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Anomalous-diffusion approach applied to the electrical response of water
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We investigate the electrical response of Milli-Q deionized water by using a fractional diffusion equation of
distributed order with the interfaces (i.e., the boundary conditions at the electrodes limiting the sample) governed
by integrodifferential equations. We also consider that the positive and negative ions have the same mobility and
that the electric potential profile across the sample satisfies Poisson’s equation. In addition, the good agreement
between the experimental data and this approach evidences the presence of anomalous diffusion due to the surface
effects in this system.
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I. INTRODUCTION

One of the most important phenomena in physics is the
diffusion which permeates several fields of science. In fact,
it can be found, for instance, in atom deposition into a
porous substrate [1], diffusion of high molecular weight
polyisopropylacrylamide in nanopores [2], highly confined
hard disk fluid mixtures [3], fluctuating particle fluxes [4],
diffusion on fractals [5,6], ferrofluid [7], p-doped poly(3,4-
ethylenedioxythiophene) modified electrodes [8], colloids
[9], and many others. Depending on the stochastic process
connected to the diffusion we are led to either a convectional
[10] or an anomalous diffusion [11–13]. The first scenario
is characterized by a time-linear dependence for the mean
square displacement [i.e., 〈(z − 〈z〉)2〉 ∼ t], which is typical
of a Markovian process and the dynamic of the system may be
connected to a diffusion equation or Langevin equation with
white noise [10]. On the other hand, systems with, for example,
memory [12,13], fractality [5,6], and long-range interactions
[14–16] are characterized by a different time dependence for
the mean square displacement [e.g., 〈(z − 〈z〉)2〉 ∼ tϑ ], which
is evidence of the non-Markovian nature of the processes
present in these systems. Surface effects on the system may
also lead us to scenarios characterized by anomalous diffusion
as, for example, the situations reported in Refs. [17,18] where
the effect of the adsorption-desorption process of the surface
produces an anomalous spreading of the system depending
on the time scale considered. These effects play an important
role in the electrical response of a system and lead us to an
anomalous behavior which is not suitably described by the
usual models. In fact, the anomalous electric response can
be found in several systems such as fractal electrodes [19],
nanostructured iridium oxide [20], and water [21]. To face
these anomalous responses, several approaches have been
proposed such as the extension of the Warburg model [22,23]
and fractional diffusion equations [24–27] by accomplishing
the Poisson equation [28–30]. Other developments can be
found in Refs. [31,32].

The plan of this work is to investigate the electrical response
of Milli-Q deionized water (i.e., ultrapure water of Type 1
according to the standards) by using a fractional diffusion
equation of distributed order with the interfaces (i.e., the
boundary conditions at the electrodes limiting the sample,
governed by integrodifferential equations). This phenomeno-
logical model is compared with experimental data and the very

good agreement suggests the presence of anomalous diffusion
in the electrolytic cell. Indeed, this feature provides us with a
relation between the electrical response of the system and the
influence of the dynamics aspects of the ions motion (i.e., the
diffusive processes). These developments and the comparison
between the theoretical predictions and experimental data are
performed in Secs. II and III. The last section (Sec. IV) is
devoted to the discussions and the conclusion.

II. ANOMALOUS DIFFUSION AND
ELECTRICAL RESPONSE

Let us describe the phenomenological model used to
investigate the experimental data present in the next section.
Following the formalism developed in Ref. [30], we start by
considering the fractional diffusion equation of distributed
order [33] for the bulk density of ions nα (α = + for positive
and α = − for negative ones)∫ 1

0
dγ τ (γ )

∂γ

∂tγ
nα(z,t) = − ∂

∂z
jα(z,t), (1)

where τ (γ ) is a distribution function of γ with the current
density given by

jα(z,t) = −D ∂

∂z
nα(z,t) ∓ qD

kBT
nα(z,t)

∂V

∂z
. (2)

In Eq. (2), D is the diffusion coefficient for the mobile ions
(the same for the positive and negative ones) of charge q, V is
the actual electric potential across a sample of thickness d with
the electrodes placed at the positions z = ±d/2 of a Cartesian
reference frame in which z is the axis normal to them, kB is
the Boltzmann constant, and T the absolute temperature. The
fractional operator considered here is Caputo’s one, that is,

∂γ

∂tγ
nα(z,t) = 1

�(k − γ )

∫ t

t0

dt ′
n(k)

α (z,t)

(t − t ′)γ−n+1
, (3)

with k − 1 < γ < k and n(k)
α (z,t) ≡ ∂k

t nα(z,t). In particular,
we consider t0 → −∞ to analyze the response of the system
to the periodic applied potential defined later on, as indicated
by Ref. [34]. Equation (1) can be related to a rich class
of diffusive processes depending on the choice performed
to the distribution τ (γ ), in particular the non-Markovian
processes manifested by the system which lead us to an
anomalous spreading of the system. Simple cases can be
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recovered by means of suitable choices for τ (γ ), such as
τ (γ ) = τδ(γ − 1), which corresponds to the normal diffusive
process, and τ (γ ) = τ

γ
γ δ(γ − γ ), 0 < γ � 1, related to a pure

fractional diffusion equation of order γ . Of special interest may
be the choices τ (γ ) = τδ(γ − 1) + τ

γ
γ δ(γ − γ ) and τ (γ ) = 1

and the mixing between these cases, which correspond to a
situation with two or more different diffusive regimes [33,35];
these may be related to the situations discussed in Ref. [32] for
the motion of the ions. In this manner, we expect to produce two
different behaviors for the impedance, one of them governing
the low frequency regime and the other manifested in the
high frequency limit, as, for example, the regimes presented
in Figs. 1 and 3 for the real part of the impedance which have
a different behavior from the usual situation [36]. This feature
could be verified by analyzing the mean square displacement
which in this case is expected to have two different behaviors,
one for small times and the other for large time related to the
dynamic aspect of the ions. In this sense, as pointed out in Ref.
[32] this quantity may be useful to establish a bridge between
the experimental data and the theoretical model. To cover the
influence of the surface on the ions in a more general situation,
we consider Eq. (1) subject to the boundary conditions

jα(z,t)|z=± d
2

= ±
∫ 1

0
dϑ τ̃ (ϑ)

×
∫ t

−∞
dvκ(t − v)

∂ϑ

∂vϑ
nα (z,v)

∣∣∣∣
z=± d

2

. (4)

This boundary condition may be related to an adsorption-
desorption process at the surfaces with an unusual dynamics
which, for the particular choice κ(t) = κe−t/τ with τ̃ (ϑ) =
δ(ϑ − 1), recovers the adsorption-desorption processes at the
surfaces governed by a kinetic equation corresponding to the
Langmuir approximation [36]. Others choices of κ(t) and τ̃ (ϑ)
can be performed to incorporate memory effects such as the
situations worked out in Ref. [30] for τ̃ (ϑ) = δ(ϑ − 1) and,
consequently, anomalous relaxation processes [18] and the
mixing between the usual and anomalous relaxation processes.
In this sense, it is also interesting to note that, for κ(t) ∝ δ(t)
with τ̃ (ϑ) arbitrary, we can relate the processes at the surface
with fractional kinetic equations [37,38]. From this point of
view, Eq. (4) may interpolate several contexts which play an
important role in the description of the electrical response of
the system and, consequently, may be useful to investigate the
behavior of the impedance in the low frequency limit where the
nonusual behavior is manifested. In fact, the changes produced
by incorporating the fractional time derivative of distributed
order are useful to investigate the real part of the impedance
and the boundary conditions play an important role for the
imaginary part of the impedance. The potential is determined
by Poisson’s equation

∂2

∂z2
V (z,t) = −q

ε
[n+(z,t) − n−(z,t)] , (5)

which depends on the difference between the densities of
charged particles. A solution for the previous equations and,
consequently, an expression for the electrical impedance
may be found in the linear approximation by considering
that nα(z,t) = N + δnα(z,t), with N � δnα(z,t) where N

represents the number of ions. In addition, we also consider
δnα(z,t) = ηα(z)eiωt to analyze the impedance when the
electrolytic cell is subjected to the time-dependent potential
V (z,t) = φ(z)eiωt , with V (±d/2,t) = ±V0e

iωt/2. After sub-
stituting these quantities in Eqs. (1), (4), and (5), we obtain
a set of four coupled equations which may be decoupled
by introducing the functions ψ+(z) = η+(z) + η−(z) and
ψ−(z) = η+(z) − η−(z). The first two equations are

d 2

dz2
ψ±(z) = α2

±ψ±(z), (6)

where α2
− = � (iω) /D + 1/λ2 and α2

+ = � (iω) /D, in which
� (iω) = ∫ ∞

0 dγ τ (γ )(iω)γ and λ =
√

εkBT /(2Nq2) is the
Debye’s screening length. The other two equations are(

D d

dz
ψ−(z) + 2qN

kBT
D d

dz
φ(z)

)∣∣∣∣
z=± d

2

= ∓�(iω)ψ−(z)|z=± d
2
, (7)

D d

dz
ψ+(z)

∣∣∣∣
z=± d

2

= ∓�(iω)ψ+(z)|z=± d
2
, (8)

at z = ±d/2, with �(iω) = e−iωt
∫ 1

0 dϑτ̃ (ϑ) (iω)ϑ∫ t

−∞ dt κ(t − t)eiωt . The solution of Eq. (6) is ψ±(z) =
C±,1e

α±z + C±,2e
−α±z, where C±,1 and C±,2 are determined by

the boundary conditions and the symmetry of the potential:
V (z,t) = −V (−z,t), which implies C−,1 = −C−,2 and,
consequently,

ψ−(z) = 2C−,1 sinh (α−z), (9)

φ(z) = − 2q

εα2
C−,1 sinh (α−z) + Cz. (10)

The constants C−,1 and C are determined by using the boundary
condition for ψ−(z) [i.e., Eq. (7)] and the condition imposed
on the potential, for example, in z = d/2. Using these results
and the procedure presented in Ref. [36], we can obtain the
current and the impedance, Z = V/I , of the electrolytic cell.
In particular, for the case discussed above, it is given by

Z = 2

iωεSα2−

× tanh(α−d/2)/(λ2α−) + Ed/(2D)

1 + �(iω)(1 + iωλ2/D) tanh(α−d/2)/(α−iωλ2)
(11)

with E = � (iω) + α−� (iω) tanh (α−d/2) and S is the elec-
trode area.

III. THEORETICAL AND EXPERIMENTAL RESULTS

Now, we compare the experimental data obtained for
the electrical response of Milli-Q deionized water with the
impedance spectroscopy technique and the model discussed
in the previous section. The measurements of the real and
imaginary parts of the electrical impedance were performed
using a Solartron SI 1296 A impedance-gain phase analyzer.
The frequency range used was from 10−2 Hz to 5 MHz.
The amplitude of the ac applied voltage was 20 mV. The
Milli-Q water was placed between two circular surfaces spaced
1.0 mm from each other. The area of electrical electrodes was
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3.14 cm2. We used two kinds of electrical contacts. One of
them was of brass and other one made of stainless steel.
The Milli-Q water we used has resistivity ρ = 18.2 M� cm
and pH = 6.1. We did not add a concentrated potassium
chloride solution as a buffer in the pure Milli-Q water. Before
starting the measures we adopted the following procedure for
cleaning. First, the electrodes were washed with detergent
and deionized water. After that, the electrodes were polished
with fine sandpaper. Finally, the electrodes were placed in
an ultrasonic bath for 10 min. After this procedure, we put
the Milli-Q water between the electrodes (1.0 mm thickness).
All the measurements of the real R = Re (Z) and imaginary
X = Im (Z) parts of the electrical impedance were made
at room temperature. It is important to mention that the
electrical response obtained in this experiment has also the
contribution of the device, which is very small when compared
with the electrical response of the water. Figure 1 shows
the experimental data for the real part of the impedance and
the model when the sample is between brass electrodes. We
also show in this figure (see the inset) the usual model by
taking perfect blocking electrodes into account to show the
effect of the boundary conditions given by Eq. (4). Note
that the usual model which corresponds to Eq. (4) with
κ(t) = 0, τ̃ (ϑ) = 0 and τ (γ ) = δ(γ − 1) cannot reproduce

FIG. 1. (Color online) Real part of the electrical impedance of
the cell versus the frequency of the applied voltage f = ω/2π . The
inset compares the behavior of the usual model with the experimental
data of the real part of the impedance.

the behavior of the impedance for f < 1 KHz. However,
it has a good agreement with the experimental data for
f > 1 KHz where the system is properly described in terms
of the usual diffusion equation. This feature can be verified
by the agreement between the experimental data and the
usual model based on the standard diffusion equation with
blocking electrodes [36]. For f < 1 KHz, the experimental
data obtained for the real or imaginary part of the impedance
evidence an anomalous diffusion process related to the ions.
This unusual diffusion process may be produced by bulk and/or
surface effects which influence the dynamic of the ions. To
quantify these effects in the experimental data for the real
and imaginary parts of the impedance, we fit the experimental
data by using the previous model and testing the sensibility
of the parameters present in the model when compared
with the experimental data. Our best fit is obtained for
ε = 83ε0 [where ε0 = 8.815 × 10−12 C2/(Nm2)], N = 4.1 ×
1021 m−3, D = 5.88 × 10−8 m2/s, γ = 1, τ (ϑ) = δ(ϑ −
1), κ(iω) = κτ [(iωτ )ϑ1 + (iωτ )ϑ2 ]/2, κ = 1.8 × 10−6 m/s,
ϑ1 = 4ϑ2 = −0.88, and τ = 1 s which evidences that the
dynamic of the ions in the electrolytic is governed by the model
presented in the previous section based on anomalous diffusion
approach. Note that the parameter τ has the dimension of time,
whereas κ has the dimension of a length/time. Consequently,
κτ represents an intrinsic thickness related to the surface effect

FIG. 2. (Color online) Imaginary part of the electrical impedance
of the cell versus the frequency of the applied voltage f = ω/2π . The
inset compares the behavior of the usual model with the experimental
data of the imaginary part of the impedance.
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FIG. 3. (Color online) The real part of the electrical impedance
of the cell versus the frequency of the applied voltage f = ω/2π .
The inset compares the experimental data of the imaginary part of the
impedance with the theoretical prediction of Eq. (11).

on the ions. The parameters γ , ϑ1, and ϑ2 are connected with
the effects produced by the bulk and surfaces on the dynamic
of the ions. Figure 2 shows the agreement between the model
and experimental data for the imaginary part of impedance at
10 mHz < f < 5 MHz. The inset (Fig. 2) shows the deviation
of the usual diffusion process at frequency f < 10 KHz. In
the region of high frequency, the imaginary part of impedance
behaves according to the prediction of the usual model [36].

Figure 3 shows the experimental data for the real and
imaginary parts of the electrical impedance of Milli-Q
water for stainless steel electrodes. The behavior of R

and −X is the same observed in Fig. 1. The model
has a good agreement with the experimental data. In
this figure we have considered ε = 76ε0, N = 2.258 ×
1021 m−3, D = 1.52 × 10−8 m2/s, τ (ϑ) = δ(ϑ − 1), κ(iω) =
κτ [(iωτ )ϑ1 + 0.75(iωτ )ϑ2 ], τ (γ ) = 0.9δ(γ − 1) + 0.1δ(γ −
0.98), κ = 7.3 × 10−6 m/s, ϑ1 = −0.34, ϑ2 = −0.14, and
τ = 0.3 s to obtain the theoretical prediction from the
model.

IV. DISCUSSIONS AND CONCLUSION

We have investigated the electrical response of Milli-Q
water by using the impedance spectroscopy technique and
the fractional diffusion equation of distributed order with
the interfaces (i.e., the boundary conditions at the electrodes
limiting the sample, governed by integrodifferential equa-
tions). The results have shown a good agreement between
the experimental data and the theoretical results obtained from
Eq. (11) in the frequency range 10−2 Hz to 5 MHz. Thus,
the dynamic of the ions in the sample is anomalous for
f < 1 KHz and could be related to an anomalous diffusion
by considering the agreement of the experimental data and
the model. For f > 1 KHz the usual approach based on the
diffusion with blocking electrodes can describe the behavior
of the experimental data. These features may be related to
the diffusive regimes manifested by the ions in the sample
due to the surface and bulk effects which have a direct
influence on the electrical response of the system. Similar
situations are discussed in Ref. [32] for disordered solids and
point out that the dynamics of the ions may be characterized
by different diffusive regimes and exhibit and anomalous
behavior. Finally, we also hope that the results presented
here can be useful to investigate the electrical response
of other systems and their connection with the anomalous
diffusion.
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