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We present a method for the evaluation of the interaction potential of an equilibrium classical system starting
from the (partial) knowledge of its structure factor. The procedure is divided into two phases, both of which
are based on the maximum entropy principle of information theory. First we determine the maximum entropy
estimate of the radial distribution function constrained by the information contained in the structure factor. Next
we invert the pair function and extract the interaction potential. The method is tested on a Lennard-Jones fluid at
high density and the reliability of its results with respect to the missing information in the structure factor data
are discussed. Finally, it is applied to the experimental data of liquid sodium at 100 ◦C.
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I. INTRODUCTION

The radial distribution function (RDF) of an equilibrium
statistical system contains useful information concerning its
physical properties. Indeed, at least for systems governed
by pairwise additive interactions, its knowledge allows one
to compute the ensemble average for observable quantities
such as internal energy and pressure. Furthermore, if the
same hypotheses are satisfied, the RDF is in one-to-one
correspondence with the microscopic interaction potential
[1,2] and represents the starting point for the solution of the
so-called “inverse problem” of statistical mechanics [3–8].

Despite its central role in the analysis of a statistical system,
the RDF is not directly accessible from the experiments and
its estimation passes through the measurement of the structure
factor. This former quantity is formally related to the RDF by
an inverse Fourier transform, which for a homogeneous and
isotropic system reads

g(r) = 1 + 1

2π2ρ

∫ ∞

0

dk
sin(kr)

kr
k2 [S(k) − 1] , (1)

where g(r) and S(k) are the RDF and the structure factor,
respectively, and ρ is the density. So the measurement
of the RDF is reduced to the evaluation of the integral
appearing in Eq. (1). Unfortunately this procedure, although
conceptually correct, cannot be directly applied due to some
typical limitations in the measurement of the S(k). Indeed,
the experimental information is obtained by an analysis of
the x-ray and/or neutron diffraction data. These techniques
provide results over a finite k range and a number of nontrivial
corrections on measured data are needed. So the resulting
experimental structure factor turns out to be incomplete and
typically spoiled by systematic and statistical errors. As a
consequence, the RDF obtained by means of Eq. (1) may
present nonphysical features and spurious structures could
emerge.

In order to overcome these difficulties different approaches
have been pursued. A promising class of solutions is provided
by simulation assisted methods in which a molecular dynamics
or a Monte Carlo (MC) simulation is driven with the aim
to minimize the differences between the simulated structure
factor and the experimental data. Among the results belonging
to this class we cite the reverse Monte Carlo technique,

proposed by McGreevy and Pusztai in Ref. [9], which
implements the transition probability on the basis of the χ2

function between the reference and the simulated structure
factors; this procedure, however, does allow one to determine
the pair interaction potential. Further approaches are provided
by the method proposed by Tóth [10] and based on the
previous work of Lyubartsev and Laaksonen [5], and by the
solution due to Almarza, Lomba, and Molina [11]. These
methods consist in an iterative procedure for the evaluation
of an effective pair potential compatible with the experimental
data, so they attempt to provide a true solution of the inverse
problem starting from the structure factor. A comprehen-
sive review of the simulation assisted methods is given in
Ref. [12].

Since we are dealing with the reconstruction of the RDF
starting from the partial knowledge of the experimental
S(k) one question concerning the uniqueness of the solution
naturally arises; at the same time it is desirable that no
information besides that contained in the structure factor is
transferred to the RDF during the reconstruction. Both of
these issues can be addressed using the maximum entropy
principle (ME) [13] as the guideline for the definition of
the reconstruction procedure. Indeed ME has the remarkable
feature of producing the highest entropy solution compatible
with the given constraints, so the corresponding estimate
for the RDF is “maximally noncommittal with regard to
the missing information” [13]. ME-based algorithms for the
inversion of the structure factor were first developed by Root,
Egelstaff, and Nickel [14] and by Soper [15]. In these papers it
has been shown that the adoption of ME improves the Fourier
transform of the structure factor data and reduces the spurious
structure in the RDF. ME has been introduced for the first
time in contest of the inverse problem by Cilloco in Ref. [16];
the method described in this paper used ME inside a Monte
Carlo simulation scheme. It has been shown that a maximum
entropy ensemble of configurations compatible with a given
reference RDF can be built adopting a suitable definition of the
transition probability between neighbor states. This approach
has been recovered and extended in Ref. [8]; the transition
probability has been reinterpreted as an information-based
feedback controller and an “integral term” has been added.
The authors evidenced that this quantity converges to the
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interaction potential thus providing a ME-based solution of
the inverse problem.

The purpose of this paper is to present a ME Monte Carlo
method for the inversion of the experimental structure factor.
The procedure is mainly based on the statistical properties of
the pair distribution functions both in the r and in the k space.
We will show that, thanks to the above mentioned features of
ME, the algorithm provides a reliable reconstruction of the
RDF starting from a limited knowledge of the experimental
structure factor. Once the S(k) has been inverted, we can apply
the technique described in Ref. [8] to the resulting RDF and
extract the (pair) interaction potential.

The paper is organized as follows. Section II contains a
detailed theoretical description of our procedure. In Sec. III we
test the method for a Lennard-Jones fluid assuming different
cutting points of the input S(k) and we invert the experimental
data of liquid sodium at 100 ◦C. Finally, in Sec. IV we discuss
our results and present some concluding remarks.

II. THEORY

We present a statistical description of a simple monoatomic
fluid, in an analogous way of what has been done in Ref. [8],
and extend this analysis to the Fourier transform of the
RDF. Then we describe a procedure for the construction of
a ME ensemble of configurations constrained by the (partial)
knowledge of the structure factor.

A. Preliminaries

We define the notion of a model system, which is a
homogeneous and isotropic collection of pointlike elements
with average density ρ. Given an arbitrary configuration x of
the model we define two quantities that will be relevant for
the subsequent analysis: the local sampling of the elements
pair function (PF) n and its Fourier transform n̄. The former
quantity provides the number of particles ni inside the ith
spherical shell of width δr centered on a reference element;
the sampling is performed up to the maximum value rM and
consequently the index i runs from 1 to N = rM/δr . The
Fourier transform (FT) of the local PF is defined through the
equation

n̄j = Fj (n) =
N∑

i=1

sin(kj ri)

kj ri

ni, j = 1, . . . ,N, (2)

where ri is the value of the radius associated to the ith shell:
ri = iδr . Given the local pair function n, its FT n̄ represents an
N element vector in the k space. The component n̄j contains
the k-space value at kj = jδk; the sampling is performed with
a uniform step of width δk, chosen according to the relation

δrδk = π

N
. (3)

We also introduce the notion of inverse Fourier transform
(IFT). Given a k-space vector n̄ we define its IFT through
the equation

ni = F (−1)

i (n̄) = 2

N

N∑
j=1

r2
i k2

j

sin(kj ri)

kj ri

n̄j . (4)

Equation (3) ensures the orthonormality of the discrete basis
of functions adopted in Eqs. (2) and (4), namely,

N∑
j=1

sin(kj ri) sin(kj rl) = N

2
δil, (5)

so the transformation of a PF from the r space to the k space
and back again will reproduce the initial function [17]. It is
worth mentioning that, according to Eq. (3), a sampling of
width δr in the r space produces a k-space vector with a
maximum wave number given by kM = π/δr , in agreement
with the Shannon-Nyquist sampling theorem [18].

Since we are interested in the construction of the average
pair functions (both in the r and k space) we have to extend
the notion of local PF and of its FT to a large number of
configurations. So we introduce a probability function p(x)
defined upon the model configuration space and we collect an
ensemble of s elements extracted according to p. The global
samplings over the ensemble are defined as the average values
of the local ones:

mi = 1

s

s∑
α=1

n
(α)
i ,

m̄j = Fj (m) = 1

s

s∑
α=1

n̄
(α)
j , (6)

where the index α labels the elements of the ensemble and
the last equality holds due to the linearity of the FT. The
radial distribution function and the structure factor of the model
system are defined starting from the global quantities (6) in the
limit s → ∞. The RDF is obtained by normalizing the global
PF built on the model ensemble with the pair function of a
uniform reference system (perfect gas) with the same density
of the model one:

g(ri) = mi

m
(pg)

i

, (7)

where m
(pg)

i = 4πρr2
i δr is the perfect gas pair function. The

structure factor is defined in terms of the FT of the global pair
function via the relation

S(kj ) = 1 + m̄j − m̄
(pg)

j . (8)

This definition provides the usual notion of S(k) for an
isotropic statistical system, indeed making use of Eqs. (2)
and (7), and performing the continuum limit gives

S(k) = 1 + 4πρ

∫
rM

0

dr
sin(kr)

kr
r2[g(r) − 1], (9)

which is the formal definition of structure factor adopted in
statistical mechanics. We observe that, due to the finite size
of the model system, the integral in Eq. (9) extends up to the
maximum sampled value of the model RDF. Consequently,
according to the Shannon-Nyquist sampling theorem, the
maximum allowed k resolution is given by π/rM .

We conclude this preliminary section by introducing a
useful notation for dealing with the Fourier transforms. Since
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the FT and its inverse are realized as linear combinations
among the n̄ and the n variables, respectively, we can write

n̄j =
N−1∑
i=1

cijni, ni =
N−1∑
j=1

c−1
ij n̄j , (10)

where according to Eqs. (2), (3), and (4) both cij and its inverse
are symmetric matrices given by

cij = N

π

sin
[(

π
N

)
ij

]
ij

, c−1
ij = 2π

sin
[(

π
N

)
ij

]
ij

N2
. (11)

The sum in Eqs. (10) has been restricted to the first N −
1 elements since the last one gives a zero contribution for
algebraic reason related to the definition of the matrices (11).
We point out that Eq. (5) ensures that the matrix product of
these quantities gives the identity matrix as expected.

B. Analysis of the model distribution function

We are interested in computing the probability distribution
of the FT of the global pair function built on the model
ensemble. So we suppose that an ensemble of configurations
has been extracted according to a given probability distribution
p(x) and we compute the probability associated to a particular
sampling m̄ as a function of the parameters of the underlying
ensemble distribution.

To achieve this task we start from the probability of the
local sampling of the pair function n. The ith shell of the PF
follows a Poisson distribution with expectation value μi [8];
we assume that the system exhibits a hard core (HC) structure
with radius r0 so that the expected number of particles μi is
zero for i lower than the threshold value N0 = r0/δr and is
strictly positive otherwise. Since there is no correlation among
different shells the complete distribution is obtained as the
product of the single shell values and reads

Pμ(n) =
N∏

i=N0

e−μi
(μi)ni

ni!
. (12)

The HC structure of the reference distribution imposes that
Pμ is zero if there is some ni > 0 for i < N0. The FT of
the local sampling of the pair function n̄ is defined through a
linear combination of the n variables (10), so its expectation
value and its covariance can be expressed in terms of the μi

parameters:

E(n̄j ) = μ̄j =
∑

i

cijμi,

(13)
Cov(n̄j ,n̄k) = ξjk =

∑
i

cij cikμi.

We observe that, due to the linear combination (10), the
covariance matrix of the n̄ variables is not diagonal even
if the original variables n are uncorrelated. The variable
m̄ is defined as the average of the n̄(α) (6), so it has the
same expectation value μ̄ and a covariance given by ξ/s. Its
asymptotic distribution can be computed using a multivariate
central limit theorem; this theorem states that the distribution
function of the reduced variable

√
s(m̄j − μ̄j ) converges, in

the limit s → ∞, to a multivariate Gaussian with zero mean
and covariance given by ξ . So we have

√
s(m̄ − μ̄) ∼

s�1
N0, (14)

where

N0(x) = 1

(2π )N/2|ξ |1/2
e−(1/2)xT (ξ )−1x (15)

is the multivariate distribution function with zero mean and
|ξ | represents the determinant of the covariance matrix. It
turns out that the elements of m̄ are linear dependent and
consequently the covariance matrix is singular. This is due
to the fact that only the nonzero components of the local PF
contribute to the linear combination (10), so the number of
independent elements of m̄ is N − N0. In order to avoid a
singular covariance matrix we have to restrict our analysis to a
set of independent elements of m̄; in this domain the covariance
matrix can be inverted and its inverse reads

ξ−1
jk =

N−1∑
i=N0

c̃−1
ij c̃−1

ik

1

μi

, (16)

where the indices j,k run from 1 to N − N0 and the tilde
indicates that the matrices are restricted to the subset of
independent variables.

This analysis shows that the asymptotic distribution for
the independent subset of the m̄ components is described by a
multivariate Gaussian distributionNμ̄ with mean μ̄ and inverse
covariance sξ−1. We observe that both the expectation value
(13) and the inverse covariance matrix (16) are functions of
the parameters of the original distribution function (12).

C. Maximum entropy approach to the inverse problem

We consider a monoatomic system and assume that for a
given density ρ and temperature T the structure factor St (k)
of the system is known up to the maximum value kM . We will
refer to this system as the target.

The aim of this section is to define a procedure for
the evaluation of an equilibrium model distribution function
p(x) compatible with the information contained in the target
structure factor. The method is based on the maximum entropy
principle and is realized inside a Monte Carlo simulation
scheme. MC represents an effective tool to pursue this
approach: the maximization of configurational entropy is pro-
duced by the MC random movements for the construction of
the trial configurations (source of entropy) while the transition
probability among neighbor states selects the configurations
and acts as a source of information. At equilibrium these two
mechanisms are in balance, the net amount of information loss
is zero, and the system approaches a state of maximum entropy
consistently with the given constraints.

The main advantage of this kind of procedure is that the ME
solution is sought in terms of a “real” physical system which
possesses a true configuration space beyond the two-body pair
function; so its equilibrium distribution implicitly defines the
correlation functions of any order. Inside this scheme, the
implementation of the ME algorithm realizes the maximization
of the whole configurational entropy and not only of the
two-body contribution. This method provides the maximum
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entropy estimate of the complete equilibrium distribution of
the model system and the ensemble of configurations built
according to it can be used to compute the average value of
any quantity of interest.

Since, under this perspective, the transition probability is
the natural object in which the knowledge on the system is
codified, we seek this quantity with the aim of building a
model distribution function that produces an expectation value
of m̄ consistent with the target reference value μ̄t (the proper
definition of this parameter on the basis of the target S(k)
will be discussed in the next section). To achieve this task
we make use of the method developed in Refs. [8,16] and
we maximize the log-likelihood function between the model
pair function and the target reference value. This choice is
based on statistical reasons: in the limit of a large number
of configurations the average m̄ computed over the model
ensemble converges to the expectation value μ̄ of the model
distribution function and the log-likelihood can be related
to the relative entropy D (Kullback-Leibler divergence [19])
between the model and the target distributions:

ln Nμ̄t
(m̄) = −D(Nμ̄||Nμ̄t

), (17)

so the maximization of the log-likelihood function is asymp-
totically equivalent to the minimization of the relative entropy
(17). Given two distributions p and q, the relative entropy
D(p||q) is positive definite and vanishing only if p = q, so a
complete maximization of the likelihood function implies the
equality of the distributions.

So our general strategy is the following: we perform a MC
simulation using a transition probability which maximizes the
log-likelihood function defined above. This procedure builds a
maximum entropy ensemble of configurations constrained by
the target S(k) and the radial distribution function computed
over this ensemble is the maximum entropy estimate of the
inverse Fourier transform of the target structure factor. Since
the maximum entropy principle has the feature of providing
reliable estimates on the basis of a partial input of information,
we expect that this procedure should be able to produce
a correct reconstruction of the radial distribution function
starting from a limited knowledge of the structure factor.

In the next section we will describe some details of the
implementation of this procedure. The applications of the
method and some checks of its reliability and sensitivity to
the amount of missing information are discussed in Sec. III.

D. Maximization of the log-likelihood function

Assume that the St (k) has been measured with a resolution
δk up to the value kM ; so the target input is given by Nt =
kM/δk samplings of the structure factor.

The first step consists in a proper definition of the model
system (see Sec. II A): the value of the model density is chosen
equal to the target one and the model pair function is sampled
up to the maximum value rM = π/δk. This choice ensures that
the model structure factor is sampled with the same resolution
as the one of the target system. The spatial resolution δr in
the model configuration space is chosen with the double task
of producing an accurate sampling of the model RDF and
to ensure that the maximum sampling value of the model

structure factor (given by π/δr) is greater than the target
value kM .

We define the procedure for the construction of the model
ensemble based on the maximization of the log-likelihood
function described in the previous section. First we build the
reference distribution on the basis of available information
concerning the target structure factor [see Eq. (8)]:

μ̄tj = m̄
(pg)

j + St (kj ) − 1, (18)

where j extends over all the shells in the model system (from
1 to N = rM/δr) and we impose that St (kj ) is equal to 1
for all j > Nt . Given the μ̄t we compute its inverse Fourier
transform μt , which represents the expectation value of the
target pair function. Due to the lacking information in the
target structure factor the μt provides a biased reconstruction
of the true target pair function; typically this function exhibits
nonphysical behavior such as, for instance, strong oscillations
inside the hard core radius.

Next we analyze the construction of the log-likelihood ratio.
Assume that we have performed s MC iterations. For each
point of the path we compute a local sampling of the PF n(α)

and its FT n̄(α) and we construct the global pair functions m

and m̄. Then we select a reference particle and compute a local
sampling of the PF n(1); at the same time the particle is randomly
moved and the new local sampling of the PF is stored in the
array n(2). In this way we obtain two different samplings of m̄

at the level s + 1, namely, m̄(1) and m̄(2). Then we perform a cut
in the model system consistently with the missing information
in the target reference function: so we substitute the perfect
gas value in both the m̄ samplings for j > Nt . This procedure
provides m̄cut (1) and m̄cut (2) which are the natural quantities
to be compared with μ̄t . Finally we define the log-likelihood
ratio via the relation

δλ = ln
Nμ̄t

(m̄cut (1))

Nμ̄t
(m̄cut (2))

. (19)

The transition probability selects all the trial configurations
which maximize the likelihood function (δλ < 0) [23] and
consequently the distribution of the m̄cut converges to a
multivariate Gaussian defined by the target parameters μ̄t and
μt [see Eqs. (13) and (16)]. At the same time the model global
sampling m converges to the unbiased reconstruction of the
target RDF and its FT m̄ builds the complete target structure
factor. So, thanks to the ME approach, we build a complete
estimate of the target distribution function on the basis of a
limited amount of information.

We conclude this section by analyzing the expression of
the log-likelihood ratio. In the limit of a large number of
configurations we can expand Eq. (19) in power of s. The
leading order contribution reads

δλ =
Nt∑

i,j=1

(
n̄

cut (2)

i − n̄
cut (1)

i

)
ξ−1
ij

(
m̄cut

j − μ̄tj

)
. (20)

Equation (20) evaluates the log-likelihood ratio as the weighted
sum of the differences between the actual and the trial local
sampling n̄. The weights are proportional to the discrepancy
between the global m̄cut and the target reference function, and
due to the nondiagonal correlation matrix, each term in the sum
depends on the whole difference (m̄cut − μ̄t ). It is interesting
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to recast this equation in terms of the local PFs in the r space;
to obtain this result we make use of Eqs. (10) and (16); this
provides

δλ =
N∑

i=N0

(
n

(2)

i − n
(1)

i

)m
(bias)

i − μti

μti

, (21)

where m(bias) represents the inverse Fourier transform of m̄cut.
We see that, once reformulated in the configuration space, the
log-likelihood becomes diagonal: the i th term in the sum
(21) is weighted by the ith shell value of the discrepancy
between the model and the target global (biased) PF. This
behavior is a consequence of the independence between the
local pair functions related to different shells [see Eq. (12)].
It is worth mentioning that Eq. (21) is strongly reminiscent
of the log-likelihood ratio computed in [8,16] starting from
the knowledge of the target RDF. Indeed we recognize that
the weighted difference between m(bias) and μt is the first order
expansion [24] of ln(m(bias)/μt ). Furthermore, if the complete
target structure factor is provided, then the input of information
content becomes equivalent to the knowledge of the target
RDF; in this case μt represents the true value of the target
PF and the m(bias) coincides with the model global PF m thus
providing an identical expression of the log-likelihood ratio.

E. A remark on the transition probability

In Sec. II D we stated that the transition probability is
defined in a way to accept all the trial configurations with
a log-likelihood ratio lower than zero (δλ < 0). In order to
better comprehend the reasons behind this choice it is useful
to briefly recall the main results concerning the analysis of
the transition probability described in Ref. [8]. Following the
approach outlined in this reference we can interpret Eq. (21)
has a proportional feedback controller which selects the model
system configurations on the basis of the “error” e = (m(bias) −
μt )/μt between the target and the model global pair function.
This interpretation suggests the formulation of an improved
expression for δλ, based on the theory feedback systems, that
also includes an integral term apart from the proportional
one; this latter quantity keeps into account all the errors in
the steps preceding the actual one. In this way we realize a
proportional-integral controller, schematically defined as

δλ =
∑

i

(
n

(2)

i − n
(1)

i

) (
kpei + kI

∑
α

e
(α)
i

)
,

where kp and kI are the coefficients of the proportional
and integral terms, respectively. The transition probability
is defined as min{1, exp(−δλ)} and the proportional and
integral coefficients are fixed with the aim to ensure the
correct fluctuation of the model PF around its average value.
Results reported in [8] evidence that this approach allows
one to build the correct equilibrium distribution of the target
system; furthermore, the interaction potential emerges as the
asymptotic limit of the integral term.

The procedure delineated above can be applied in the
present case and would allow one to directly extract the
interaction potential from the knowledge of the structure factor.
Instead, we have adopted a different implementation of the
feedback controller in which the integral term is absent and

the proportional coefficient is virtually infinite: so only the
trial configurations with a log-likelihood ratio lower than zero
are accepted. The main advantage of this choice is that a pure
proportional controller ensures a straightforward and stable
convergence of the inversion procedure, so the RDF is obtained
without the need of setting any parameters. In this way we
can perform an intermediate check of the inversion procedure.
Obviously, the extraction of the interaction potential requires
the subsequent inversion of the RDF using the method
described in [8].

III. APPLICATIONS

The technique previously described has been applied to a
simple Lennard-Jones fluid and to the experimental structure
factor data of the liquid sodium at 100 ◦C measured by
Greenfield, Wellendorf, and Wiser in Ref. [22].

The inverse MC simulation is realized in the NV T ensem-
ble: the model configuration space is a cubic volume of linear
length L with Np pointlike particles and the periodic boundary
conditions together with the minimum image convention have
been adopted.

The transition probability between neighbor states has been
evaluated by using Eq. (21) for the computation of the log-
likelihood ratio. This formula requires knowledge of the HC ra-
dius which is a priori unknown; a brief estimate of its value can
be obtained (as suggested by Reatto in Ref. [4]) by computing
the inverse FT of the structure factor and by taking a fraction
of the r position of its first peak. ME will allow this estimate
to be corrected to its optimal value during the simulation.

A. Results for the Lennard-Jones system

We consider a system described by the Lennard-Jones
potential with argonlike parameters σ = 3.405 Å and ε/kB =
119.76 K. The target structure factor is evaluated by perform-
ing a metropolis MC simulation on a system of 864 particles
at reduced density ρ∗ = ρσ 3 = 0.84 and reduced temperature
T ∗ = kBT /ε = 0.75, near the triple point. The simulation
runs for 2 × 104 cycles after equilibration. The g(r) has been
evaluated up to r∗ = r/=7.05 (24 Å), the width of the shells
for the measure of the g(ri) was δr = 2.4 × 10−2 Å, and the
number of measured points was 103. The structure factor has
been evaluated using the procedure described in Sec. II A; the
k resolution is given by Eq. (3) and is equal to δk = 0.13 Å−1.

Once the target S(k) was computed we performed the
inversion procedure for the reconstruction of the RDF. In
order to check the sensitivity of this approach we truncated
the target S(k) at different values of k and we proceeded
to the reconstruction for each of the truncated functions.
So we built three structure factors, namely, St1(k) (truncated
at kM = 13 Å−1), St2(k) (truncated at kM = 6.5 Å−1), and
St3(k) (truncated at kM = 3.2 Å−1). Then the reconstruction
procedure started for 2 × 104 cycles after equilibration. In this
way we produced three radial distribution functions, namely,
g1(r), g2(r), g3(r), and the corresponding structure factors
S1(k), S2(k), and S3(k).

Results are reported in Fig. 1. The first line contains the
outcomes of the inversion starting from St1(k). The maximum
difference between the target and the model structure factor for
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FIG. 1. (Color online) Results of the inversion procedure for a Lennard-Jones system. The left column contains the plots of the structure
factor: continuous line for the target S(k) used as model input, dotted line for the target S(k) in the k region beyond kM , and filled circles for
the model S(k). The right column contains the radial distribution functions: continuous line for the target RDF and filled circles for the model
RDF. (a) Target S(k) truncated at 13 Å−1; (b) target S(k) truncated at 6.5 Å−1; and (c) target S(k) truncated at 3.2 Å−1.

k up to kM is about 4 × 10−4 and the procedure reconstructed
the target S(k) for k > kM with an error lower than 1 × 10−3;
the model RDF reproduces the target values with a maximum
difference of about 2 × 10−2. The second line reports results
obtained using the information content of St2(k). Even in this
case the maximum discrepancy up to kM (6.5 Å−1) is about

4 × 10−4 and the procedure reconstructed the target structure
for k > kM with an error lower than 1 × 10−2; the maximum
difference between the target and the model RDF is about
5 × 10−2. Finally, in the last line of Fig. 1 we present the results
of the inversion of St3(k). The maximum difference between
the target and the model structure factor up to kM (3.2 Å−1) is
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FIG. 2. (Color online) Results for the Lennard-Jones system. The
target potential (continuous line) and the model potential [circles for
g1(r), squares for g2(r), and triangles for g3(r)] are plotted.

about 4 × 10−4 as in the previous cases, and despite the modest
information content of the target structure factor, the model
S(k) reproduces the target one for k > kM with an error lower
than 4 × 10−2. The corresponding RDF reconstructs the target
function with a maximum discrepancy of about 6 × 10−2. This
analysis evidences the effectiveness of the maximum entropy
principle to provide accurate reconstructions on the basis of a
limited amount of information.

In order to complete the inversion procedure we have
evaluated the interaction potential associated to the three RDFs
computed above. These results have been obtained by using
the method described in [8] and are presented in Fig. 2. The
analysis of this figure shows that the potentials extracted from
g1(r) and g2(r) are essentially equivalent and provide a good
estimate of the target one (with a maximum discrepancy of
about 5 × 10−2 distributed over the r axis). The potential
extracted from g3(r) is less accurate with respect to the previous
ones. In this case the main features of the target potential
(such as the amplitude and location of the absolute minimum)
are reproduced correctly but some spurious oscillations are
present. This behavior is a consequence of the presence of
small oscillations in the RDF g3(r) which are hardly visible
at the scale of Fig. 1. This fact indicates that a very precise
reconstruction of the target RDF is needed in order to obtain a
correct solution of the inverse problem.

B. Inversion of the Na data

We present the result of the inversion of the structure factor
of the liquid Na at 100 ◦C [22]. Since we are dealing with
a real fluid at high density we expect that the many-body
contributions in the interaction potential cannot be neglected,
so our solution of the inverse problem will produce an effective
pair potential.

Experimental data have been measured with a variable k

resolution up to 8.9 Å−1. In order to apply the inversion

technique defined in Sec. II we need a target S(k) sampled
uniformly with a δk value compatible with the size of the
simulation box; so a preliminary operation on experimental
data is needed. Our prescription is the following: we perform
the inverse Fourier transform of the experimental S(k) and
compute the (biased) RDF; then we “cut” this function at a
value rM consistent with the linear dimension of the model
system in which we will perform the inversion procedure.
Finally, we transform back to the k space and compute the new
structure factor which is ready to be used as the target input
function. The reliability of this method has been tested for a
Lennard-Jones system in which the evaluation of the target
S(k) and the inversion procedure for the reconstruction of the
RDF have been performed in boxes of different linear length.
In all the cases we have obtained a correct reconstruction of the
target RDF. For the present case of the Na data we have chosen
rM = 22 Å which corresponds to the maximum sampled value
for a model system made of 864 particles.

The inverse simulation procedure for the reconstruction of
the Na radial distribution function took 2 × 104 cycles after
equilibration. The result for the RDF is reported in the left
panel of Fig. 3. This function evidences a HC radius of 2.65 Å
and the first peak is located at r = 3.72 Å and is equal to
2.32. It is interesting to compare our result with the RDF
obtained in [4] using an iterative method for the inversion of
the Na structure factor. The two functions are in substantial
agreement: the RDF of [4] has a HC radius of 2.7 Å, whereas
the first peak is located at r = 3.66 Å and is equal to 2.43;
furthermore even the relative positions of the other minima
and maxima differ less than the 2%.

The Na pair effective potential has been extracted from
the RDF computed above by using the method described
in Ref. [8]. The result is presented in the right panel of
Fig. 3. The potential reported in the figure evidences a highly
repulsive part in the low r region; then there is an attractive
zone with the minimum located in r = 4.05 Å and equal
to −0.91 and a further weak repulsive part with a local
maximum at r = 5.45 Å. Finally, the potential approaches
zero with some smooth oscillations. Again we compare our
solution with the one obtained in Ref. [4]. We observe that
the shapes of the two potentials are in qualitative agreement
but a quantitative comparison reveals some differences: in
particular, the locations of the absolute minima coincide but
the depth of the potential wells differ by about 15%. This fact
has to be interpreted on the basis of the high sensitivity of the
inverse problem on the input RDF, so minor differences among
the RDFs could produce a sensible discrepancy at the level of
the interaction potentials.

IV. DISCUSSION AND CONCLUSIONS

We have presented a method, based on the maximum
entropy principle of information theory, for the reconstruction
of the radial distribution function of an equilibrium statistical
system starting from the partial knowledge of its structure
factor. The procedure is realized inside a Monte Carlo
simulation scheme which is revealed to be an effective tool
for the implementation of the ME; indeed the maximization
of the configuration entropy is realized by the MC random
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FIG. 3. Results of the inversion procedure for Na at 100 ◦C. The left panel contains the plot of the radial distribution function. The right
panel contains the two-body effective potential.

displacements, whereas the transition probability between
neighbor states is defined consistently with the information
input codified in the target S(k). Once the RDF has been
computed we can derive the two-body effective potential by
using the method defined in Ref. [8], thus providing a true
ME-based solution of the inverse problem.

As stated in Sec. II C, the realization of the ME approach
inside a MC-based procedure presents some interesting fea-
tures. Indeed, this method realizes a complete maximization
of the model system configurational entropy (beyond the
two-body term) and provides the maximum entropy estimate
of the complete equilibrium distribution of the model system.
So within this approach it is possible to extract information
concerning the physical system under inspection that goes
beyond the simple improvement of the Fourier transform of
the structure factor. Furthermore, since the correlators are
obtained through the ensemble average over the model system
configuration space, any nonphysical feature (such as, for
instance, negative values for the RDF inside the hard core
region) is automatically avoided.

The applications of the method are presented in Sec. III.
Results analyzed in the first part of this section are designed to
test our approach with respect to the missing information in the
input structure factor. ME has the feature of being “maximally
noncommittal with regard to the missing information” [13],
and indeed, the results discussed in Sec. III A demonstrate a
reliable reconstruction of the system RDF even for very limited
knowledge of the S(k). Finally, Sec. III B contains the analysis
of the real experimental data of the liquid sodium at 100 ◦C.
We evaluated the Na RDF and then we extracted the effective
pair interaction potential; both of the procedures converged
to a stable result. The solution of the inverse problem for
this system has been compared with the one presented in

Ref. [4]. The discrepancies between the two potentials have
been motivated in terms of the (small) differences among the
RDFs. It is well known that the solution of the inverse problem
is highly sensible to the details of the pair function used
as the input of the reconstruction procedure. So, under this
perspective, the adoption of the maximum entropy principle
as a general and solid guideline for the definition inversion
procedure could guarantee the correctness of the results.

A last comment concerns the possible extensions of the
technique described in the present paper. ME principle holds
for any system at equilibrium, so the main idea at the basis
of this approach can be extended to systems other than the
simple monoatomic fluid discussed in the present paper. For
instance, polyatomic fluids are often characterized by strong
directional interactions and an effective description of their
physical properties in terms of the model system defined in
this paper could be revealed as very crude. In these cases,
however, it is possible to define an improved model system
with new degrees of freedom which provide a better match
with the ones of the experimental system under inspection.
The statistical analysis presented in Sec. II has to be extended
in order to include these new degrees of freedom and the
same kind of procedure based on the maximization of the log-
likelihood ratio can be performed. Obviously, the feasibility
of this strategy requires a higher involvement of information
concerning the target system and further experimental data,
beyond the two-body pair function, has to be provided.
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[12] G. Tóth, J. Phys.: Condens. Matter 19, 335220 (2007).
[13] E. T. Jaynes, Phys. Rev. 106, 620 (1957).
[14] J. Root, P. Egelstaff, and B. Nickel, Neutron Scattering Data

Analysis, Institute of Physics Conf. Series (Institute of Physics,
Bristol, 1986).

[15] A. K. Soper, Chem. Phys. 107, 61 (1986).
[16] F. Cilloco, J. Mol. Struct. 296, 253 (1993).
[17] F. Lado, J. Comput. Phys. 8, 417 (1971).

[18] C. E. Shannon, Proc. IRE 37, 10 (1949).
[19] S. Kullback and R. A. Leibler, Ann. Math. Stat. 22, 79

(1951).
[20] In this paper we follow the method introduced in Ref. [16] for

the maximization of the likelihood function.
[21] The expansion of the logarithm is due to the use of a central

limit theorem, performed in Sec. II B, for the determination of
the probability distribution of m̄.

[22] A. J. Greenfield, J. Wellendorf, and N. Wiser, Phys. Rev. A 4,
1607 (1971).

[23] In this paper we follow the method introduced in Ref. [16] for
the maximization of the likelihood function.

[24] The expansion of the logarithm is due to the use of a central
limit theorem, performed in Sec. II B, for the determination of
the probability distribution of m̄.

041130-9

http://dx.doi.org/10.1016/0301-0104(95)00357-6
http://dx.doi.org/10.1103/PhysRevE.68.011202
http://dx.doi.org/10.1103/PhysRevE.82.021128
http://dx.doi.org/10.1080/08927028808080958
http://dx.doi.org/10.1063/1.1391453
http://dx.doi.org/10.1103/PhysRevE.70.021203
http://dx.doi.org/10.1103/PhysRevE.70.021203
http://dx.doi.org/10.1088/0953-8984/19/33/335220
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1016/0301-0104(86)85059-5
http://dx.doi.org/10.1016/0022-2860(93)80140-Q
http://dx.doi.org/10.1016/0021-9991(71)90021-0
http://dx.doi.org/10.1109/JRPROC.1949.232969
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1103/PhysRevA.4.1607
http://dx.doi.org/10.1103/PhysRevA.4.1607

