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Quantum Langevin equation of a charged oscillator in a magnetic field and coupled
to a heat bath through momentum variables

Shamik Gupta1 and Malay Bandyopadhyay2
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We obtain the quantum Langevin equation (QLE) of a charged quantum particle moving in a harmonic
potential in the presence of a uniform external magnetic field and linearly coupled to a quantum heat bath
through momentum variables. The bath is modeled as a collection of independent quantum harmonic oscillators.
The QLE involves a random force which does not depend on the magnetic field, and a quantum-generalized
classical Lorentz force. These features are also present in the QLE for the case of particle-bath coupling through
coordinate variables. However, significant differences are also observed. For example, the mean force in the
QLE is characterized by a memory function that depends explicitly on the magnetic field. The random force
has a modified form with correlation and commutator different from those in the case of coordinate-coordinate
coupling. Moreover, the coupling constants, in addition to appearing in the random force and in the mean force,
also renormalize the inertial term and the harmonic potential term in the QLE.
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I. INTRODUCTION

The issue of the magnetic response of a charged quantum
particle moving in a potential arises in many problems of theo-
retical and experimental relevance, e.g., Landau diamagnetism
[1,2], quantum Hall effect [3,4], two-dimensional electronic
systems [5], and others. The additional effect of quantum
dissipation due to interaction with the external environment
may be studied systematically by employing the system-plus-
reservoir model, i.e., the Caldeira-Leggett model [6] (also
known as the independent-oscillator model [7–12]). In this
scheme, the environment is modelled as a quantum mechanical
heat bath or reservoir comprising an infinite number of
independent quantum harmonic oscillators with continuously
distributed frequencies. One assumes a specific coupling of the
dynamical variables of the oscillators to those of the particle.

In the case of bilinear coupling between the particle
coordinate and the coordinate of each bath oscillator, a reduced
description of the particle motion is given by the quantum
Langevin equation (QLE) satisfied by the particle coordinate
operator. In this equation, coupling to the bath is described
by (i) an operator-valued random force, and (ii) a mean force
characterized by a memory function [11,13]. These forces do
not depend on the magnetic field whose only appearance in
the QLE is through a quantum generalization of the classical
Lorentz force.

In this work, we consider the complementary possibility
of coupling of a quantum system to a quantum mechanical
heat bath through the momentum variables. Although such
a scenario has been considered previously by many authors
[6,14–19], here we study the additional feature of the presence
of an external magnetic field. To this end, we consider a gauge-
invariant system-plus-reservoir model. The system comprises
a charged quantum particle moving in a harmonic potential
in the presence of a magnetic field. The particle is linearly
coupled via the momentum variables to a quantum heat bath
consisting of independent quantum harmonic oscillators.

Here, we derive a QLE for the particle coordinate operator
for the case of an external magnetic field which is uniform

in space. The QLE is obtained by utilizing the well-known
Heisenberg equation of motion for evolution of quantum
operators and by effectively integrating out the bath degrees of
freedom from the equations of motion. We show that similar to
the case of coordinate-coordinate coupling, the QLE involves
(i) a quantum-generalized Lorentz force term, and (ii) a random
force which does not depend on the magnetic field. This
latter force, nevertheless, has a modified form, with symmetric
correlation and unequal time commutator different from the
corresponding results in the case of coordinate-coordinate
coupling. Other differences include (i) the memory function
characterizing the mean force in the QLE has an explicit
dependence on the magnetic field, and (ii) the inertial term
and the harmonic potential term in the QLE get renormalized
by the coupling constants.

The paper is organized as follows. In the next section, we
introduce the system of study, and show that the system is
invariant under a gauge transformation. In Sec. III, we derive
the Heisenberg equations of motion for the particle and the
bath oscillators. In Sec. IV, we derive the QLE for the charged
particle for the case of a magnetic field which is uniform in
space. Finally, we draw our conclusions.

II. SYSTEM OF STUDY

Consider a charged particle moving in a harmonic potential
in the presence of an external magnetic field. The particle
is linearly coupled through the momentum variables to a
large number N of independent quantum harmonic oscillators
constituting a heat bath. The Hamiltonian of the system is
given by
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where e,m,p,r are, respectively, the charge, the mass, the
momentum operator, and the coordinate operator of the
particle, while ω0 is the frequency characterizing its motion in
the harmonic potential. The j th heat-bath oscillator has mass
mj , frequency ωj , coordinate operator qj , and momentum
operator pj . The dimensionless parameter gj describes the
coupling between the particle and the j th oscillator. The speed
of light in vacuum is denoted by c. The vector potential
A = A(r) is related to the external magnetic field B(r) through

B(r) = ∇ × A(r). (2)

The relevant commutation relations for the various coordi-
nate and momentum operators are

[rα,pβ] = ih̄δαβ,[qjα,pkβ] = ih̄δjkδαβ, (3)

while all other commutators vanish. In the above equation,
δjk denotes the Kronecker δ function. Here, and in the
following, Greek indices (α,β, . . .) refer to the three spatial
directions, while Roman indices (i,j,k, . . .) represent the
heat-bath oscillators.

We now show that our system of study is gauge invariant.
Consider the gauge transformation

A(r) → A′(r) = A(r) + ∇f (r), (4)

where f (r) is an arbitrary function of coordinate r. The
transformed Hamiltonian H ′ = H ′(A′) is given by the right
hand side of Eq. (1) with A replaced by A′.

Now, our system will be gauge invariant if simultaneous
with the transformation (4), one can make a unitary transfor-
mation of the state vectors of the system,

|ψ(t)〉 → |ψ ′(t)〉 = U |ψ(t)〉; U † = U−1, (5)

such that all physical observables remain invariant under
the joint transformation. This requires that one should have
H ′(A′) = UH (A)U †, where H (A) ≡ H . In our case, finding
such a unitary transformation is easily achieved with the choice

U = exp

(
ie

h̄c
f (r)

)
. (6)

Using the Hadamard formula

eXYe−X = Y + [X,Y ] + 1

2!
[X,[X,Y ]] + · · · , (7)

and the commutation relations (3), one can check that
H ′(A′) = UH (A)U †, as required.

III. HEISENBERG EQUATIONS OF MOTION

In this section, we derive the Heisenberg equations of
motion for the charged particle and the heat-bath oscillators.

1. Charged particle

For the charged particle, the Heisenberg equations of
motion are

v ≡ ṙ = 1

ih̄
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= 1
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= e

2c
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Equation (8) gives
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c
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where mr is the “renormalized mass,” defined as
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Next, note that

(v × B)α = vβ∂αAβ − vβ∂βAα, (12)

and that

(∂αAβ)vβ = vβ(∂αAβ) + [∂αAβ,vβ]

= vβ(∂αAβ) + ih̄

mr
∂α∂βAβ. (13)

Using Eqs. (12) and (13) in Eq. (9), we get

ṗα = e

c
(v × B)α + e

c
vβ∂βAα + ih̄e
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that is,

ṗ = e

c
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Now, we have
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so that
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which, on substituting in Eq. (10), gives
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c
(v · ∇)A + ih̄e
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On equating Eq. (15) with Eq. (18), we get
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0r + e

c
(v × B)

+ ih̄e

2mrc
(∇(∇ · A) − ∇2A) −

N∑
j=1
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On noting that

∇(∇ · A) − ∇2A = ∇ × (∇ × A) = ∇ × B = 4π

c
j, (20)
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where j is the current producing the external magnetic field,
and also the fact that in practice this current source lies outside
the region where the charged particle moves, we have

mrr̈ = −mω2
0r + e

c
(v × B) −

N∑
j=1

gjmr

mj

ṗj . (21)

In the next subsection, we show that ṗj = −mjω
2
j qj . Using

this in the last equation, we get

mrr̈ = −mω2
0r + e

c
(v × B) +
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gjmrω
2
j qj . (22)

2. Heat-bath oscillators

For the heat-bath oscillators, the equations of motion are

q̇j = 1

ih̄
[qj ,H ]

= 1

mj

(
pj − gj p + gje

c
A

)
, (23)

and

ṗj = 1

ih̄
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= −mjω
2
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Combining Eqs. (23) and (24), we get

mj q̈j = −mjω
2
j qj − gj ṗ + gje

c
Ȧ, (25)

which, on using Eqs. (15) and (17), gives

mj q̈j = −mjω
2
j qj + gjmω2

0r − gje

c
(v × B)

+ ih̄gj e

2mrc
(∇2A − ∇(∇ · A)). (26)

Using Eq. (20) and the reasoning given in the sentence
following it, we finally have

mj q̈j = −mjω
2
j qj + gjmω2

0r − gje

c
(v × B). (27)

IV. UNIFORM B: THE QUANTUM LANGEVIN EQUATION

In this section, we derive a QLE for the charged particle
interacting with the heat-bath oscillators as modelled by
Eq. (1), where we now consider a magnetic field uniform in
space. One of the early appearances of a QLE in the case of
coordinate-coordinate coupling between the particle and the
heat-bath oscillators in the absence of magnetic field was in
Ref. [7]. In our case, we follow the program adopted in [13] for
the derivation of the QLE. The essential steps are as follows.

Step 1. Obtain the Heisenberg equations of motion for
the system of the charged particle coupled to the heat bath.
Solve these equations for the bath variables, and substitute the
solution into the equations for the charged particle to obtain a
reduced description of the particle motion. The solution will
contain explicit expressions for the dynamical variables at time
t in terms of their initial values.

Step 2. Make specific assumptions about the initial state of
the system, e.g., assume that the heat bath was at thermal

equilibrium at the initial instant with the bath variables
distributed according to a canonical distribution.

Step 3. Show that the coordinate operator for the charged
particle then represents a stochastic process in time, and
satisfies a QLE. The statistical properties of the stochastic
process arise from the initial canonical distribution of the heat
bath.

Step 1 has been partially carried out in Sec. III. We now
carry out the remaining part, and solve the equations of motion
for the bath variables by considering the magnetic field B to be
uniform in space, with components Bx,By,Bz, and magnitude

B =
√

B2
x + B2

y + B2
z . In this case, Eq. (27) has the retarded

solution
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where

qh
j (t) ≡ qj (0) cos(ωj t) + pj (0)

mjωj

sin(ωj t) (29)

is the contribution from the initial condition,

ωc ≡ eB

mc
(30)

is the Larmor frequency of precessional motion of the charged
particle in the magnetic field, and

	 ≡

⎡
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.

⎤
⎥⎦ (31)

Substituting Eq. (28) into Eq. (22), we get

mrr̈ +
∫ t

0
dt ′ṙ(t ′)μ(t − t ′) + mrω

2
0r + μd(t)r(0)

− e

c
(v × B) = F(t), (32)

where

F(t) ≡
N∑

j=1

gjmrω
2
j qh

j (t)
(t), (33)

μ(t − t ′) ≡ μd(t − t ′) + 	μod(t − t ′), (34)

where μd, the diagonal part of function μ, and μod, the off-
diagonal part, are given by

μd(t − t ′) ≡
N∑

j=1

g2
jmmrω

2
0

mj

cos[ωj (t − t ′)]
(t − t ′), (35)

μod(t − t ′) ≡
N∑

j=1

g2
jmmrωjωc

mjB
sin[ωj (t − t ′)]
(t − t ′). (36)

This completes step 1 of the program.
To implement step 2, we now assume that at distant past,

t = −∞, there was no magnetic field, the charged particle
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was held fixed at r(0), while the heat-bath oscillators were
kept in weak contact with another heat bath at temperature
T so that it comes to thermal equilibrium. Therefore, at time
t = 0, the heat-bath oscillators are in canonical equilibrium at
temperature T with respect to the free oscillator Hamiltonian

HB =
N∑

j=1

[ p2
j

2mj

+ 1

2
mjω

2
j q2

j

]
. (37)

Subsequently, at a time t � 0, the particle is released and the
magnetic field is turned on, so that further evolution of the
system is governed by Hamiltonian (1). Note that this physical
picture is consistent with choosing the retarded solution (28).
The state of the system at t = 0, corresponding to a correlation-
free preparation, is given by the total density matrix operator

ρT(0) = ρP(0)
⊗

ρB, (38)

where the initial density matrix operator ρP(0) of the charged
particle is given by

ρP(0) = δ(r − r(0))δ(p), (39)

while that of the heat bath, which is in canonical equilibrium,
is given by

ρB = e−HB/kBT

ZB
; ZB = TrB(e−HB/kBT ). (40)

Here, kB is the Boltzmann constant. The normalization factor
is denoted by ZB, while TrB represents partial trace operation
with respect to the bath variables.

The statistical average of a heat-bath operator O with
respect to the initial state (38) is given by

〈O〉 ≡ TrB(Oe−HB/kBT )/TrB(e−HB/kBT ). (41)

Using known properties of quantum harmonic oscillators, it is
straightforward to show that

〈qjα(0)〉 = 0,

〈pjα(0)〉 = 0,

〈qjα(0)qkβ(0)〉 = h̄

2mjωj

coth

(
h̄ωj

2kBT

)
δjkδαβ, (42)

〈pjα(0)pkβ(0)〉 = h̄mjωj

2
coth

(
h̄ωj

2kBT

)
δjkδαβ,

〈qjα(0)pkβ(0)〉 = −〈pjα(0)qkβ(0)〉 = 1

2
ih̄δjkδαβ.

In addition, we have the Gaussian property: the statistical
average of an odd number of factors of qjα(0) and pjα(0)
is zero, while that of an even number of factors is equal to the
sum of products of pair averages with the order of the factors
preserved.

Using the results in Eq. (42), one finds that the force
operator F(t), Eq. (33), has zero mean,

〈F(t)〉 = 0, (43)

and a symmetric correlation given by

1

2
〈Fα(t)Fβ(t ′) + Fβ(t ′)Fα(t)〉

= h̄δα,β

2

N∑
j=1

g2
jm

2
r ω

3
j

mj

coth

(
h̄ωj

2kBT

)
cos[ωj (t − t ′)]. (44)

In addition, F(t) has the Gaussian property, which follows
from the same property of the qj (0) and pj (0).

Thus the initial distribution of the heat bath oscillators turns
the force operator F(t) into an operator-valued random force.
On using the canonical commutation rules (3), we find that
F(t) has the unequal time commutator given by

[Fα(t),Fβ(t ′)] = −ih̄δα,β

N∑
j=1

g2
jm

2
r ω

3
j

mj

sin[ωj (t − t ′)]. (45)

We are now in a position to achieve step 3 and interpret
Eq. (32) with t � 0 as a QLE for the particle coordinate
operator r(t), which we write again:

mrr̈ +
∫ t

0
dt ′ṙ(t ′)μ(t − t ′) + mrω

2
0r + μd(t)r(0)

− e

c
(v × B) = F(t), (46)

where F(t) represents a random force with correlation and
unequal time commutator given by Eqs. (44) and (45), respec-
tively. The renormalized mass mr is given by Eq. (11). The
second term on the left represents a mean force characterized
by the friction kernel or the memory function μ(t). Note the
appearance of the initial value term that depends explicitly
on the initial coordinate of the particle and the diagonal
part of the memory function. One can absorb this term
into the definition of the random force by defining G(t) =
F(t) − μd(t)r(0), and then considering the initial state (38),
with particle density operator (39) and bath density operator

ρB = e
−HShifted

B /kB T

ZB
, where the “shifted” bath Hamiltonian is

H Shifted
B = ∑N

j=1[
p2

j

2mj
+ 1

2mjω
2
j [qj − gj mω2

0

mj ω
2
j

r(0)]2] [12]. This

procedure guarantees that the redefined random force G(t) has
the same statistical properties as F(t).

We now point out some interesting features of the QLE (46),
which are not present in the QLE for the case of coordinate-
coordinate coupling [13]. These are (i) The coupling renor-
malizes the inertial mass, (ii) the harmonic potential term is
also renormalized, (iii) the friction kernel has an off-diagonal
part arising from the magnetic field and a diagonal part due to
the harmonic potential. Similar to the coordinate-coordinate
coupling, the magnetic field appears in the QLE as a quantum-
generalized classical Lorentz force term, and the random
force in the QLE does not depend on the magnetic field.
This latter force, nevertheless, has a different form so that
its symmetric correlation and unequal time commutator are
modified from the corresponding expressions in the case of
coordinate-coordinate coupling.

041133-4



QUANTUM LANGEVIN EQUATION OF A CHARGED . . . PHYSICAL REVIEW E 84, 041133 (2011)

It is interesting to see that the correlation and commutator
of the random force F(t) may be related to the friction kernel
μ(t − t ′). The Laplace transform of its diagonal part μd(t),
Eq. (35), is given by

μ̃d(ω) ≡
∫ ∞

0
dtμ(t)eiωt ; Im(ω) > 0

=
N∑

j=1

g2
jmmrω

2
0

mj

∫ ∞

0
dt cos(ωj t)e
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= i

2
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jmmrω

2
0

mj

(
1

ω − ωj

+ 1

ω + ωj

)
. (47)

Using the well-known result that 1/(x + i0+) = P (1/x) −
iπδ(x), we have

Re[μ̃d(ω + i0+)] = π

2

N∑
j=1

g2
jmmrω

2
0

mj

× (δ(ω − ωj ) + δ(ω + ωj )), (48)

so that Eq. (44) may be rewritten as

1

2
〈Fα(t)Fβ(t ′) + Fβ(t ′)Fα(t)〉

= h̄δα,β

π

∫ ∞

0
dωRe[μ̃d(ω + i0+)]

ω3mr

ω2
0m

× coth

(
h̄ω

2kBT

)
cos[ω(t − t ′)], (49)

and similarly, Eq. (45) as

[Fα(t),Fβ(t ′)] = 2h̄δα,β

iπ

∫ ∞

0
dωRe[μ̃d(ω + i0+)]

ω3mr

ω2
0m

× sin[ω(t − t ′)]. (50)

V. CONCLUSIONS

In this work, we derived a quantum Langevin equation
(QLE) for a charged quantum particle moving in a harmonic
potential in the presence of a uniform external magnetic
field and coupled linearly through the momentum variables
to a collection of independent quantum harmonic oscillators
constituting a heat bath. In this QLE, the magnetic field appears
through a quantum-generalized classical Lorentz force term.
The QLE involves a random force which does not depend on
the magnetic field. These aspects are also present in the QLE
for the case of particle-bath coordinate-coordinate coupling
[13]. However, significant differences are also observed:
(i) The random force has a modified form with symmetric
correlation and unequal time commutator different from
those in the case of coordinate-coordinate coupling, (ii) the
inertial term and the harmonic potential term in the QLE get
renormalized, and (iii) the memory function characterizing the
mean force in the QLE has a field-independent diagonal part,
but also an explicit field-dependent off-diagonal part.
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