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Gaussian model of explosive percolation in three and higher dimensions
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The Gaussian model of discontinuous percolation, recently introduced by Araújo and Herrmann [Phys. Rev.
Lett. 105, 035701 (2010)], is numerically investigated in three dimensions, disclosing a discontinuous transition.
For the simple cubic lattice, in the thermodynamic limit we report a finite jump of the order parameter J =
0.415 ± 0.005. The largest cluster at the threshold is compact, but its external perimeter is fractal with fractal
dimension dA = 2.5 ± 0.2. The study is extended to hypercubic lattices up to six dimensions and to the mean-field
limit (infinite dimension). We find that, in all considered dimensions, the percolation transition is discontinuous.
The value of the jump in the order parameter, the maximum of the second moment, and the percolation threshold
are analyzed, revealing interesting features of the transition and corroborating its discontinuous nature in all
considered dimensions. We also show that the fractal dimension of the external perimeter, for any dimension,
is consistent with the one from bridge percolation and establish a lower bound for the percolation threshold of
discontinuous models with a finite number of clusters at the threshold.
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I. INTRODUCTION

Percolation, one of the most famous models in statistical
physics, has been extensively considered as a paradigm to
study connectivity and transport [1]. Recently, Achlioptas
et al. [2] proposed a best-of-two product rule for bond
selection, characterized by a more pronounced transition than
in the random case, being apparently discontinuous [3]. This
model has been analyzed on several different graphs [4,5],
and the ambiguous reported results raised controversy about
the nature of the transition [6–12], with analytical [6,12]
and numerical [5,6] results showing the continuous nature
of the transition in the original best-of-two product rule.
Several different models have been studied to shed light on
the main mechanisms leading to a discontinuous percolation
transition [13–16]. A generalization to a best-of-m product
rule has also been proposed [17], and a tricritical point found
when explosive percolation, obtained with m = 10, is diluted
with classical percolation on a square lattice [18].

Araújo and Herrmann [16] introduced two models yielding
clear discontinuous transitions: the largest cluster and the
Gaussian models. The study of the former discloses the control
of the largest cluster as a way to obtain homogenization of the
cluster sizes and, consequently, an abrupt transition. Since the
properties of the best-of-two product rule depend crucially on
the topology [2,4], in this work we study the Gaussian model on
hypercubic lattices up to dimension six and in the mean-field
limit (infinite dimension). We report that, for all dimensions,
the Gaussian rule leads to a discontinuous transition at the
percolation threshold and that the fractal dimension of the
largest-cluster external perimeter is compatible with the one
reported for bridge percolation [19].

This manuscript is organized in the following way. In the
next section we describe the Gaussian model and analyze its
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properties on the simple cubic lattice. In Sec. III the study of
the model is extended to higher dimensions. We leave the final
remarks for Sec. IV.

II. THE GAUSSIAN MODEL ON
THE SIMPLE-CUBIC LATTICE

We start by considering a simple cubic lattice with linear
size L and periodic boundary conditions in all directions. In
the initial configuration all the 3N bonds are empty, such that
there are N = L3 clusters of size unity. At each iteration a
new bond is randomly chosen among the empty bonds and
occupied with probability

min

{
1, exp

[
− α

(
s − s̄

s̄

)2 ]}
, (1)

where s is the size of the cluster that would be formed by
occupying the selected bond and s̄ is the average number of
sites per cluster if the bond would be occupied. For bonds
which connect sites belonging to the same cluster, s is taken as
twice the size of the cluster. The α is a parameter of the model
which, for the sake of simplicity, we take equal to unity. The
proposed method promotes homogenization of the cluster sizes
by suppressing the formation of clusters differing significantly,
in size, from the average.

The difference between classical percolation and the
Gaussian model can be seen qualitatively in Fig. 1 where
we show snapshots for both models, on the simple cubic
lattice, at the respective percolation thresholds. For classical
percolation, Figs. 1(a) and 1(c), the clusters are fractal and of
very different sizes, following a power-law distribution [1],
whereas for the Gaussian model, Figs. 1(b) and 1(d), clusters
are rather compact and of comparable size. Note that while for
classical percolation the number of clusters is large, ≈0.27N ,
the number of clusters in the Gaussian model is significantly
smaller. In fact, as we show here, in the thermodynamic limit
the Gaussian model is characterized by a finite number of
macroscopic clusters at the threshold.
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FIG. 1. (Color online) Snapshots of (a) classical percolation
and (b) the Gaussian model of discontinuous percolation, at the
percolation threshold, on a simple cubic lattice with 1283 sites. To
enhance visibility, the front cube of size 643 has been left out in
both pictures. While in the classical case clusters have very different
size and a fractal shape, for the Gaussian model clusters are rather
compact and with a characteristic size. The seven largest clusters of
the configurations are shown in (c) for classical percolation and in
(d) for the Gaussian model.

To analyze the behavior of the order parameter, namely, the
fraction of sites in the largest cluster, we measure, for each
sample, its jump J , defined as the maximum change obtained
as one sequentially occupies bonds in the system [9,13]. For
every considered linear system size L, we average the jump
and the fraction of occupied bonds p at which it occurs pc,J

over several configurations. We take the latter as an estimator
for the threshold in the thermodynamic limit. Recently, Lee
et al. [10] defined it as the upper pseudotransition point and
used it to pin down the threshold. Plotting J as a function of
L−1 reveals that for the Gaussian model, in the thermodynamic
limit the jump has a finite value of J = 0.415 ± 0.005 (see
Fig. 2), as expected for a discontinuous transition. This result
is in contrast to the ones for classical percolation and the
product rule where, for the same range of system sizes,
the size of the jump diminishes and eventually vanishes in
the thermodynamic limit [9].

To determine the threshold pc, two different estimators have
been considered: the average fraction of occupied bonds at
which the jump occurs pc,J [9,13] and the position pc,M [23]
of the maximum in the second moment of the cluster-size
distribution, excluding the contribution of the largest cluster
(of size smax),

M ′
2 = M2 − s2

max

/
N, (2)

where M2 = ∑
i s

2
i /N and si is the size of cluster i. Figure 3

shows the system size dependence of both estimators on the
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FIG. 2. (Color online) System size dependence of the maximum
jump of the order parameter J (�) for the Gaussian model of
discontinuous percolation on the simple cubic lattice. In the classical
case the change in the order parameter shrinks with the system size
and is zero in the thermodynamic limit (not shown), whereas in the
discontinuous case a finite, nonzero value (J = 0.415 ± 0.005) is
obtained in this limit. Note that whereas for the product rule and
classical percolation the size of the jump decreases with the system
size, for the Gaussian model it even slightly increases for the same
range of system sizes. Results have been averaged over 106 samples
for the smallest system size and 1.1 × 103 samples for the largest one.
Random numbers have been generated with the algorithm proposed
in Ref. [20]. To identify the clusters and keep track of their properties
we have considered the labeling scheme proposed by Newman and
Ziff [21], related to the Hoshen–Kopelman algorithm [22].

simple cubic lattice. Asymptotically, a dependence on L−a is
found, compatible with using the same exponent a = 1.69 ±
0.10 for pc,J and pc,M . The estimators are extrapolated to
the thermodynamic limit given by L−a → 0, and combining
both methods yields pc = 0.3468 ± 0.0005. Note that for an
equilibrium first-order transition, a = d [24]. To shed light
on the obtained value, we investigate the dependence of the
threshold estimators on the system size, under the constraint
that only merging bonds are considered, that is, all clusters
are trees (loopless). In the inset of Fig. 3 we see pc,J and
pc,M as a function of L−3. One observes that in this case
a = d. Therefore in the Gaussian model a differs from d due
to internal bonds which do not influence the cluster structure
or the size of the jump.

In Fig. 4 we see the size dependence of the maximum of the
second moment per lattice site. For every sample we measure
the maximum M ′

2(pc,M )/Ld and average over all samples. For
large system sizes, this quantity is constant, as expected for a
discontinuous transition.

The scaling behavior of the standard deviation of the order
parameter, defined as

χ∞ =
√〈

s2
max

〉 − 〈smax〉2
/
N, (3)

is shown in Fig. 5. For large systems the maximum of χ∞ tends
toward a constant value. These results are strong evidence of
a discontinuous transition, since a nonzero value of χ∞ is
obtained at the transition point, as expected in the presence
of a jump in the order parameter [24,25]. In addition, the
plot is consistent with the exponent a = 1.69 ± 0.10 and
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FIG. 3. (Color online) Threshold pc as a function of the inverse
linear system size L−a for the Gaussian model of discontinuous
percolation on the simple cubic lattice. pc,J (×) stands for the
average fraction of occupied bonds at which the jump occurs and
pc,M (+) for the position of the maximum of the second moment
of the cluster-size distribution without the contribution of the largest
cluster. The percolation threshold is estimated to be 0.3468 ± 0.0005.
Results have been averaged over 103 samples for the smallest system
size (323 sites) and 102 samples for the largest one (2563 sites).
The inset shows the same for the case where only merging bonds
are considered; that is, all clusters are trees (loopless). In this case
the threshold estimators [pc,J (•), pc,M (�)] depend asymptotically
linearly on L−3. The threshold for the loopless case is estimated to be
0.3333 ± 0.0004. Results have been averaged over 103 samples for
the smallest system site (503 sites) and 102 samples for the largest
one (5123 sites). Error bars are smaller than the symbol size.

pc = 0.3468 ± 0.0005, as determined from the finite size
scaling of pc,J and pc,M .

We measure at pc the external perimeter of the largest
cluster A. The external perimeter is defined as the number
of sites which do not belong to the largest cluster but are
nearest neighbors of sites in this cluster [26]. One observes
that at the threshold the external perimeter of the largest
cluster scales asymptotically with the system size as A ∼ LdA ,
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FIG. 4. (Color online) Maximum of the second moment of the
cluster-size distribution per lattice site, M ′

2(pc,M )/Ld (∗), as a function
of the linear system size L. The second moment per lattice site tends
toward a constant value, as expected for a discontinuous transition.
Results have been averaged over 103 samples for the smallest system
size and 2.4 × 102 samples for the largest one.

0.0

0.1

0.2

0.3

0.4

0.5

0.333 0.338 0.343 0.348

χ ∞

p

16
32
64

128
256
512

0.0

0.5

-1 0
(p-pc)L

a

FIG. 5. (Color online) Standard deviation of the order parameter
χ∞ as a function of the bond occupation fraction p for different linear
system sizes L. One observes that the peak increases and narrows with
the system size. In the inset we see χ∞ as a function of the scaling
variable (p − pc)La , with a = 1.64, for different linear system sizes
L: 16 (+), 32 (×), 64 (∗), 128 (�), 256 (•), and 512 (�). Results have
been averaged over 108 samples for the smallest system size and 28
samples for the largest one.

where dA = 2.5 ± 0.2 (see also Fig. 8). On the square lattice
the fractal dimension of the external perimeter was shown to
be related to several other models [16,27]. The value reported
here for the simple cubic lattice agrees within its error bars
with the one for watersheds and the optimal path cracking [28],
as well as with the set of bridges in bridge percolation [19].
Clusters at the threshold are compact with a fractal external
perimeter, as was also reported for 2D [16] and for irreversible
aggregation at high concentration [29].

III. HIGHER DIMENSIONS AND MEAN-FIELD BEHAVIOR

The Gaussian model yields a discontinuous percolation
transition in two and three dimensions. How does the nature
of the transition depend on the dimensionality of the system?
To address this question we consider the Gaussian model on
hypercubic lattices up to d = 6, the upper critical dimension
of classical percolation [30]. In addition, the mean-field
behavior of the Gaussian model is investigated. In the latter
case we take a system with N sites which can be fully
interconnected, giving a total of N (N − 1)/2 links, and we
add links between sites with probability given by Eq. (1). For
this system p is defined as the average number of links per
site. Occupying links randomly, without any additional rule,
would recover Erdős–Rényi percolation, where pc = 1/2
(see, for example, Ref. [31]).

Figure 6 shows the jump J as a function of the inverse
system size N−1 for three to six dimensions and for mean field.
We observe that in the thermodynamic limit J has, within the
error bars, the same finite value in all considered dimensions,
consistent with the value found in three dimensions, J =
0.415 ± 0.005 (see Fig. 2). In general, we expect for a
discontinuous percolation transition to find few macroscopic
clusters at the threshold, as initially discussed by Friedman
and Landsberg [3]. Nagler et al. [9] have added that for
strongly discontinuous transitions, where the largest cluster
cannot grow directly, the number of clusters is finite and
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FIG. 6. (Color online) System size dependence of the jump J for
the Gaussian model of discontinuous percolation on the hypercubic
lattice of dimension 3 (×), 4 (�), 5 (�), and 6 (•), as well as in
the mean-field case (∗). In the limit N−1 → 0, the jump has within
the error bars the same finite value 0.415 for all considered graphs.
The solid line is a guide to the eye and of the form 0.415−40N−1. For
the sake of comparison we plot the jump as a function of the inverse
system size N−1. Results have been averaged over 107 samples for
the smallest system size and at least 10 samples for the largest one.

the transition occurs when the two largest clusters merge.
The jump is then bounded by two limits: either the clusters have
the same size, giving J = 1/2, which is the largest possible
jump size in discontinuous percolation, or the largest cluster is
of size ≈2/3 and the second largest of size ≈1/3, giving J =
1/3. The latter case corresponds to situations where the second
cluster merges with the third one and becomes the largest one,
of size 2/3, called overtaking in Ref. [9], merging later with
the one of 1/3. On the other hand, the former results from
four clusters of equal size which merge in pairs. This case is
expected for the global competition proposed in Ref. [13] in the
mean-field limit. The Gaussian model at any dimension also
promotes the homogenization of the cluster sizes and the values
of the jump are within the proposed interval. The same idea
can be considered to understand the behavior of the maximum
of M ′

2/N , taking place at pc,M , which is our second estimator.
In Fig. 7 we see the cluster-size distribution for the

Gaussian model on the simple-cubic lattice at the percolation
threshold, p = pc. As previously observed in 2D [16], a
bimodal distribution is obtained, in contrast with the power-law
behavior observed for random percolation [1] and the best-
of-two product rule [4]. Since the contribution of the largest
cluster is neglected, there is a cutoff at s/N = 0.5.

As in three dimensions, we also determine the percolation
threshold for the Gaussian model in dimensions 4, 5, and 6, as
well as in the mean-field limit, by combining both estimators
pc,J and pc,M . Table I shows the threshold values pc for
different dimensions. One observes that pc decreases with
the dimension, though it remains always above the values
for classical percolation [32] (shown in the same table for
comparison). For the Gaussian model in the mean-field limit
we find pc to be compatible with unity, but we note that in
this case p is defined as the fraction of bonds per site and not
the fraction of occupied bonds, as in the lattice case. Below
we establish a lower bound for the pc of models, yielding
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FIG. 7. (Color online) Cluster-size distribution for the Gaussian
model on the simple cubic lattice. The fraction ns (•) of clusters of
size s times the size of the cluster s/N is shown as a function of
s/N . One observes that the distribution is bimodal, as expected for
discontinuous transitions. The system size is 643 sites, results have
been averaged over 1.6 × 105 samples, and error bars are indicated.

a discontinuous percolation transition with finite number of
clusters at the threshold.

Consider an arbitrary percolation model which starts with
isolated clusters of unit size, adding bonds sequentially until
a certain fraction of occupied bonds is reached. Let us denote
by c(p) the number of clusters at a given fraction of occupied
bonds p. At each iteration, added bonds to the system can be
merging bonds, connecting two clusters, or redundant bonds,
connecting nodes of the same cluster [14]. Only the former
bonds change c(p). The number of clusters reduces by one
if the bond is a merging bond and does not change if it is a
redundant bond. If we define r(p) as the probability that an
added bond is redundant, then

dc

db
= −[1 − r(p)], (4)

where b = pNd is the number of occupied bonds in a
d-dimensional hypercubic lattice. We now take the limit
N → ∞,

lim
N→∞

dc

dpN
= −d[1 − r(p)]. (5)

TABLE I. Percolation threshold pc for the Gaussian model of
discontinuous percolation on the hypercubic lattice of dimension d

and in the mean-field limit. For comparison, the percolation thresholds
for classical percolation are shown in the third column. Note that in
this table, for all models, p is defined as the fraction of occupied
bonds, p = t/(Nd), for hypercubic lattices and p = t/N for the
mean field, where t is the number of occupied bonds in the system.

d pc dA pc Classic

2 0.56244(6) [16] 1.23(3) [16] 1/2 [1]
3 0.3468(5) 2.5(2) 0.2488126(5) [32]
4 0.254(2) 3.6(4) 0.1601314(13) [32]
5 0.202(2) 4.9(7) 0.118172(1) [32]
6 0.168(3) 5.9(8) 0.0942019(6) [32]
∞ 1.000(2) 1/2 [31]
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FIG. 8. (Color online) System size dependence of the external
perimeter of the largest cluster A, at the threshold, for the Gaussian
model of discontinuous percolation on the hypercubic lattice of
dimension 3 (∗), 4 (�), 5 (•), and 6 (�). One observes that A

asymptotically scales with the system size as A ∼ LdA . The solid
lines have slopes of 5.9 ± 0.8, 4.9 ± 0.7, 3.6 ± 0.4, and 2.5 ± 0.2,
respectively. Results have been averaged over 103 samples.

Integrating over the interval 0 � p � pc gives

lim
N→∞

[c(pc) − c(0)]/N = −d

∫ pc

0
dp[1 − r(p)]. (6)

This equation is valid for any percolation model, regardless
of the nature of the transition. For example, the percolation
threshold for the classical treelike case can be obtained by
taking r(p) ≡ 0 and the proper number of clusters at the
threshold [33–35].

Assuming the cases where the homogenization of the
cluster sizes leads to a finite number of clusters at pc [9],
and since c(0) = N ,

pc = 1/d +
∫ pc

0
dp r(p), (7)

we obtain that pc � 1/d. Note that for treelike models r(p) ≡
0, and if c(pc)/N → 0 as N → ∞, pc = 1/d. For the Hamil-
tonian model of explosive percolation, introduced by Moreira
et al. [14], the same result was derived in the mean-field limit
in an independent way and numerically observed in the lattice.
The value reported by Manna and Chatterjee [13] for the case
with global competition is also consistent with this result.
Both the lower bound for the threshold and the solution c(p <

pc)/N ≈ 1 − pd, obtained for vanishing small probability of
redundant bonds, are consistent with the numerical results for
the Gaussian model. For increasing dimension the contribution
of redundant bonds decreases and pc approaches 1/d (compare
Table I). In the mean-field limit this asymptotic behavior
also agrees within error bars with the reported results. The
transition is obtained when the number of added bonds equals
the number of nodes N . Since the maximum number of bonds
is N (N − 1)/2, the fraction is zero in the thermodynamic limit.

By measuring the size dependence of the largest-cluster
external perimeter A at the percolation threshold pc, its
fractal dimension is obtained for dimensions 4, 5, and 6 (see
Fig. 8). For increasing dimension, dA seems to approach d (see
Table I). These exponents are compatible with the ones found
for bridge percolation, corroborating their equivalence [19].

IV. FINAL REMARKS

In summary, in this work we studied the Gaussian model
of discontinuous percolation in three and higher dimensions.
We disclose that for any considered dimension, the percolation
transition is abrupt and characterized by a discontinuity in the
order parameter, which within error bars is independent of
dimension. We identify the homogenization of cluster sizes
and favoring of merging bonds as the key mechanisms leading
to such an abrupt transition [9,13,14,16]. For discontinuous
percolation models with a finite number of macroscopic
clusters at the threshold, we establish a lower bound for pc as
well as a relation between pc and the probability of selecting a
redundant bond. Studying different dimensions we show that
clusters are compact with a fractal perimeter with the same
dimension as bridge percolation [19], which is also related
to watersheds and the optimal path cracking [28]. Although
all numerical indications point in that direction, we have no
formal proof whether the upper-critical dimension for the
Gaussian model is six, as in the classical case. In addition,
the meaning of the nontrivial finite-size scaling exponent
a = 1.69 ± 0.10, consistent for both estimators of pc, is still
puzzling; an analytical treatment of this exponent would be
interesting. Studies of this model have taken α = 1 in Eq. (1),
but it would be interesting to investigate other cases, since for
α = 0 the model boils down to the classical percolation model.
It would be interesting to study how the described properties
depend on α. Future work might also consist in studying the
behavior of other models of explosive percolation, such as the
global competition proposed by Manna and Chatterjee [13]
and the Bohman–Frieze–Wormald (BFW) model discussed
by Chen and D’Souza [11], in different dimensions. Besides,
all known models with a discontinuous transition imply global
information. It is still an open question if a discontinuous
percolation transition can be obtained with only local rules.

ACKNOWLEDGMENTS

We thank Robert Ziff for his useful comments. We acknowl-
edge financial support from the ETH Competence Center
Coping with Crises in Complex Socio-Economic Systems
(CCSS) through ETH Research Grant No. CH1-01-08-2. We
also acknowledge the Brazilian agencies CNPq, CAPES, and
FUNCAP, and a Pronex grant CNPq/FUNCAP for financial
support.

[1] S. R. Broadbent and J. M. Hammersley, Proc. Cambridge Philos.
Soc. 53, 629 (1957); D. Stauffer and A. Aharony, Introduction
to Percolation Theory, 2nd ed. (Taylor & Francis, London,
1994); M. Sahimi, Applications of Percolation Theory (Taylor
& Francis, London, 1994).

[2] D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323,
1453 (2009).

[3] E. J. Friedman and A. S. Landsberg, Phys. Rev. Lett. 103, 255701
(2009); H. Hooyberghs and B. Van Schaeybroeck, Phys. Rev. E
83, 032101 (2011).

041136-5

http://dx.doi.org/10.1017/S0305004100032680
http://dx.doi.org/10.1017/S0305004100032680
http://dx.doi.org/10.1126/science.1167782
http://dx.doi.org/10.1126/science.1167782
http://dx.doi.org/10.1103/PhysRevLett.103.255701
http://dx.doi.org/10.1103/PhysRevLett.103.255701
http://dx.doi.org/10.1103/PhysRevE.83.032101
http://dx.doi.org/10.1103/PhysRevE.83.032101
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