s asymptote [8,23]

w̄(s) ∼ 1 − (τs)γ . (A6)
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We further postulate a well-behaved jump length pdf with
moment generating function

Mλ(χ ) = 1 + M1χ + M2χ
2

2!
+ · · · ,

for first and second moments M1 and M2, respectively.
This corresponds to a characteristic function (i.e., Fourier
transform) in the small k limit of

λ(k) = Mλ(ik) ∼ 1 + iM1k − M2k
2

2
. (A7)

Substituting these asymptotes into Eq. (A5), and discarding
terms of order O(ksγ ) and higher, we obtain

n̄(k,s) = n0(k)sγ−1

sγ − iWk + DLk2
, (A8)

where W ≡ M1/τ
γ and DL ≡ M2/2τ γ . Equation (A8) is

the free-space propagator of fractional advection diffusion.
By rearranging Eq. (A8), one can derive various forms of
the fractional advection diffusion equation. For example, one
readily obtains

sγ n̄(z,s) − sγ−1n0(z) +
(

W
∂

∂z
− DL

∂2

∂z2

)
n̄(z,s) = 0, (A9)

which is the Laplace transform of the Caputo fractional
equation (1). Alternatively, Eq. (A8) may be rearranged to give

n̄(z,s) − n0(z)

s
+ s−γ

(
W

∂

∂z
− DL

∂2

∂z2

)
n̄(z,s) = 0, (A10)

which is a fractional integral equation. Inverting the Laplace
transform in Eq. (A10), and taking an ordinary partial
derivative with respect to time, one obtains the following form
of the fractional advection diffusion equation:

∂n

∂t
+ RL

0 D
1−γ
t

(
W

∂n

∂z
− DL

∂2n

∂z2

)
= 0. (A11)

Equation (A11) is a special case of the fractional Fokker-
Planck equation [9,24], and is equivalent to the Caputo
fractional advection diffusion equation (1) considered in this
article.

APPENDIX B: DERIVATION OF CURRENT FORMULA

Consider a time-of-flight system where all spatial variation
is confined to the z direction, normal to the electrodes. An
electrode at z = 0 is held at a potential V0 by an external power
supply, and the opposite electrode at z = L has potential V1

and is connected via a resistor R to the ground, as shown in
Fig. 6. We define a surface S which is normal to the electrodes
at a position z = z′, and a volume V which is the entire area
between the z = 0 electrode and the surface S.

The overall current will consist of a conduction current and
a displacement current. Integrating across the width of the
sample

I = 1

L

∫ L

0
j (z′,t)dz′ + εA

L

d

dt
(V0 − V1) , (B1)

where j (z′,t) is the conduction current passing through the
surface S, ε is the permittivity of the semiconducting material,
and A is the area of the electrodes.

FIG. 6. (Color online) Simplified time-of-flight schematic used
in current derivation. The two electrodes at z = 0 and z = L have
potentials V0 and V1, respectively. A surfaceS cuts through the sample
at z = z′; the volume V is the space between the z = 0 electrode and
the surface S.

Under typical measuring conditions, the transit time tTr is
much less than the RC time of the circuit. Therefore, we assume
that V0 − V1 is essentially constant, and then the current is
simply the space-averaged conduction current

I = 1

L

∫ L

0
j (z′,t)dz′. (B2)

The conduction current leaving the volumeV is the negative
rate of change of the charge enclosed

j (z′,t) = − d

dt

∫ z′

0
qn(z,t)dz.

Using Eq. (B2)

I = − q

L

d

dt

∫ L

0

∫ z′

0
n(z,t)dzdz′.

Changing the order of integration,

I = − q

L

d

dt

∫ L

0

∫ L

z

n(z,t)dz′dz

= − q

L

d

dt

∫ L

0
(L − z) n(z,t)dz

= q
d

dt

{
1

L

∫ L

0
zndz −

∫ L

0
ndz

}
. (B3)

It should be noted that different expressions exist within the
literature for the current depending on whether the paper in
question used a multiple trapping model or a hopping model.
This is why our current expression (B3) is, at first glance,
not equivalent to the current expressions used by some other
authors. Under a multiple trapping model, the equivalent is

I (t) ∝ W

L

∫ L

0
nfree(z,t)dz, (B4)

where nfree is the distribution of untrapped particles and W

is the drift velocity of these particles. This formula can be
obtained by neglecting diffusive flux to substitute j = Wnfree

into Eq. (B2).
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