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Tuning coupling: Discrete changes in runaway avalanche sizes in disordered media
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Hysteretic systems may exhibit a runaway avalanche in which a large fraction of the constituents of the system
collectively change state. It would be very valuable to understand the role that interaction strength between
constituents plays in the size of such catastrophic runaway avalanches. We use a simple model, the random
field Ising model, to study how the size of the runaway avalanche changes as the coupling between spins, J , is
tuned. In particular, we calculate P (S), the distribution of size changes S in the runaway avalanche size as J

comes close to a critical value Jc, and find that the distribution scales as P (S) ∼ S−τD(Sσ (J/Jc − 1)), with τ

and σ critical exponents and D(x) a universal scaling function. In mean field theory we find τ = 3/2, σ = 1/2,
and D(x) = exp[−(3x)1/σ /2]. On the basis of these results and previous studies, we also predict that for three
dimensions τ = 1.6 and σ = 0.24.
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I. INTRODUCTION

Many systems driven out of equilibrium are hysteretic and
exhibit avalanche dynamics as the driving field or force is
changed [1]. Often there is a macroscopic runaway avalanche
indicated by a discontinuous jump in the hysteresis curve of
some measured quantity, such as magnetization in ferromag-
netic systems. Other examples of such phenomena include
fault slips in earthquakes and fluids invading porous media [1].
Because these runaway avalanches span the entire system, un-
derstanding how the coupling strength of interactions between
constituents of the system affects the runaway avalanche size
has important consequences in making more robust magnetic
materials or memory storage devices, or preventing large
failure avalanches, as in power grids. Although such systems
may have very different microscopic origins, the statistics
of avalanches are often exactly the same. Many microscopic
details become increasingly irrelevant when viewed at larger
and larger length scales, a concept known as universality [1].
Due to universality, we may calculate the properties of these
statistics in simple models and make predictions for more
complicated real experimental systems.

To this end, we may study the effects that tuning the
coupling strength has on runaway avalanches exhibited in
a simple model. The random field Ising model (RFIM) is
a simple model that captures the essential properties of
avalanches in ferromagnetic materials. Due to universality
and the fact that the Ising model has been used to model
many different systems, studying this model is a natural
choice for understanding general properties of avalanches
[2–19]. The RFIM models a lattice of locally interacting mag-
netic spins, each subject to a different random local field hi ,
where i labels the site at which the random local field is applied.
The avalanche statistics are controlled by the ratio J/R of the
coupling between spins, J , to the disorder R (measured by
the standard deviation of the random local fields). The RFIM
predicts that, for J/R larger than some critical value (J/R)c,
there exists hysteresis with a discontinuous jump (runaway
avalanche), �M , in the magnetization, M , as the external field
H is varied. This is shown schematically in Fig. 1. The size
of �M depends on J/R − (J/R)c, the distance to the critical
point, and vanishes at J/R = (J/R)c. If an experimenter could

tune J/R in a given sample, the runaway avalanche size �M

would not vary smoothly as J/R is adjusted, but would instead
change in discrete jumps. Understanding the statistics of these
jumps could have important consequences for making more
robust magnetic materials and memory storage devices or in
the prevention of large failure avalanches, as in power grids [1].
In this paper we calculate the distribution of jump sizes in
�M as J/R is tuned, which provides testable predictions for
experiments.

To generate experimentally testable predictions, we use
the RFIM to calculate the distribution of the discrete jumps
in the size of the runaway avalanche, �M , as the model
parameter J/R is tuned. This calculation, done in a mean
field approximation of the RFIM, will be a main result of this
paper. In addition, results for the RFIM in three dimensions
are extracted based on the connection of our results to previous
studies of the RFIM [6], and we also consider the possibility
of studying avalanches in materials with dipolar forces, which
do not have runaway avalanches.

This paper is structured as follows: In Sec. II we briefly
review the RFIM and describe avalanches in the model, with a
focus on the mean field model. In Sec. III we sketch the deriva-
tion of the distribution of jumps in the runaway avalanche size
as J/R is tuned. In Sec. IV we discuss numerical simulations
performed to check our theoretical predictions. In Sec. V we
briefly discuss the three-dimensional RFIM and predict values
for the critical exponents in three dimensions, and in Sec. VI
we briefly discuss avalanches in materials with dipolar forces,
in which there are no runaway avalanches. In Sec. VII we
discuss possibilities for experimentally measuring the critical
exponents discussed in the text, and in Sec. VIII we summarize
the work and discuss future directions.

II. THE RANDOM FIELD ISING MODEL

The random field Ising model is a relatively simple model
of interacting spins that has been used to study driven, disor-
dered, nonequilibrium systems with hysteresis and avalanches
[2–19]. The model exhibits a second-order phase transition as
J/R is tuned. Above the critical ratio (J/R)c the magnetization
of the system exhibits a runaway avalanche in which large
numbers of spins collectively reverse orientation as an external
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(a)J < Jc

(b)J = Jc

(c)J > Jc

FIG. 1. (Color online) M versus H for the different coupling
regimes. At J = Jc the curve develops a discontinuity which grows
with J . In mean field theory hysteresis exists only above Jc due to the
simplicity of the hard-spin model. The soft-spin version of the mean
field theory, however, displays hysteresis above and below Rc. It has
the same critical exponents as the hard-spin mean field theory [4].

longitudinal magnetic field H is swept from −∞ to ∞ [2–6].
The critical properties of the model near this transition will
be universal for all models in the same universality class [1],
which is known to be quite large [3].

The Hamiltonian for the RFIM is

H = −
∑
i,j

Jij sisj −
N∑

i=1

(H + hi)si, (1)

where si = ±1 is the value of a classical spin located at site i.
N is the total number of spins in the lattice and H is a global
magnetic field parallel to the spin axis. The hi are random
magnetic fields, different at each site, drawn from a peaked
distribution with width R. The parameter R characterizes the
amount of disorder in the system. We choose a Gaussian
distribution for simplicity:

ρ(hi) = 1√
2πR

exp

[
− h2

i

2R2

]
. (2)

The scaling properties should remain the same for similarly
shaped distributions [4]. For convenience, from here on we
choose units such that R = 1. The factor Jij is the interaction
between spins i and j . For the standard RFIM in finite dimen-
sions, Jij couples only nearest neighbor spins. Such a model is
generally difficult to solve analytically. Consequently, in this
work we will focus on all-to-all (mean field) interactions, i.e.,
Jij = J/N for all i,j , as mean field theory is often analytically
tractable. The factor 1/N is required for the model to be well
defined in the thermodynamic limit. In mean field theory, the
Hamiltonian thus becomes

HMF = −
N∑

i=1

h
MF,eff
i si , (3)

where each spin experiences an effective local field

h
MF,eff
i = JM + H + hi. (4)

The net magnetization M is given by

M = 1

N

N∑
j=1

sj , (5)

and must be determined self-consistently. At zero temperature,
each spin aligns with its local effective field. Spins thus flip
when the sign of their effective field changes. Due to the
random fields hi , the effective fields do not all change sign
simultaneously, as in the case of zero disorder. Hence, as H is
tuned it can trigger a single spin to flip, which will change M ,
which can in turn then cause further spins to flip, which may
then cause more spins to flip, and so on until the cascade of spin
flips peters out. These cascades of spin flips are avalanches that
are detected as Barkhausen noise in experimental systems [20].
In the thermodynamic limit, N → ∞, and for J > Jc there is
an avalanche of size proportional to N in which a nonzero
fraction of spins flips. This avalanche is referred to as the
“runaway avalanche.” The fraction of spins flipped in all other
avalanches is zero in the thermodynamic limit. They fall into
two groups: avalanches which occur prior to the runaway
avalanche are dubbed “precursors” and those which follow
the runaway avalanche are termed “aftershocks.”

In mean field theory and in general, the runaway avalanche
is detected experimentally as a discontinuous change �M in
the magnetization as H is tuned. The size of the discontinuity
depends on the coupling J . Figure 2 shows the �M versus
J curve which demonstrates a transition at J = Jc, where a
runaway avalanche first appears and �M becomes nonzero.
In the thermodynamic limit this curve is smooth. However, as
shown in the figure, for finite N the curve has discrete jumps,
which tend to zero as N → ∞. These jumps in �M(J ) are the
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FIG. 2. (Color online) Size of the runaway avalanche, �M , vs J .
In the thermodynamic limit the curve appears smooth, but for finite
N there are discrete jumps in the runaway avalanche size. We study
jumps in Sm = N�M/2, the total number of spins that flip in the
runaway avalanche. The Sm vs J curve will always have discrete
jumps as N is increased, making it the appropriate curve to study.

central phenomenon that we study in this work: as J is tuned,
the maximum avalanche size changes abruptly; the distribution
of sizes of these changes is of interest as it has relevance
to understanding—and potentially controlling—avalanches in
many natural phenomena in systems such as power grids or
magnetic materials [1]. Because the jumps in �M tend to zero
in the thermodynamic limit, it is better to study instead jumps
in the number of spins that flipped in the runaway avalanche,
Sm, versus J . Jumps in the Sm versus J curve do not tend
to zero as N → ∞. Sm is related to �M by �M = 2Sm/N .
Determination of the distribution P (S) of jump sizes S in Sm

will be the main result of this paper and a possible prediction
for experiments.

III. JUMP SIZE DISTRIBUTION DERIVATION

We begin our analysis by carefully considering what
happens when a spin flips (see Fig. 3). We consider finite
N first, taking the N → ∞ limit at the end. Before the limit
is taken, we identify the runaway avalanche as the largest
avalanche Sm for J � Jc.

We initialize the system with H = −∞. All spins initially
point down as h

MF,eff
i is dominated by H , and hence M = −1.

The spins will flip in order of descending random fields, so
we label the random fields h1 > h2 > · · · > hN . The spin
with random local field h1 is the first spin to flip. When
the longitudinal field H is tuned such that it causes a spin
with field hi to flip, it increases the effective field of all other
spins by 2J/N . The condition that this spin flip causes the
next spin hi+1 to flip is hi − hi+1 � 2J/N . If spin i causes
several spins to flip, then each flip will increase the effective
field of all spins by 2J/N , which can in turn flip even more
spins. If ni spins have flipped in the avalanche started by

FIG. 3. (Color online) Schematic plot of avalanches in the RFIM
system. The solid curve is a Gaussian distribution of random fields and
the straight line indicates the line 2Jρ = 1. The dashed line represents
avalanches; each dash corresponds to an avalanche consisting of spins
with random fields in the segment of the distribution below the dash.
As H increases, spins with fields on the far right of the distribution
begin to flip when the sign of their local field changes. The resulting
avalanches peter out quickly as nflip = 2Jρ(h0) � 1. When the spin
with local field h∗ [Eq. (4)] flips, it triggers an avalanche for which
nflip = 1, enabling the avalanche to run away and cause a finite fraction
of the spins to flip. As the avalanche travels to the left on the curve,
eventually nflip falls below 1 again once the spin with local field −h∗

has flipped, but due to the increase in effective field built up from spin
flips during the runaway avalanche the system overshoots −h∗, and
the avalanche peters out at some local field |h| > |h∗|. For J close
to Jc, the overshoot is very slight, and the distribution of aftershock
sizes close to −h∗ is given by Eq. (8).

spin i, then the condition that the (ni + 1)th spin flips is
hi − hi+ni

� 2Jni/N . If the (ni + 1)th spin does not flip, then
there remains a “gap” between spins i and i + ni , �i,i+ni

. This
gap is given by hi − hi+ni

= 2Jni/N + �i,i+ni
, or

�i,i+ni
(J ) = hi − hi+ni

− ni

2J

N
. (6)

The gap is a function of the coupling J . When �i,1+ni
is

positive the global field H must be increased to cause spin
i + ni to flip. When �i,j is negative, it means that spin j is
already part of an avalanche caused by spin i. When �i,j = 0
spin i changes the effective field just enough to trigger spin
j to flip. Thus, when studying changes in avalanche sizes
as the coupling increases, we need only consider the gaps
between pairs of spins for which �i,j is positive, i.e., between
the random fields of the initial spin of an avalanche and the
initial spin of the avalanche that follows it. If we reinitialize
the system with all spins pointing down, but with J adjusted
so that the smallest positive �i,i+ni

of the previous sweep of
H vanishes, then when spin i flips, the resulting avalanche
will now cause spin i + ni to flip. If spin i is the initial spin
of an avalanche of size ni with the smallest positive �i,i+ni

,
then J[i,i+ni ], the value of J which will result in the avalanche
flipping spin i + ni , is given by

2J[i,i+ni ]

N
= hi − hi+ni

ni

. (7)

Note the difference between Jij and J[i,j ]: the former is the
coupling between spins i and j , while the latter is the value of
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the coupling required for an avalanche triggered by spin i to
cause spin j to flip. If during the previous sweep of H from
−∞ to +∞, spin i + ni , where ni is the size of the avalanche
started by spin i on the previous sweep, triggered an avalanche
of size mi+ni

, then spin i is now an avalanche of size ni +
mi+ni

on the current sweep (with coupling J = J[i,i+ni ]). This
is therefore how different avalanches join as J is increased.
Because the gap �i,i+ni

is now negative, for the next sweep
we must look at the gap between spins i and i + ni + mi+ni

,
�i,i+ni+mi+ni

, to determine if this gap or another one is the
smallest gap on the current sweep of the system in order to
determine to what value to tune J .

Although two avalanches have joined with increase of
J , this has not necessarily caused a change in the runaway
avalanche size Sm. To be precise, let S(k)

m denote the size of
the largest avalanche on the kth sweep of the system. We
want to know which avalanche-joining processes will result
in S(k+1)

m > S(k)
m (as opposed to S(k+1)

m = S(k)
m ). There are only

three kinds of avalanche-joining processes which will increase
Sm. The first process we label “PP-AA.” In this process either
two precursors (P) or two aftershocks (A) have joined together
in going from sweep k to sweep k + 1. In this case S(k+1)

m > S(k)
m

only if the sum of the two precursors or aftershocks that joined
is greater than S(k)

m . In the second process, labeled “PR,” spin
i is the start of a precursor avalanche of size ni and spin
i + ni is the start of a runaway (R) avalanche of size S(k)

m . On
the (k + 1)th sweep the size of the largest avalanche is then
S(k+1)

m = S(k)
m + ni > S(k)

m . The largest avalanche size has thus
increased. In the last process, labeled “RA,” spin i starts the
largest avalanche of size S(k)

m and i + S(k)
m starts an aftershock,

in which case S(k+1)
m is S(k)

m + n
i+S

(k)
m

> S(k)
m and the largest

avalanche has increased between the kth and (k + 1)th sweeps.
Above Jc and in the thermodynamic limit, process RA

dominates and processes PP-AA and PR are negligible.
Process PP-AA is negligible because in the thermodynamic
limit the ratio of largest avalanche size to the total number
of spins, Sm/N , tends to a finite fraction �M/2, whereas
for a precursor or aftershock avalanche of size S, S/N → 0
as N → ∞. Thus, no two precursor or aftershock avalanches
can ever join to become larger than the current Sm, and process
PP-AA will not occur in the thermodynamic limit.

Process PR will not contribute in the thermodynamic limit
because the gap between the runaway avalanche and the
precursor avalanche preceding it will be larger than the gap
between the runaway avalanche and the aftershock following
it with probability 1 in the thermodynamic limit. The argument
is as follows: Let �PR = hP − hR − 2JSP/N be the gap
between the precursor to the runaway avalanche and the
runaway avalanche, where hP is the field of the initial spin
of the precursor avalanche, hR the field at which the runaway
avalanche starts, and SP the size of the precursor avalanche. Let
�RA = hR − hA − 2JSm/N be the gap between the runaway
avalanche and the aftershock following it, where hA is the field
of the initial spin in the aftershock. On a given sweep of the
system for which both gaps are positive, we want to know the
values of J which will cause these gaps to vanish. The gap
with the smaller coupling will vanish first as we increase J .
However, because the fields are random, we can only calculate
the probability Prob(0 < JPR < JRA) that the coupling JRA

which causes �RA to vanish is greater than the coupling JPR

which causes �PR to vanish. We show that this probability is
zero for arbitrary fields in the thermodynamic limit:

Prob(0 < JPR < JRA)

= Prob

(
0 <

2JPR

N
<

2JRA

N

)

= Prob

(
0 <

hP − hR

SP
<

hR − hA

Sm

)

= Prob

(
hR < hP < hR + SP

Sm

(hR − hA)

)
,

where in going to the third line we used the fact that 2JRA/N =
(hR − hA)/Sm and 2JPR/N = (hP − hR)/SP, which come
from �RA(JRA) = 0 and �PR(JPR) = 0, respectively. Simple
manipulations of the argument yield the last line above. Taking
the thermodynamic limit, Sm → N�M/2, but SP/N → 0;
hence SP/Sm → 0 in the thermodynamic limit, giving

Prob(0 < JPR < JRA) = Prob(hR < hP < hR) = 0,

as the probability distribution is continuous. Hence, in the
thermodynamic limit there is zero probability that JPR < JRA.
The value of the coupling required to cause the runaway
avalanche to absorb the aftershock following it will always
be smaller than the value of the coupling required to cause the
precursor to absorb the runaway avalanche, and thus on every
sweep of the system it is the aftershock which is absorbed into
the runaway avalanche, not the precursor [21].

Because it is always an aftershock that is absorbed as N →
∞, the distribution of jump sizes is identical to the distribution
of aftershock avalanche sizes, which is [4]

P (S) ∼ S−τ e−St2/2, (8)

where τ = 3/2 and t = 2Jρ(h0) − 1, with h0 the random local
field of the spin which triggers the avalanche. At the critical
point J = Jc, t = 0 and the distribution is a power law S−τ ,
as expected at a continuous phase transition.

The parameter t must be evaluated at the local field at
which the aftershock to be absorbed begins. We now determine
what the local field of the aftershock is. As N → ∞, Sm →
N�M/2. The value of J is tuned such that 2J/N = (h∗ −
hend)/Sm, or hend = h∗ − J�M for N → ∞, where hend is the
local field of the last spin in the avalanche. This determines
the field of the last spin in the runaway avalanche in terms
of the field of the first spin in the runaway avalanche, h∗, the
current value of the coupling, and the fraction of spins in the
runaway avalanche, �M/2. The fraction �M/2 is determined
implicitly by

�M

2
=

∫ h∗

h∗−J�M

dh ρ(h). (9)

Using the fact that ρ(h) is Gaussian, we may write this integral
in terms of error functions erf(x) = 2/

√
π

∫ x

0 dt exp(−t2). We
have

�M = erf(
√

ln(1 + j ))

−erf

(√
ln(1 + j ) −

√
π

2
(1 + j )�M

)
, (10)
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where we define j = J/Jc − 1 for convenience. For j = 0
(J = Jc) the unique solution is �M = 0. We thus expect that
for small j (J close to Jc) �M will be small, so we expand
the right hand side for small j > 0 and �M (going to third
order in �M , as the zeroth order vanishes and the first order
cancels with the left hand side). We find

�M � 6√
π

j 1/2. (11)

To lowest order in j , h∗ � 2Jcj
1/2/

√
π [4], and hence we find

hend � −4Jcj
1/2/

√
π . Now that we have hend we need only

determine how far away the next spin is. In the thermodynamic
limit the distance between spins tends to zero (as can be shown
using the theory of order statistics [22]). Hence, hend will
be only an infinitesimal distance from the field which begins
the following aftershock, so we may evaluate t by inserting
h0 � hend. We find t � −3j , and so

P (S) ∼ S−τD(Sσ j ), (12)

with τ = 3/2, σ = 1/2, and

D(x) = exp[−(ax)1/σ /2], (13)

where a = 3. While the parameter a is a nonuniversal quantity,
D(x) is a universal scaling function and prediction for
experiments.

IV. NUMERICAL RESULTS

We test our prediction numerically by simulating the mean
field model for many different configurations of spins. We set
R = 1 in our simulations. Thus, all spins are drawn from a
standard normal distribution in our simulations. We can turn
the considerations at the beginning of the previous section into
an algorithm to compute the jumps in Sm as a function of J .
Some caution must be taken, however, as for a finite number
of spins the processes PP-AA and PR will necessarily occur
on occasion and contribute to jumps in Sm. Equation (12) is
valid only for RA processes in the thermodynamic limit, while
the simulations have finite size effects. In order to compare the
results of our simulations to the theoretical results, we record
only jumps that occur due to RA processes, because that is
the dominant process in the thermodynamic limit. Failing to
remove the other processes distorts the histograms, resulting
in bumps in the histograms at large S.

We ran simulations for 2000 configurations of both 104 and
105 spins and 400 configurations of 106 spins. Figure 4 shows
the results of the 106 run. The values of the critical exponents
σ and τ are essentially indistinguishable from the theoretical
values, with only the values of the nonuniversal quantities Jc

and a [the coefficient of x in Eq. (13), predicted to be 3] being
smaller than theoretically predicted. These deviations from the
theoretical results are expected to be due to finite size effects,
as the values for both Jc and a increase toward the predicted
values as N is increased. Table I compares the data for the
two different values of N , revealing that as N increases the
agreement between theory and simulation improves. Results
for N = 104 are not given, as the data collapse was not
satisfactory. However, these data are used in the finite size
collapse, discussed below.
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(a)Histogram of jump size S for various values of J .
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(b)Collapsed Data.

FIG. 4. (Color online) Simulation data. (a) (log-log scale) shows
the normalized histograms for different values of J up to about
4% above the critical point. (b) (linear scale) is a collapse of the
data, confirming the theoretical values of the universal quantities
τ = 1.5 and σ = 0.5, as well as giving estimates for the nonuniversal
quantities a and Jc, which are not far off from the predicted values.
The discrepancy is due to finite size effects. Note that the data collapse
falls almost completely on top of the scaling function Eq. (13),
confirming the scaling form, except near small S, where the scaling
form does not apply and discreteness effects become visible.

A. Finite size scaling collapse

We also performed a finite size scaling collapse to determine
the critical exponents. By performing a data collapse using the
number of spins as a tunable variable, we can extract the value
of the exponents and Jc in the thermodynamic limit, free of
finite size errors. This method is particularly useful for the
analysis of experimental data. For a system of linear size L,
we expect the scaling function of Eq. (12) to also depend
on L/ξ , where ξ is the correlation length. For the infinite
system, ξ ∼ j−ν ; for a finite system, ξ cannot exceed the
linear system size L, and there are subdominant corrections
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TABLE I. Comparison of data collapses, as in Fig. 4, for numbers
of spins N = 105 and 106. We find that the critical exponents τ and
σ have the theoretical values within statistical error, and we obtain
values for Jc and a, defined in Eq. (13), that are close to the theoretical
values of Jc = √

π/2 and a = 3, and improve as N is increased.
Parentheses indicate estimated error in last digit.

N 105 106 ∞
τ 1.48(7) 1.50(6) 1.5
σ 0.50(3) 0.50(7) 1.5
Jc 1.244(3) 1.251(2) 1.253314...
a 2.3(2) 2.8(3) 3

that are negligible as the number of spins (and hence system
size) grows large. We may write

P (S) ∼ S−τD(Sσ j,L1/νj ).

If we now calculate the nth moments of the jump sizes in Sm,
〈Sn〉 = ∫

dSSnP (S), we find

〈Sn〉 ∼ L(n+1−τ )/(σν)G(L1/νj ), (14)

where G is a new scaling function that depends only on L1/νj .
Using the fact that N ∼ Ld for a d-dimensional lattice, we
obtain

〈Sn〉 ∼ N (n+1−τ )/(σdν)G(N1/(dν)j ). (15)

In the mean field problem we assume that d is effectively the
upper critical dimension dc, above which mean field theory is
exact. The critical dimension is dc = 6 for the RFIM [4]. As
d and ν appear only as dν, in a scaling collapse (as shown
in Figs. 5 and 6) we can determine only this combination
from the collapse. We calculate 〈Sn〉 for n = 1,2, and for
system sizes of N = 104, 105, and 106. This allows us to
determine the exponents dν and (n + 1 − τ )/σ , from which
we calculate τ , σ , and ν, assuming we may set d = dc = 6 for
mean field theory. The results of the collapse are given in
Table II. Figures 5 and 6 show plots of 〈S〉 and 〈S2〉,
respectively, versus J , with their associated collapses.

TABLE II. Results of the finite size scaling collapse shown in
Figs. 5 and 6 of the nth moments 〈Sn〉 of P (S) for n = 1,2. The top
part of the table lists the combined exponent values obtained directly
from the collapse. The lower part lists the individual exponents
determined from these values. We assume dc = 6, giving the estimate
ν = 2.6/6 ≈ 0.4. The critical exponents are found to be quite close
to the expected exponents. Statistical errors in the last digit reported
are given in parentheses.

n 1 2

dν 2.6(6) 2.6(5)
(n + 1 − τ )/σ 1.04(22) 3.2(4)
Jc 1.253(2) 1.2529(8)

Derived exponents Collapse Theory
τ 1.5(2) 1.5
σ 0.5(3) 0.5
dν 2.6(6) 3
ν 0.4(1) 0.5
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FIG. 5. (Color online) (a) 〈S〉 vs J . (b) Finite size scaling collapse.
The N = 104 data appear noisy, but the general trend follows the 105

and 106 curves.

V. AVALANCHES IN THREE DIMENSIONS

The physical picture suggested by studying the mean
field theory is that the runaway avalanche absorbs aftershock
avalanches as J is increased. We expect this to be true
in finite dimensions as well. Although the simulations of
Ref. [23] find correlations between avalanche sizes and waiting
times between avalanches at the three-dimensional critical
point, which could in principle affect scaling relations, no
correlations appear to exist between avalanche sizes. As our
arguments do not depend on the time between avalanches, we
thus expect that the distribution of changes in the runaway
avalanche size will be equal to the distribution of aftershock
sizes even in finite dimensions. The distribution of aftershock
sizes in three dimensions has the same form as Eq. (12) with
different values for the exponents τ and σ and a different
scaling form D(x). In three dimensions the exponents are
τ = 1.6 ± 0.6, σ = 0.24 ± 0.02, and ν = 1.4 ± 0.2 [6]. We
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FIG. 6. (Color online) (a) 〈S2〉 vs J. (b) Finite size scaling
collapse. The N = 104 data appear noisy, but the general trend follows
the 105 and 106 curves.

summarize the derived results for mean field theory and three
dimensions in Table III.

VI. DIPOLAR INTERACTIONS

We now briefly consider the effect of dipolar interactions
between spins. Dipolar forces can give rise to demagnetizing
fields which resist the propagation of large avalanches [24].
Most magnetization changes in the system are no longer due
to nucleation of new domains but to motion of domain walls
[24–26]. As a result, the runaway avalanche is broken
up into many small avalanches with size distribution
S−τ ′

f (S(k/R2)1/σ ′
), with different critical exponents τ ′ and

σ ′, and where k is the value of the effective demagnetizing
field and f (x) is a universal scaling function [25–27]. Over a
large range of H , where the magnetization curve M(H ) has
constant slope (dM/dH = const) and is far from saturation,

TABLE III. Critical exponents τ , σ , and ν in mean field theory
and three dimensions. The results for mean field theory are those
derived in this work. Those for three dimensions are argued to be the
same exponents as those of the aftershock size distribution in three
dimensions, reported in Ref. [6]. The exponents were determined
numerically. Statistical errors in the last digit are given in parentheses.

τ σ ν

Mean field theory 1.5 0.5 0.5
Three dimensions 1.60(6) 0.24(2) 1.4(2)

and for disorders R less than some critical disorder R
dipolar
c [28],

the avalanche size distribution only depends on the ratio k/R2

and does not depend on H [25,26]. This is quite different from
the case analyzed above, and our previous results do not apply.
However, it is interesting for the analysis of experiments on
LiHoxY1−xF4 and related materials [29]. In these systems the
disorder R can be tuned by tuning a transverse magnetic field
applied to the sample. Thus, it may be possible to measure
avalanches caused by tuning R using Barkhausen noise [20]
or other techniques. Domain wall motion can be characterized
by an equation of motion [25,26]

dui(t)

dt
= H +

∑
j

Kij (uj − ui) + hi, (16)

where u is the height of the domain wall, K is an interaction
kernel which contains the dipolar and exchange interactions,
H is the global magnetic field, and the hi are the random local
fields. In the LiHoxY1−xF4 experiments, tuning the transverse
magnetic field amounts to tuning all of the hi by the same
factor [29,30]. Suppose we tune R until a single spin flips and
triggers an avalanche. Because the avalanche size distribution
depends on R only through the ratio k/R2 (as long as R <

R
dipolar
c ), we expect the size statistics of avalanches triggered

by tuning R to be given by the same distribution with a
different cutoff that scales as (k/R2)−1/σ ′

, with σ ′ = 1 in three
dimensions [26,31].

VII. EXPERIMENTAL SYSTEMS

Here we give a list of related experimental systems.
(1) As mentioned previously, the strength of the random

local fields in LiHoxY1−xF4 can be tuned by tuning an
external magnetic field transverse to the orientation of the
spins [29]. In principle, this could be an excellent system
to test the results of this work; however, the presence of
dipolar forces in such materials changes the behavior of the
system, resulting in domain wall motion, as opposed to domain
nucleation. This renders such materials unsuitable for studying
runaway avalanches. Although in some cases it is possible
to minimize the dipolar forces by choosing a suitable sample
geometry, such as a frame or thin wire [25,26], the perturbative
calculation of Ref. [30], which predicts that LiHoxY1−xF4

becomes a dipolar RFIM when a transverse field is applied,
assumes that the strength of the random local fields is less
than the strength of the typical interactions between spins,
suggesting that the strength of the random fields is at most
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comparable to the dipolar forces in this regime. In these
materials, we expect domain wall propagation to dominate
the dynamics. The results for this case are summarized in
Sec. VI.

(2) It is possible to control the exchange interactions
between spinlike states in atoms in optical lattice experiments
[32]. This could allow for interesting experimental investiga-
tions of avalanches in RFIM-like and related systems modeled
by the quantum mechanical transverse field RFIM [33–35], as
the coupling is tuned.

(3) Experiments in systems of superfluid 4He in Nuclepore
show hysteretic and avalanching behavior in the amount
of fluid trapped in the volume of the Nuclepore as the
chemical potential is adjusted [36–38]. There are some
qualitative differences between the hysteresis observed in
these experiments and in the RFIM. In particular, in fluid
experiments the hysteresis curves are typically asymmetric
and do not seem to exhibit runaway avalanches. However, it
may still be the case that the two systems are in the same
universality class. A first attempt at a comparison between
the statistics of the precursor avalanches in these experiments
and in the RFIM has been done in Ref. [36]. The authors
find that the experimental exponents are not inconsistent
with the RFIM, but the error bars are not small enough
to definitively conclude whether the universality classes are
the same or different. Although the systems studied in
Refs. [36–38] do not display runaway avalanches, this may be
because the distribution of pore diameters is wide. A narrower
range of pore diameters may allow for large runaway events
[39]. Additionally, some models of porous media develop a
discontinuous jump in the hysteresis loop at sufficiently high
porosity [40] providing another possible method to achieve
runaway events. The group of Refs. [36–38] has also found
that the coupling between different pores is mediated by a layer
of superfluid helium, suggesting that perhaps the coupling
can be tuned by adjusting the thickness of the fluid layer.
However, the fluid layer thickness does change as the chemical
potential is tuned [39], which may require modification of
the results presented in this paper. If runaway avalanches
can be triggered in superfluid 4He in Nuclepore systems,
then it may be possible to study changes in the runaway
avalanche size as the coupling between pores is tuned, and
the results could be compared to the predictions for the RFIM
presented in this work, perhaps with some modifications to
account for the coupling changing as the chemical potential is
tuned.

(4) The RFIM is applicable to a broad range of systems
[2], ranging from magnets to decision-making processes. We

expect the results of this paper to be relevant to future studies
of many of these systems if the coupling can be tuned.

VIII. CONCLUSION

In summary, we have presented predictions for experiments
which study the statistics of changes in the size of a runaway
avalanche in a disordered system as the coupling between
constituents in is tuned. To generate experimentally testable
predictions, we have used the random field Ising model to
derive the distribution of the size changes in the runaway
avalanche as the ratio J/R is slightly increased above a
critical value (J/R)c. We predict the values of the critical

exponents in both mean field theory and three dimensions.
The exponents found in mean field theory are likely to be
those measured experimentally in systems with long range
ferromagnetic interactions. For systems with short range inter-
actions, simulations and a renormalization group calculation
predict quantitatively accurate values for the exponents [4].
We argue that in finite dimensions the exponents of the
jump in the runaway avalanche size will be equal to the
exponents of the aftershock size distribution, which are already
known [6]. Numerical simulations support our theoretical
findings. We suggest possibilities for measuring these effects
experimentally in ferromagnetic or fluid systems. Further
studies could look at finite size effects in the system, such
as how events due to PR or PP-AA processes affect the
distribution of jump sizes S [41], or the relation of the RFIM
to other systems which exhibit runaway avalanches.
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