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Instabilities of the harmonic oscillator with fluctuating damping
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We investigate the instabilities of a linear damped oscillator due to fluctuations of the damping parameter. The
fluctuations are driven either by Gaussian white noise or Poisson white noise (white shot noise). We consider
three notions of stability. The first two are the well-known notions of stability in the mean and stability in the
mean square. We introduce the concept of thermodynamic stability, corresponding to a nonpositive rate of energy
dissipation at all times. We derive analytical results for the various instability thresholds, confirm the validity of
our approach for white shot noise by numerical simulations, and obtain the unexpected result that mean-square
and thermodynamic stability coincide for the two types of white noise.
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I. INTRODUCTION

The classical harmonic oscillator is a model system that
has a history of more than a hundred years in the scientific
literature and that is discussed in every first-year course in
physics. Its has achieved the status of a paradigm because it
describes the behavior of a wide variety of systems in physics,
chemistry, biology, and other fields. To quote Gitterman [1],
“In fact, it has been applied everywhere, from quarks to
cosmology.” Examples include mechanical systems such as
pendula with small angles of displacement and mass-spring
systems, acoustical systems and electric systems such as RLC
circuits, as well as man-made devices such as clocks and
radio circuits. The prominence and importance of this model
stem from the fact that the dynamics of any system in a
potential near a local minimum can be approximated by simple
harmonic motion. The harmonic oscillator still holds surprises
and remains the object of current research despite its long
history.

If friction or energy dissipation has to be taken into account,
one arrives at the damped harmonic oscillator where the forces
are linearly proportional to the displacement from the local
minimum and to the velocity:

m
d2x

dt2
+ f

dx

dt
+ mω2x = 0. (1.1)

The study of the effects of random fluctuations, or noise, on
simple harmonic motion has also a long history (see, e.g., [1]).
Noise can enter Eq. (1.1) in four ways. The simplest, and most
thoroughly studied, case corresponds to Brownian motion of
a harmonically bound particle [2,3]:

m
d2x

dt2
+ f

dx

dt
+ mω2x = ζ (t). (1.2)

The noise ζ (t) enters Eq. (1.1) in an additive manner and
represents internal thermal noise. Fluctuations in the potential
energy give rise to a random frequency [4–7]:

m
d2x

dt2
+ f

dx

dt
+ mω2[1 + ζ (t)]x = 0. (1.3)

In this case, the noise affects the motion in a multiplicative
way. The interplay of the fluctuations in the frequency with
an external periodic driving force can give rise to stochastic

resonance [8,9]. Fluctuations in the friction coefficient f and
the mass m also lead to stochastic differential equations with
multiplicative noise. The latter case has recently been studied
to describe Brownian motion with adhesion [10,11].

If we adopt a mechanical picture, then fluctuations in the
friction coefficient around a mean value arise due to random
variations in the viscosity of the medium surrounding the
particle. An example is a ferroelectric fluid whose viscosity is
controlled by external stochastic magnetic fields as discussed
in [12,13], where the diffusion properties of Brownian particles
with a fluctuating friction force were investigated. However,
the stochastic differential equation describes a variety of
systems, as discussed in [1,9,14]. It was applied for example to
critical binary fluids [15], to the coupling between water waves
and a turbulent wind field [16], and to motions of floating,
moored offshore structures [17].

We study the effects of fluctuations in the damping
coefficient on the stability of the oscillator. The mean position
of the oscillator increases without bound in time if the noise
intensity is high enough. Gitterman obtained this result for
Gaussian white noise and colored noise, namely, dichotomous
noise, by analyzing the evolution of the mean position [14].
He considered a somewhat different system in [18]; namely,
the oscillator is also subjected to an additive random force.
This random force is Gaussian, white, and not correlated with
the multiplicative noise. For this system, he determined the
stationary second moments if the damping coefficient displays
Gaussian white noise or dichotomous noise. For the case of
Gaussian white noise, the stationary second moments diverge
at a certain noise intensity that is lower than the noise intensity
threshold value for divergence of the mean position. No
explicit expression for the instability threshold of the second
moments was derived for the case of dichotomous noise.

These results illustrate that even if the mean position relaxes
to zero, the oscillator can still be unstable, namely, if the
mean-square position increases with time. It is necessary to
distinguish between stability in the mean and stability in the
mean square. We introduce a third notion of stability, namely,
thermodynamic stability. The oscillator is thermodynamically
stable if its rate of energy dissipation is nonpositive. We focus
exclusively on the effects of multiplicative noise and consider
a harmonic oscillator that is subject only to random damping;
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MÉNDEZ, HORSTHEMKE, MESTRES, AND CAMPOS PHYSICAL REVIEW E 84, 041137 (2011)

the oscillator does not experience an additive random force. We
adopt a mechanical picture and formulate our approach within
the framework of canonical-dissipative systems [19–21]. We
derive exact analytic conditions for stability in the mean,
in the mean square, and for thermodynamic stability for
Gaussian white noise and white shot noise (Poisson white
noise). Poisson white noise has the advantageous feature that
it has a lower bound in contrast to Gaussian white noise. We can
thus assess the effect of negative fluctuations, which change the
nature of the friction term, on the stability results. We establish
the surprising result that thermodynamic stability and stability
in the mean square coincide for both types of white noise.

II. CLASSICAL MECHANICS AND
DISSIPATIVE SYSTEMS

The equations of motion of a mechanical system with the
Hamiltonian H (x,p) are

dx

dt
= ∂H

∂p
, (2.1)

dp

dt
= −∂H

∂x
. (2.2)

As is well known, Hamiltonian systems are conservative sys-
tems that do not dissipate energy. From the same Hamiltonian
we can construct, however, a system that includes dissipation
by replacing Eq. (2.2) with

dp

dt
= −∂H

∂x
− f (H )

∂H

∂p
. (2.3)

This is known as a canonical-dissipative system [19–21], and
f (H ) denotes the dissipation function. The friction force F of
the canonical-dissipative system is given by

F = −f (H )
∂H

∂p
= −f (H )

dx

dt
. (2.4)

A canonical-dissipative system does indeed not conserve
energy:

dH

dt
= ∂H

∂x

dx

dt
+ ∂H

∂p

dp

dt

= ∂H

∂x

∂H

∂p
+ ∂H

∂p

[
−∂H

∂x
− f (H )

∂H

∂p

]

= −f (H )

(
dx

dt

)2

≡ dE

dt
, (2.5)

where we have made use of Eqs. (2.1) and (2.3). Equation (2.5)
provides the rate of energy dissipation dE/dt , by a particle
moving according to the equations of motion (2.1) and (2.3).

From Eqs. (2.1) and (2.3) we derive the equations of motion
for a particle of mass m moving in a parabolic potential by
considering the Hamiltonian H = p2/2m + mω2x2/2:

dx

dt
= p

m
, (2.6)

dp

dt
= −mω2x − f (H )

p

m
. (2.7)

We combine these equations to obtain

d2x

dt2
+ 1

m
f (H )

dx

dt
+ ω2x = 0. (2.8)

If the dissipation function is a constant, f (H ) = mb, Eq. (2.8)
represents the classical linear damped harmonic oscillator,
where b is the damping coefficient. The linear damped
harmonic oscillator dissipates energy with the rate

dE

dt
= −mb

(
dx

dt

)2

. (2.9)

We use Eqs. (2.5) and (2.8) to derive an alternative expression
for the rate of energy dissipation, which will prove helpful
later on:

dE

dt
= m

dx

dt

d2x

dt2
+ mω2x

dx

dt

= m

2

d(v2)

dt
+ mω2

2

d(x2)

dt
. (2.10)

We consider the case of a random dissipation function f (H ),
due to fluctuations of the damping coefficient b around its
mean value. We replace b by b[1 + ζ (t)], where ζ (t) is noise
with zero mean. We focus on the case where the noise is either
Gaussian white noise or Poisson white noise (i.e., white shot
noise). The dissipation function and the friction force F now
read

f (H ) = mb[1 + ζ (t)], (2.11)

F = −mb[1 + ζ (t)]v. (2.12)

The equations of motion for the fluctuating canonical-
dissipative system are given by

dx

dt
= v, (2.13a)

dv

dt
= −bv − ω2x − bζ (t)v, (2.13b)

and the energy dissipation rate is

dE

dt
= −mb[1 + ζ (t)]v2. (2.14)

We combine Eqs. (2.13a) and (2.13b) to obtain the stochastic
differential equation for the damped harmonic oscillator:

d2x

dt2
+ b[1 + ζ (t)]

dx

dt
+ ω2x = 0. (2.15)

Note that fluctuations in the damping coefficient lead to a
stochastic differential equation with multiplicative noise.

Our main concern is how the fluctuations in the damping
coefficient affect the stability of the oscillator. We employ
three notions of stability. (i) Stability in the mean corresponds
to 〈x(t)〉 → 0 as t → ∞. (ii) Stability in the mean square cor-
responds to 〈x(t)2〉 → 0 and 〈v(t)2〉 → 0 as t → ∞. Since the
energy of the oscillator is given by E = mv2/2 + mω2x2/2,
stability in the mean square is equivalent to energetic stability
of the oscillator, i.e., 〈E〉 → 0 as t → ∞. (iii) We define
thermodynamic stability to correspond to a nonpositive mean
rate of energy dissipation at all times, i.e., 〈dE/dt〉 � 0 for
t � 0. Averaging Eqs. (2.14) and (2.10), we find that

d〈E〉
dt

= −mb〈[1 + ζ (t)]v2〉, (2.16)

or

d〈E〉
dt

= m

2

d

dt
〈v2〉 + mω2

2

d

dt
〈x2〉. (2.17)
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III. DAMPED HARMONIC OSCILLATOR
WITH GAUSSIAN WHITE NOISE

In this section we consider the case that the damping
coefficient b undergoes uncorrelated Gaussian fluctuations.
In other words, ζ (t) is a Gaussian white noise with

〈ζ (t)〉 = 0, (3.1)

〈ζ (t)ζ (t ′)〉 = 2Dδ(t − t ′). (3.2)

To determine the stability of the oscillator in the mean and the
mean square, we need to calculate the mean values 〈x〉 and 〈v〉
and the mean-square values 〈x2〉 and 〈v2〉.

A. Stability in the mean

To obtain the mean values, we average Eqs. (2.13a) and
(2.13b):

d〈x〉
dt

= 〈v〉, (3.3a)

d〈v〉
dt

= −b〈v〉 − ω2〈x〉 − b〈ζv〉. (3.3b)

This system of equations is not closed, and 〈ζv〉 must be deter-
mined separately. To this end we employ Novikov’s theorem
for Gaussian noise [22], which allows us to calculate the mean
values of terms affected by the noise in a multiplicative way.
The system (2.13) can be written in the general form

du
dt

= f (u) + g(u)ζ (t), (3.4)

where u = (u1,...,un). (All vectors should be read as column
vectors. For ease of notation, we omit the transpose symbol
for all vectors.) For Eq. (2.13) we identify

u = (u1,u2) = (x,v), (3.5)

f (u) = (u2, − bu2 − ω2u1), (3.6)

g(u) = (0, − bu2). (3.7)

Novikov’s theorem for Eq. (3.4) states that

〈gi(u)ζ (t)〉 = D

n∑
j=1

〈
∂gi(u)

∂uj

gj (u)

〉
, (3.8)

where we have used Eq. (3.2) and the Stratonovich interpre-
tation [23] for the stochastic calculus. Applying Eq. (3.8) to
Eq. (3.7), we find

〈ζv〉 = −Db〈v〉, (3.9)

which can be substituted into Eq. (3.3):

d2〈x〉
dt2

+ b(1 − bD)
d〈x〉
dt

+ ω2〈x〉 = 0. (3.10)

Equation (3.10) is the equation of a damped harmonic
oscillator for the mean position with an effective damping
coefficient b∗ = b(1 − bD) that depends on the noise intensity
D. This result was also obtained by Gitterman [14,18] by
integrating formally Eq. (2.15). The mean position of the
damped harmonic oscillator tends to 0 as t → ∞ if bD < 1.
In other words, the stochastic oscillator is stable in the mean.
However, stability in the mean is a weak notion of stability.
Indeed, if 〈x〉 → 0 but the standard deviation grows as t → ∞,

then the oscillator can hardly be said to be stable in any
practical sense. If 〈x2〉 → 0 as t → ∞, then the oscillator
is stable in the mean square, which is a more relevant and
restrictive concept in the dynamics of stochastic systems. In
particular, if a system is stable in the mean square then it is
stable in the mean. Further, if the oscillator is stable in the mean
square, then it is energetically stable, as discussed above.

B. Mean-square stability

To determine 〈x2〉 and 〈v2〉, we multiply Eq. (2.13a) by 2x

and Eq. (2.13b) by 2v:

dx2

dt
= 2x

dx

dt
= 2xv, (3.11a)

dv2

dt
= 2v

dv

dt
= −2bv2 − 2bζv2 − 2ω2xv. (3.11b)

Multiplying Eqs. (2.13a) and (2.13b) by v and x, respectively,
and summing, we find

d(xv)

dt
= x

dv

dt
+ v

dx

dt
= v2 − bxv − bζxv − ω2x2. (3.12)

Averaging Eqs. (3.11a), (3.11b), and (3.12), we obtain a
hierarchy of ordinary differential equations for 〈x2〉, 〈v2〉, and
〈xv〉. To close the system, we need to determine 〈ζv2〉 and
〈ζxv〉 and we employ again Novikov’s theorem. Rewriting the
systems (3.11) and (3.12) in the form of Eq. (3.4), where

u = (u1,u2,u3) = (x2,v2,xv), (3.13)

f (u) = (2u3, − 2bu2 − 2ω2u3, − bu3 − ω2u1 + u2), (3.14)

g(u) = (0, − 2bu2, − bu3), (3.15)

and applying Eq. (3.8) to Eq. (3.15), we find

〈ζv2〉 = −2Db〈v2〉, (3.16a)

〈ζxv〉 = −Db〈xv〉. (3.16b)

These expressions can be substituted into Eqs. (3.11b) and
(3.12). The system of equations for the second moments can
be written in the form

d〈u〉
dt

= M〈u〉, (3.17)

where

M =

⎛
⎜⎝

0 0 2

0 −2b(1 − 2bD) −2ω2

−ω2 1 −b(1 − bD)

⎞
⎟⎠. (3.18)

The solution of Eq. (3.17) has the form

〈u〉 =
3∑

i=1

Aie
αi t . (3.19)

The coefficients Ai must be determined from the initial
conditions and depend on b,D, and ω. The exponents αi are the
solutions of the characteristic polynomial − det(M − αI) = 0,
where I is the 3 × 3 identity matrix:

α3 + c1α
2 + c2α + c3 = 0. (3.20)
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The coefficients are given by

c1 = b(3 − 5Db), (3.21)

c2 = 4ω2 + 2b2(1 − 2bD)(1 − bD), (3.22)

c3 = 4ω2b(1 − 2bD). (3.23)

We are interested in the long time behavior of Eq. (3.19). We
determine if the exponentials in Eq. (3.19) grow or decay with
time by applying the Routh-Hurwitz theorem [24,25] to the
third-order polynomial (3.20). The Routh-Hurwitz conditions
state that all the roots of the polynomial (3.20) have a negative
real part if and only if c3 > 0, c1 > 0 and c1c2 − c3 > 0. This
implies that if bD < 1/2, then 〈x2〉 → 0 and 〈v2〉 → 0 as
t → ∞. Our result for the threshold of mean-square stability
agrees with that for the oscillator studied in [18], where an
uncorrelated additive Gaussian white noise force is present in
addition to the random damping. We conclude that the additive
noise does not affect the mean-square stability in this case.

If we consider the noise intensity D as the control
parameter, we arrive at the following conclusions. If D is
below 1/2b, the oscillator is stable both in the mean and in the
mean square. If D increases and falls between 1/2b and 1/b,
the oscillator is stable in the mean but unstable in the mean
square. If D further increases and exceeds 1/b, the oscillator
is unstable both in the mean and in the mean square.

Let us now analyze the borderline cases bD = 1/2 and
bD = 1 separately. As determined previously, if bD = 1/2,
then the oscillator is stable in the mean as confirmed by the
equation for the mean position:

d2〈x〉
dt2

+ b

2

d〈x〉
dt

+ ω2〈x〉 = 0. (3.24)

The second moments 〈x2〉 and 〈v2〉 are obtained by solving
the system (3.17) with the initial conditions 〈x2(0)〉 = a2,
〈v2(0)〉 = 0 and 〈xv(0)〉 = 0. If bD = 1/2, then

〈x2(t)〉 = a2

2

{
1 + e−bt/4

[
cos(μ̃t) + b

4μ̃
sin(μ̃t)

]}
, (3.25a)

〈v2(t)〉 = ω2a2

2

{
1 − e−bt/4

[
cos(μ̃t) + b

4μ̃
sin(μ̃t)

]}
,

(3.25b)
where

μ̃ =
√

4ω2 − b2

16
. (3.26)

As t → ∞, the second moments approach constant nonzero
values, 〈x2(∞)〉 = a2/2 and 〈v2(∞)〉 = ω2a2/2. This implies
that the oscillator is not stable in the mean square and 〈E〉 does
not go to zero for t → ∞.

If bD = 1, the equation for the mean position is that of the
undamped oscillator:

d2〈x〉
dt2

+ ω2〈x〉 = 0. (3.27)

The mean effect of the noise is to compensate the damping.
The characteristic polynomial (3.20) in this case reads α3 −
2bα2 + 4ω2α − 4ω2b = 0 and has a positive real solution. As
t → ∞, the second moments 〈x2〉 and 〈v2〉 behave as exp(θbt)
where θ depends on ω/b and 1 � θ � 2. In particular, θ = 2

when ω 	 b and θ = 1 when ω 
 b. In this case 〈x〉
oscillates between −a and a and the second moments diverge
exponentially. The oscillator is unstable both in the mean and
in the mean square or energetically.

C. Thermodynamic stability

As stated above, we say that the oscillator is thermody-
namically stable if the average rate of energy dissipation is
nonpositive at all times. For Gaussian white noise, Eqs. (2.14)
and (3.16a) imply that

d〈E〉
dt

= −mb(1 − 2Db)〈v2〉. (3.28)

If bD > 1/2, then d〈E〉/dt > 0 for t � 0 and the oscillator
is thermodynamically unstable. In other words, the conditions
for thermodynamic and mean-square instability coincide for
Gaussian white noise. If the oscillator is stable in the mean
square, then it dissipates energy; fluctuations in the damping
coefficient do not change the nature of the dissipation function
on average. If the oscillator is unstable in the mean square,
then on average the noise pumps energy into the oscillator and
renders it thermodynamically unstable.

IV. DAMPED HARMONIC OSCILLATOR
WITH WHITE SHOT NOISE

In this section we determine the stability conditions for the
damped harmonic oscillator where the damping coefficient b

is subjected to white shot noise with zero mean. Gaussian
white noise can take on negative values, which change the
character of the friction term, namely, from dissipating energy
to pumping energy. If the noise intensity is large enough, this
effect leads to an instability of the oscillator. White shot noise
has a finite lower bound, which allows us to control or even
remove the effect of negative values of the fluctuating damping
coefficient.

As for the case of Gaussian white noise, we first explore
stability in the mean. White shot noise can be obtained as an
appropriate limit of asymmetric dichotomous noise [26]. Let
ζ (t) now be an asymmetric dichotomous noise that randomly
switches between the values −� and �′. We assume that
�′ �= �, and both � and �′ are positive. We denote by k� and
k�′ the transition probabilities per unit time between these two
states. The average lifetime of each state is then given by 1/k�

and 1/k�′ , respectively. For the noise to have zero mean, we
must impose �′/k�′ = �/k�. The autocorrelation function
of the asymmetric dichotomous noise is given by

〈ζ (t)ζ (t ′)〉 = σ1e
−λ1|t−t ′|, (4.1)

with σ1 = ��′ and λ1 = k� + k�′ .

A. Stability in the mean

The starting point is again system (3.3). The term 〈ζv〉
now cannot be determined via Novikov’s theorem because
the noise is not Gaussian. However we can employ the
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Shapiro-Loginov formulas of differentiation for exponentially
correlated random functions [27]:

d〈ζv〉
dt

=
〈
ζ

dv

dt

〉
− λ1〈ζv〉, (4.2)

d〈ζx〉
dt

= 〈ζv〉 − λ1〈ζx〉. (4.3)

Combining Eqs. (4.2), (4.3), and (3.3), we find

d〈x〉
dt

= 〈v〉, (4.4a)

d〈v〉
dt

= −b〈v〉 − ω2〈x〉 − b〈ζv〉, (4.4b)

d〈ζv〉
dt

= −(b + λ1)〈ζv〉 − b〈ζ 2v〉 − ω2〈ζx〉, (4.4c)

d〈ζx〉
dt

= 〈ζv〉 − λ1〈ζx〉. (4.4d)

For dichotomous noise, 〈ζ 2v〉 = σ1〈v〉 + λ2〈ζv〉, where
λ2 = �′ − �, and the system (4.4) can be written as

d〈x〉
dt

= 〈v〉, (4.5a)

d〈v〉
dt

= −b〈v〉 − ω2〈x〉 − b〈ζv〉, (4.5b)

d〈ζv〉
dt

= −bσ1〈v〉 − (b + λ1 + bλ2)〈ζv〉 − ω2〈ζx〉, (4.5c)

d〈ζx〉
dt

= 〈ζv〉 − λ1〈ζx〉. (4.5d)

Asymmetric dichotomous noise converges to white shot
noise of zero mean for �′ → +∞ and k�′ → +∞ as the
ratio �′/k�′ remains constant [26]. We define w0 ≡ �′/k�′ =
�/k�. We need to apply the white shot noise limit to the
constants λ1, λ2, and σ1. Since λ1 = k� + k�′ , k�′ → +∞
implies λ1 → +∞. On the other hand,

σ1

λ1
= ��′

k� + k�′
= �′

k�′

�

1 + k�

k�′

= k�′+∞−−−→ �′

k�′
� = �2

k�

, (4.6)

λ2

λ1
= �′ − �

k� + k�′

k�′→+∞−−−−−→
�′→+∞

�′

k�′
= �

k�

. (4.7)

This implies that σ1 → +∞ and λ2 → +∞ as λ1 → +∞.
White shot noise (Poisson white noise) is defined as [12,28]

ζ (t) =
n(t)∑
i

ziδ(t − ti) − β〈z〉, (4.8)

where zi are positive random amplitudes (weights) of the Dirac
δ pulses (kicks) and the random instants ti are the arrival
times of a Poissonian counting process n(t) with parameter
β. The time interval between two successive impulses is a
random variable that is exponentially distributed according
to βe−βt . The parameter β represents the mean number of
impulses per unit time; i.e., β−1 is the mean time between two
successive impulses. The amplitudes are independent random
variables that are also exponentially distributed according to
e−z/w0/w0, where w0 is the mean amplitude. To establish the

connection between the limit of the asymmetric dichotomous
noise and the white shot noise, we need to express β and w0 in
terms of � and k�. Since β−1 is the mean time between two
successive impulses and k−1

� is the mean time in the state �,
both quantities must be the same, i.e.,

β = k�. (4.9)

Equation (4.8) implies that the average and the correlation
function of the white shot noise is given by [12,28]

〈ζ (t)〉 = 0, (4.10)

〈ζ (t)ζ (t ′)〉 = 2βω2
0δ(t − t ′). (4.11)

Taking the white shot noise limit, σ1 → +∞ and λ1 → +∞,
of the correlation function (4.1) of the dichotomous noise, we
find

lim
σ1,λ1→+∞

〈ζ (t)ζ (t ′)〉 = lim
σ1,λ1→+∞

σ1e
−λ1|t−t ′|

= 2σ1

λ1
δ(t − t ′). (4.12)

Comparing Eqs. (4.12) and (4.11), we identify

σ1

λ1
→ �2

k�

= βw2
0, (4.13)

and the noise intensity is given by D = βw2
0. In contrast

to zero-mean Gaussian white noise, zero-mean white shot
noise is defined by two parameters, either β and w0, or the
noise intensity D and the non-Gaussian parameter w0. In the
limit w0 → 0 with D = βw2

0 = constant, white shot noise
becomes Gaussian white noise with noise intensity D [26].
Equations (4.9) and (4.13) establish the connection between
the two noises. We conclude that in the white shot noise limit

σ1 → βw2
0λ1 and λ2 → w0λ1 as λ1 → +∞. (4.14)

Applying the limit (4.14) to Eqs. (4.5c) and (4.5d), we find
that −bβw2

0〈v〉 − (1 + bw0)〈ζv〉 = 0, i.e.,

〈ζv〉 = − bβw2
0

1 + bw0
〈v〉, (4.15)

and that

〈ζx〉 = 0. (4.16)

We have performed numerical simulations of Eq. (2.15)
with white shot noise to evaluate Eqs. (4.15) and (4.16). The
results are shown in Fig. 1. The left- and right-hand sides of
Eq. (4.15) have been determined independently from the sim-
ulations and have been plotted together to verify the validity of
Eq. (4.15). The simulation results for 〈ζx〉 have been compared
to 〈x〉 to verify Eq. (4.16). The figure demonstrates excellent
agreement between the analytical and numerical results. Sub-
stituting Eqs. (4.15) and (4.16) into the system (4.5), we obtain

d〈x〉
dt

= 〈v〉, (4.17)

d〈v〉
dt

= −b
1 + bw0 − bβw2

0

1 + bw0
〈v〉 − ω2〈x〉. (4.18)
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FIG. 1. (Color online) Results from numerical stochastic sim-
ulations to verify Eqs. (4.15) and (4.16). (a) 〈x〉 and 〈ζx〉 versus
time. (b) Left-hand side (circles) and right-hand side (solid line)
of Eq. (4.15). We have performed averages over 106 realizations,
δt = 0.005, w0 = 0.2, ω = 3, b = 1, and β = 5.

These equations can be rewritten as an equation for the mean
position of the damped oscillator equation with an effective
damping coefficient:

d2〈x〉
dt2

+ b∗ d〈x〉
dt

+ ω2〈x〉 = 0, (4.19)

where

b∗ = b

(
1 − bβw2

0

1 + bw0

)
. (4.20)

Note that in the Gaussian white noise limit w0 → 0 with
βw2

0 → D, we recover Eq. (3.10) as expected. The sign of b∗
defines the condition

C0 ≡ βbw2
0 − bw0 − 1. (4.21)

If C0 < 0, the oscillator subjected to white shot noise is stable
in the mean, 〈x〉 → 0 as t → ∞. The lower bound for the
fluctuations of the damping coefficient b[1 + ζ (t)] is given
by b(1 − �). Equations (4.9) and (4.13) imply that � = βw0,
and the condition (4.21) turns into

0 < � < �∗ = 1

2

(
1 +

√
1 + 4β

b

)
. (4.22)

If � < 1, the white shot noise does not change the nature of
the friction term. The fluctuating damping coefficient is never
negative and the fluctuating rate of energy dissipation is never

positive. In contrast to Gaussian white noise, there are no
random instances where the friction term represents an energy
pump. As expected, the oscillator is stable in the mean if
subjected to white shot noise with a nonnegative lower bound.
Indeed, since �∗ > 1, the condition � < 1 ensures that
〈x〉 → 0 as t → ∞. On the other hand, condition (4.22) also
clearly implies that negative fluctuations do not compromise
the stability of the oscillator in the mean, if their amplitude
is sufficiently small. The mean position of the oscillator still
goes to zero, 〈x〉 → 0 as t → ∞, for 1 < � < �∗. However,
as discussed in Sec. III, stability in the mean is a weak notion
of stability, and we analyze the second moments to determine
the conditions for which the oscillator is mean-square stable.

B. Mean-square stability

Using the Shapiro-Loginov formula for the averages 〈ζv2〉,
〈ζxv〉, and 〈ζx2〉,

d〈ζv2〉
dt

=
〈
ζ

dv2

dt

〉
− λ1〈ζv2〉, (4.23)

d〈ζx2〉
dt

=
〈
ζ

dx2

dt

〉
− λ1〈ζx2〉, (4.24)

d〈ζxv〉
dt

=
〈
ζ

d(xv)

dt

〉
− λ1〈ζxv〉, (4.25)

Eqs. (3.11a), (3.11b), (3.12), and

〈ζ 2xv〉 = σ1〈xv〉 + λ2〈ζxv〉, (4.26)

〈ζ 2v2〉 = σ1〈v2〉 + λ2〈ζv2〉, (4.27)

we write the system of six ordinary differential equations for
〈x2〉, 〈v2〉, 〈xv〉, 〈ζv2〉, 〈ζxv〉, and 〈ζx2〉 in the form

d〈x2〉
dt

= 2〈xv〉, (4.28a)

d〈v2〉
dt

= −2b〈v2〉 − 2b〈ζv2〉 − 2ω2〈xv〉, (4.28b)

d〈xv〉
dt

= 〈v2〉 − b〈xv〉 − b〈xvζ 〉 − ω2〈x〉, (4.28c)

d〈ζv2〉
dt

= −2bσ1〈v2〉 − [2b(1 + λ2) + λ1]〈ζv2〉 − 2ω2〈x〉,
(4.28d)

d〈ζxv〉
dt

= −bσ1〈xv〉 − [b(1 + λ2) + λ1]〈ζxv〉
+ 〈ζv2〉 − ω2〈ζx2〉, (4.28e)

d〈ζx2〉
dt

= 2〈ζxv〉 − λ1〈ζx2〉. (4.28f)

Applying the limit (4.14) to Eq. (4.28d), we find that
−2bβw2

0〈v2〉 − (2bw0 + 1)〈ζv2〉 = 0, i.e.,

〈ζv2〉 = − 2bβw2
0

2bw0 + 1
〈v2〉. (4.29)

Applying the limit (4.14) to Eq. (4.28e), we find that
−bβw2

0〈xv〉 − (bw0 + 1)〈ζxv〉 = 0, i.e.,

〈ζxv〉 = − bβw2
0

bw0 + 1
〈xv〉. (4.30)

041137-6



INSTABILITIES OF THE HARMONIC OSCILLATOR WITH . . . PHYSICAL REVIEW E 84, 041137 (2011)

FIG. 2. (Color online) Results from numerical stochastic simula-
tions to verify Eqs. (4.29), (4.30), and (4.31). (a) 〈x2〉 and 〈ζx2〉 versus
time. (b) Left-hand side (circles) and right-hand side (solid line) of
Eq. (4.30). (c) Left-hand side (circles) and right-hand side (solid line)
of Eq. (4.29). We have performed averages over 106 realizations,
δt = 0.005, w0 = 0.2, ω = 3, b = 1, and β = 5.

Application of the limit (4.14) to Eq. (4.28f) yields

〈ζx2〉 = 0. (4.31)

In Fig. 2 we plot the left- and right-hand sides of Eqs. (4.29)
and (4.30) determined via numerical simulations. To verify
the validity of Eq. (4.31), we plot 〈ζx2〉 together with 〈x2〉.
The figure demonstrates again excellent agreement between
the numerical and analytical results. Substituting Eqs. (4.29),
(4.30), and (4.31) into the system (4.28) we obtain

d〈x2〉
dt

= 2〈xv〉, (4.32a)

d〈v2〉
dt

= −2b
2bw0 + 1 − 2bβw2

0

2bw0 + 1
〈v2〉 − 2ω2〈xv〉, (4.32b)

d〈xv〉
dt

= 〈v2〉 − b
bw0 + 1 − bβw2

0

bw0 + 1
〈xv〉 − ω2〈x〉. (4.32c)

The solution of the system (4.32) can be written in the form
of Eq. (3.19) with

α1 = −2b
1 + 2bw0 − 2bβw2

0

1 + 2bw0
, (4.33)

α2,3 = −b

2

bw0 + 1 − bβw2
0

bw0 + 1

± 1

2

√
b2

(
bw0 + 1 − bβw2

0

bw0 + 1

)2

− 8ω2. (4.34)

FIG. 3. (Color online) Stability diagram in the �–b/β plane for
the damped oscillator under white shot noise for ω/β = 0.1. We
represent the critical curves provided by the conditions C0 = 0 and
C1 = 0. In the upper (white) region, the oscillator is unstable in the
mean and in the mean square, 〈x〉 → ∞ and 〈x2〉 → ∞ as t → ∞. In
the intermediate (yellow) region, it is stable in the mean but unstable
in the mean square, 〈x〉 → 0 and 〈x2〉 → ∞ as t → ∞. In the lower
(blue) region, it is stable both in the mean and in the mean square,
〈x〉 → 0 and 〈x2〉 → 0 as t → ∞.

Note that the sign of α1 depends on the sign of the new
condition

C1 ≡ 2bβw2
0 − 2bw0 − 1, (4.35)

while the sign of α2 and α3 depends on the sign of C0. In
Fig. 3 we have plotted conditions C0 and C1. In the blue
region, below the curve C1 = 0, we have α1,2,3 < 0 and the
oscillator is stable in both the mean and the mean square. In
the region lying between C0 = 0 and C1 = 0, the oscillator is
unstable in the mean square due to α1 > 0. In the region above
C0 = 0, we have α1,2,3 > 0 and the oscillator is unstable in
the mean as well as in the mean square. Note that in the
Gaussian limit w0 → 0 with D = βw2

0 = constant, condition
(4.35) reduces to bD < 1/2, and the condition for stability in
the mean, Eq. (4.21), turns into bD < 1, in agreement with
our previous results.

C. Thermodynamic stability

If � = βw0 < 1, then the friction force F is a true friction
force at all instances; the oscillator always dissipates energy.
This can also be clearly seen in Fig. 3, where the region
below � = 1 corresponds to stability for any value of b and
β. If � = βw0 > 1, or if ζ (t) is Gaussian white noise, the
fluctuations change the character of F at random instances. If
the fluctuations lead to negative values of b(t) = b[1 + ζ (t)],
the fluctuating energy dissipation rate becomes positive. In
other words, the damping term corresponds to an energy pump.
We showed in Sec. III C that stability in the mean square and
thermodynamic stability coincide for Gaussian white noise.
This turns out to be true also for white shot noise. Indeed we

041137-7
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find for the case of white shot noise from Eqs. (2.14) and (4.29)
that

d〈E〉
dt

= −mb
1 + 2bw0 − 2bβw2

0

1 + 2bw0
〈v2〉. (4.36)

The sign of d〈E〉/dt for t � 0 depends only on condition C1,
which is the condition for the stability in the mean square.

V. CONCLUSIONS

We have studied the instabilities of the stochastic linear
damped oscillator induced by a fluctuating damping parameter.
Due to the multiplicative character of the noise, the oscillator
is unstable in the mean and in the mean square if the noise
intensity is high enough. Given the form of the Hamiltonian,
stability in the mean square is more physically relevant than
stability in the mean, since the former guarantees the energetic
stability of the damped oscillator. We have considered a second
physically relevant stability criterion, namely, thermodynamic
stability. If the oscillator is indeed damped due to friction
forces for mechanical systems, or due to other dissipative
mechanisms in other types of applications that can be modelled
by simple harmonic motion, then the average rate of energy
dissipation should be nonpositive. This is a priori a stronger
stability criterion than mean-square stability. The latter is an
asymptotic criterion; the second moments must vanish as
t → ∞. Thermodynamic stability requires that the average
energy dissipation rate be nonpositive at all times. Further, this
rate depends not only on 〈v2〉 but also on the cross correlation
between the velocity and the noise, 〈ζv2〉.

We have derived analytically conditions for stability in the
mean, in the mean square, and for thermodynamic stability for
two types of white noise, namely, for Gaussian white noise
and white shot noise. If the damping coefficient is subjected to
Gaussian white noise, then the fluctuations inevitably change

the nature of the friction force. Gaussian white noise has
no lower bound, and negative fluctuations, which occur with
the same probability as positive fluctuations, turn the friction
mechanism into an energy pump. On the other hand, white
shot noise does have a lower bound and provides us with a
way to assess the effect of negative values of the fluctuating
damping coefficient on the stability of the oscillator.

If the noise intensity is considered as a control parameter,
then the dynamics of the stochastic oscillator undergoes
two bifurcations between three possible phases: (i) stable
(stable both in the mean and in the mean square), (ii)
thermodynamically unstable (stable in the mean but unstable in
the mean square), and (iii) unstable (unstable both in the mean
and in the mean square). For low values of the noise intensity,
the oscillator is stable. When the noise intensity increases and
reaches the lowest stability threshold, the oscillator becomes
thermodynamically unstable. When the noise intensity reaches
the second threshold, the oscillator becomes unstable.

We have shown analytically that stability in the mean
square, which is equivalent to energetic stability, coincides
with thermodynamic stability for Gaussian white noise and
Poisson white noise. This is an unexpected result, because
thermodynamic stability does not depend solely on the mean-
square values of the position and the velocity. As mentioned
above, it is also affected by the cross correlation between the
velocity and the noise. This poses the interesting open problem
of delineating the family of noises for which energetic and
thermodynamic stability coincide.
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