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We present a performance analysis of a two-state heat engine model working with a single-mode radiation
field in a cavity. The heat engine cycle consists of two adiabatic and two isoenergetic processes. Assuming the
wall of the potential moves at a very slow speed, we determine the optimization region and the positive work
condition of the heat engine model. Furthermore, we generalize the results to the performance optimization
for a two-state heat engine with a one-dimensional power-law potential. Based on the generalized model with
an arbitrary one-dimensional potential, we obtain the expression of efficiency as η = 1 − EC

EH
, with EH (EC)

denoting the expectation value of the system Hamiltonian along the isoenergetic process at high (low) energy. This
expression is an analog of the classical thermodynamical result of Carnot, ηc = 1 − TC

TH
, with TH (TC) being the

temperature along the isothermal process at high (low) temperature. We prove that under the same conditions, the
efficiency η = 1 − EC

EH
is bounded from above the Carnot efficiency, ηc = 1 − TC

TH
, and even quantum dynamics

is reversible.

DOI: 10.1103/PhysRevE.84.041127 PACS number(s): 05.70.−a

I. INTRODUCTION

The concept of a quantum heat engine was introduced by
Scovil and Schultz-Dubois [1] and subsequently extended in
many meaningful publications [2–17]. The working substance
of a quantum heat engine includes various quantum systems,
such as spin systems [8–12], harmonic-oscillator systems
[2], two-level or multilevel systems [5,13], cavity quantum
electrodynamics systems [7,14], coupled two-level systems
[17], etc. Bender et al. [5] set up a two-level quantum engine
model of a particle confined in a one-dimensional (1D) box
trap. Unlike in the quantum Carnot engine where the working
substance couples to the heat bath during an isothermal
process, this quantum heat engine, in which heat fluxes and
thus temperature are not introduced, produces work changing
the potential width at a very slow speed.

It is of significance that the optimization of heat engines
would have to proceed under constraints that determine the
very path of the engine evolution. Based on the assumption
that the minimum value of the potential width is fixed and the
potential wall moves at a low but finite speed, the efficiency at
the maximum power output has been found to be a constant for
the engine model proposed by Bender et al. [15]. However, a
question that naturally arises is whether the efficiency depends
on the form of the potential. Moreover, so far there has been
no comprehensive discussion of such a quantum heat engine
model in the literature [5,15,16], and thus the properties of the
heat engine model have not been addressed adequately and
clearly.

In this paper, we present a performance analysis of a
quantum heat engine model proposed first by Bender et al.
[5], changing the two-state particle in a box into a two-state
radiation field in a cavity. Instead of heat baths, the heat engine
model includes energy baths. The expectation value of the
Hamiltonian (instead of the temperature variable in classical
thermodynamics) will be used, and thus “temperature” means
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the expectation value of the Hamiltonian. Assuming that the
potential width moves at a very slow but fixed speed in
one cycle, we obtain the expressions for some important
parameters and determine the optimization region. We find
that the value of efficiency at the maximum power output
is dependent of the form of the potential, though it is not
dependent of the parameter for a given potential. Furthermore,
we discuss the general case of a heat engine model that uses
a particle confined in an arbitrary 1D potential as the working
substance. In the general case, the expression of the efficiency
is found to be

η = 1 − EC/EH , (1)

with EC (EH ) denoting the expectation value of the system
Hamiltonian along the isoenergetic process at low (high)
energy. The expression of the efficiency, as expressed in
Eq. (1), is independent of the form of the potential and
analogous to the expression of the classical Carnot efficiency.
Finally, based on our generalized quantum heat engine model,
we demonstrate that the efficiency is bounded from above the
Carnot value.

The plan of the paper is as follows. In Sec. II, we
briefly review the first law of thermodynamics in quantum
systems. We capitulate the structure of a reversible two-level
engine model of a single-mode radiation field and obtain
the expression of the efficiency in Sec. III. We study the
optimization on power output, and we analyze the optimal
ranges of the efficiency and of the engine structure in Sec. IV.
In Sec. V, we generalize the results to the case in which
a two-state engine model works with one 1D power-law
potential. In Sec. VI, we discuss the relationship between the
efficiency of the engine model and that of the corresponding
quantum Carnot cycle. Section VII presents our conclusions.

II. THE FIRST LAW OF THERMODYNAMICS

Like the classical thermodynamics, the first law of thermo-
dynamics in quantum-mechanical systems can be expressed
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as a function of eigenenergies εn and probability distributions
pn [6],

dE = d--Q + d--W =
∑

n

εndpn +
∑

n

pndεn, (2)

where

d--Q =
∑

n

εndpn (3)

and

d--W =
∑

n

pndεn (4)

depict the heat exchange and work done, respectively, during a
thermodynamic process. As in a classical system in which the
generalized force Yn, conjugate to the generalized coordinate
yn, is given by Yn = − d--W

dyn
, for a quantum system one defines

the force as

F = −d--W

dL
= −

∑
n

Pn

dεn

dL
, (5)

where L is the generalized coordinate corresponding to the
force F .

III. A HEAT ENGINE MODEL OF A SINGLE-MODE
RADIATION FIELD IN A CAVITY

We now consider a single-mode radiation field in a cavity.
Schrödinger’s equation of the radiation field can be given by
Ĥ |un〉 = εn|un〉, where |un〉 and εn stand for the eigenstates
and eigenenergies, respectively. An arbitrary state |ψ〉 can
be expanded in terms of the eigenstates as |ψ〉 = ∑

n an|un〉,
where the expansion coefficients satisfy the constraint that∑

n

|an|2 = 1. (6)

The expectation value of the Hamiltonian of the system is
given by

E = 〈ψ |Ĥ |ψ〉 =
∑

n

εn|an|2. (7)

Considering the fact that the von Neumann entropy SVN =
kBTr(ρ ln ρ), with kB being Boltzmann constant, identically
vanishes when the density matrix ρ is of a pure state [15,16],
we will use the Shannon entropy instead of the von Neumann
entropy. The Shannon entropy can be expressed in terms of
the expansion coefficients as

S = −kB

∑
n

|an|2 ln |an|2. (8)

According to the quantum adiabatic theorem [18], an isolated
system would remain in its initial state during an adiabat. It
is clear from Eq. (8) that the entropy in an adiabat remains
invariant because the absolute values |an| of the expansion
coefficients do not change.

For a single-mode radiation field in a cavity, the eigenstate
energies are given by [6]

εn = (n + 1/2)h̄ω (9)

FIG. 1. (Color online) The graphic sketch of a quantum heat
model based on a single-mode radiation in a cavity. At instants 1
and 4, the system stays at the ground energy level, while at instants
2 and 3, the system stays at the excited energy level. In the process
1 → 2 (3 → 4), the system absorbs (releases) energy from (to) energy
bath I (II) and the energy of the system is kept unchanged at constant
EH (EC). In the adiabatic processes 2 → 3 and 4 → 1, the system is
decoupled from the energy bath and stays in a fixed state.

or

εn =
(

n + 1

2

)
h̄

sπc

L
(n = 0,1,2, . . . ), (10)

where L is the width of cavity and ω = sπc
L

is the frequency
of the radiation field, with s being an integer and c being the
speed of light. Like the piston in a 1D cylinder for a classical
thermodynamic system, the cavity width L can be changed
when the external trap parameters are varied. In what follows,
we will assume that there are only two energy levels n = 0
and 1 employed by the quantum heat engine.

A quantum heat engine, using a single-mode radiation
field in a cavity as the working substance and consisting
of two quantum adiabatic and two isoenergetic processes, is
illustrated in Fig. 1. During an isoenergetic process, the cavity
width L changes as the cavity wall moves, but the expectation
value of the Hamiltonian, E(L), remains constant when the
system is coupled to an energy bath. During the adiabatic
process, there does not exist any heat exchange between the
system and the surroundings. The system remains a fixed
state and the expansion coefficients |an|2 do not change in
an adiabat, as mentioned earlier.
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In the first process 1 → 2, the energy level of the system
is excited, while the expectation value of the Hamiltonian is
kept fixed. The total energy of the system reads E12 = EH =
h̄sπc
2L1

. The state of the system in this expansion is a linear
combination of the lowest two energy eigenstates. Using the
condition |a1|2 + |a2|2 = 1, the total energy as a function of
cavity width L can be expressed as

EH = h̄sπc

2L
(3 − 2|a1|2) = h̄sπc

2L1
. (11)

Accordingly, we have L = L1(3 − 2|a1|2). When a1 = 0, the
possible maximum value of L in the isoenergetic expansion
is obtained with L2 = 3L1. At the point of L = L2, the
system is purely in the second energy eigenstate since a1 = 0.
From Eq. (11), along this isoenergetic expansion the force is
determined by

F12(L) = h̄sπc

2L2
(3 − 2|a1|2) = h̄sπc

2L1L
. (12)

In the process 2 → 3 the system is expanded adiabatically
from L = L2 until L = L3. During this expansion, the system
remains in the excited state and the expectation value of
the Hamiltonian is E23 = 3h̄sπc

2L
, which yields the force as a

function of L: F23 = 3h̄sπc
2L2 .

In the third process 3 → 4, the system is compressed
isoenergetically from L = L3 until L = L4 with L4 = 1

3L3.
During this compression, energy is extracted to keep the
expectation value of the Hamiltonian constant. At instant 3, the
system is in the excited state |u2〉, whereas the system is back
in the ground state |u1〉 at instant 4. During this isoenergetic
compression, the expectation value of the Hamiltonian is kept
constant as

E34 = EC = 3h̄sπc

2L3
. (13)

Similarly to the first process 1 → 2, the radiation force as a
function of L can be obtained as

F34(L) = 3h̄sπc

2L3L
. (14)

During the fourth process 4 → 1, the system is compressed
adiabatically from L = L4 until it returns to the starting point
L = L1. During this compression, the system remains in the
ground state |u1〉 and the expectation value of the Hamiltonian
is E41 = h̄sπc

2L
. Then the force applied to the cavity wall is

F41(L) = h̄sπc
2L2 . The reversible quantum cycle that we have

just described is constructed as in Fig. 2.
In the two constant-energy processes, the system is coupled

to an energy bath at constant energy EH and an energy bath
at constant energy EC , respectively. The heat quantity QH

absorbed from the energy bath I and the heat quantity QC

released to the energy bath II are, respectively,

QH =
∫ L2

L1

F12(L)dL = ln 3

2L1
h̄sπc, (15)

QC =
∣∣∣∣
∫ L4

L3

F34(L)dL

∣∣∣∣ = 3
ln 3

2L3
h̄sπc. (16)

FIG. 2. Schematic diagram of a quantum heat engine cycle in
the plane of the width L and force F (L). The quantum states of the
radiation field and the values of the potential width at the four special
instants are as follows: |u1〉 and L1 at instant 1, |u2〉 and L2 = 3L1

at instant 2, |u2〉 and L3 at instant 3, and |u1〉 and L4 = L3/3 at
instant 4.

Since there is no heat exchange between the system and the
surroundings in any adiabat, the mechanical work W per cycle
can be directly according to

W = QH − QC = ln 3

2
h̄sπc

(
1

L1
− 3

L3

)
. (17)

Therefore, the efficiency η of our two-state quantum heat
engine is given by

η = W

QH

= 1 − 3L1

L3
= 1 − EC

EH

. (18)

The expression of efficiency for this quantum heat engine is
identical to that of efficiency for the heat engine working with
a single particle confined in a box. Let r ≡ L3/L1; the positive
work (W > 0) condition becomes

r > 3, (19)

which is different from that obtained in the model with a
single particle in a box [15]. Only when this positive work
condition is satisfied can the positive work be extracted. This
result indicates that the heat engine of a single-mode radiation
field in a cavity would produce positive work if adiabatic
expansion (2 → 3) and compression (4 → 1) are satisfied with
the relations L3 > 3

2L2 and L4 > L1, respectively.

IV. OPTIMIZATION ON THE PERFORMANCE
OF THE HEAT ENGINE

Now, we are in a position to discuss the power output of
the quantum heat engine. Upon realizing the finite power, we
are not able to introduce heat fluxes into the system because
of the absence of heat baths. It is noteworthy that in order for
the adiabatic theorem to apply, the time scale of the change of
the state must be much larger than that of the dynamical one,
∼h̄/E [15,16,18]. Assuming that the potential wall moves at
a small but finite speed, we let v̄(t) and τ be the average speed
of the change of L and the total cycle time, respectively. The
speed v̄(t) should be slow enough so that the variation of L is
much slower compared with the dynamical time scale, ∼h̄/E,
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as pointed out above. The total amount of movement during a
single cycle, L0, is given by

L0 = (L2 − L1) + (L3 − L2) + (L3 − L4) + (L4 − L1)

= 2(L3 − L1). (20)

The total cycle time τ can be given by

τ = L0/v̄ = 2(L3 − L1)/v̄. (21)

The power output, after a single cycle, is

P = W

τ
= ln 3

4L2
1

v̄h̄sπc
r − 3

r2 − r
. (22)

Assuming that L1 and v̄ are fixed, one can control r so as
to maximize power output P . The maximization condition
( ∂P ∗

∂r
)r=rm

= 0, with the dimensionless power output P ∗ ≡
P/( ln 3

4L2
1
v̄h̄sπc), leads to the following equation:

r2
m − 6rm + 3 = 0, (23)

which has two real solutions: r1
m = 3 − √

6 and r2
m = 3 + √

6.
Thus, the value of efficiency ηm at the maximum power output
is

ηm = 1 − 3

3 + √
6

	 0.44949, (24)

which is different from that obtained in the engine working
with a particle in a 1D box trap [15]. It is shown that the value
of the efficiency depends on the form of the potential. Combing
Eqs. (18) and (22), we obtain the dimensionless power output
P ∗ as a function of the efficiency η,

P ∗ = (1 − η)η

2 + η
. (25)

We plot the characteristic curve of the dimensionless power
output P ∗ as a function of efficiency η, as shown in Fig. 3.

There exists a maximum dimensionless power output and
the corresponding efficiency ηm for given parameter L1 and
average speed v̄. Figure 3 shows that, when P ∗ < P ∗

max, there
are two different efficiencies for a given power output, where
one is smaller than ηm and another is larger than ηm. When
η < ηm, the dimensionless power output P ∗ decreases as the
efficiency decreases, such that the efficiencies, smaller than

FIG. 3. The dimensionless power output P ∗ vs the efficiency η.

ηm, are not the optimal values for the heat engine. The optimal
region of the efficiency is thus given by

ηm � η < 1. (26)

When the heat engine is operated in this region, the dimen-
sionless power output will increase as the efficiency decreases,
and vice versa. The value of ηm is of primary importance,
since it determines the allowable value of the lower bound of
the optimal efficiency. It is found that the value of ratio r ,
determining the structure of the heat engine model, should be

r � rm ≡ (3 +
√

6). (27)

When determining the structure of the heat engine cycle, the
condition L3 = rmL1 must be satisfied so that the engine is
operated in the optimal region.

V. GENERAL CASE

To address the general case, we shall consider 1D power-law
potentials that are parametrized by a single-particle energy
spectrum of the form [19–21]

εn = εg(L)nσ , (28)

where εg(L) ≡ ε1(L) is the energy of the ground state, n is
a positive integer quantum number, and σ is an index of the
single-particle energy spectrum. The ground-state energy can
be assumed to be proportional to L−α , i.e., εg(L) = BL−α ,
where B is a constant for a given potential, and the index α

is positive and depends on the form of the trapping potential.
For instance, there are several special cases: (i) σ = α = 2 for
a box and a harmonic potential, B = π2h̄2

2m
for a box potential,

while B = h̄2

m
for a harmonic potential [22], with m being

the particle mass. (ii) σ = α = 1 and B = πh̄c for extremely
relative particles in a box potential [23]. (iii) σ = 4

3 , α = 2,

and B = h̄2

m
for a quartic potential [24].

Using a similar method adopted in Sec. III, the fixed energy
in the process 1 → 2 is calculated to be

EH = εg(L1) = εg(L)|a1|2 + 2σ εg(L)(L)|a2|2. (29)

At the instant 2, the maximum value of L is achieved when
|a1| = 0, with L2 = 2σ/αL1. According to Eq. (29), the force is
F12 = αεg(L1)/L. Therefore, the heat quantity absorbed from
the energy bath is

QH =
∫ L2

L1

αεg(L1)

L
dL = σεg(L1) ln 2. (30)

During the process 3 → 4, the force is given by F34 =
2σαεg(L3)/L. This leads to the heat quantity released from
the system,

QC =
∣∣∣∣
∫ L4

L3

2σ αεg(L3)

L
dL

∣∣∣∣ = 2σ σεg(L3) ln 2. (31)

During the adiabat 2 → 3 (4 → 1), the system remains in the
state |u2〉 (|u1〉) and thus there is no heat exchange. The total
amount of the mechanical work W , with W = QH − QC , can
be written as

W = Bσ

(
1

Lα
1

− 2σ

Lα
3

)
ln 2, (32)
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which yields the following positive work condition:

r > 2σ/α, (33)

where r was defined above Eq. (19). We can readily obtain the
efficiency as

η = 1 − 2σ Lα
1

Lα
3

= 1 − EC

EH

. (34)

Here, the expression of the efficiency is analogous to that of
Carnot efficiency and independent of the form of the trapping
potential. The power output P = W/τ , with τ being given by
Eq. (21), is given by

P = Bv̄

2

1

Lα+1
1

rα − 2σ

rα+1 − r
. (35)

The maximization condition ( ∂P ∗
∂r

)r=rm
= 0, with the dimen-

sionless P ∗ = P/(Bv̄
2

1
Lα+1

1
), gives rise to the following relation:

r1+α
m − 2σ (α + 1)rm + 2σα = 0. (36)

Under the positive work condition that was given by Eq. (33),
we can obtain the optimal value r = rm and thus determine
the corresponding efficiency ηm of the model based on a
given potential. It is clear that the value of rm determining
the efficiency ηm depends on the index α of the potential. That
is, the value of the efficiency varies from system to system,
as emphasized below Eq. (24). For the quantum heat engine
working with a particle in a 1D box potential, σ = α = 2 and
the relation Eq. (36) becomes r3

m − 12rm + 8 = 0, confirming
the result obtained in Ref. [15].

VI. RELATIONSHIP BETWEEN THE EFFICIENCY
OF THE QUANTUM CYCLE WITH ENERGY BATHS
AND THAT OF THE CORRESPONDING QUANTUM

CARNOT CYCLE WITH HEAT BATHS

In this section, we discuss the relationship between the effi-
ciency of the quantum heat engine cycle mentioned above and
that of the quantum Carnot cycle. The quantum Carnot cycle
consists of two quantum adiabatic and isothermal processes.
In the quantum isothermal process, the working substance,
such as a particle confined in a trapping potential, is coupled
to a heat bath at a constant temperature. For a Carnot cycle
1 → 2 → 3 → 4 → 1, in the quantum isothermal processes
1 → 2 and 3 → 4, the system is coupled with heat baths at
constant temperatures, TH and TC , respectively, whereas 2 →
3 and 4 → 1 are adiabats with fixed expansion coefficients
|an|2, as shown in Fig. 2. (Instead of two constant energies
E = EH and E = EC , the system couples to heat baths at
constant temperatures T = TH and TC in the processes 1 → 2
and 3 → 4, respectively.)

Let ξ = |a1|2 (and thus |a2|2 = 1 − ξ ) for a two-level
system with the ground state and the excited state. The ratio
γ ≡ (1 − ξ )/ξ of the two occupation probabilities should
satisfy the Boltzmann distribution γ = 1−ξ

ξ
= e−�(L)/kBT ,

where �(L) ≡ εe − εg is the energy gap between the ground
state and the first excited state. The occupation probability ξ

of the ground state can thus be given in terms of trap size L

and temperature T :

ξ (L,T ) = 1

e
− �(L)

kB T + 1
. (37)

Note that, for a particle confined in a 1D box trap, �(L) =
3π2h̄2

2mL2kBT
, Eq. (37) becomes identical to that obtained in a

different way [16]. Again, we would like to emphasize that
the time scale associated with the change of L should be much
larger than the dynamical one, ∼h̄/E, and the change of the
state can thus be represented by the change of ξ [16].

For simplicity, instead of using Eq. (3), we apply d--Q =
T dS directly to the calculation of the heat exchange d--Q in
any quantum isothermal process. The heat exchanges QH

and QC can be determined by QH = TH [S(2) − S(1)] and
QC = TC |[S(4) − S(3)]|. According to the first law of the
thermodynamics, the work W per cycle can be calculated as

W = QH − QC = (TH − TC)[S(2) − S(1)]. (38)

In obtaining Eqs. (38), the relations S(3) = S(2) and S(4) =
S(1) have been used, since the occupation probabilities are
not varied and the entropies remain fixed during any quantum
adiabat. So the efficiency of the quantum Carnot engine, ηc =
W
QH

, becomes

ηc = 1 − TC

TH

= 1 −
(

L2

L3

)α

, (39)

where the relation TC

TH
= (L2

L3
)α has been used due to the fact

that the occupations probabilities are fixed in the adiabatic
process.

For the two-level engine model working with heat
baths at different temperatures, the expectation value of
the Hamiltonian is given by E = B

Lα ξ + 2σ (1 − ξ ) B
Lα . In

the quantum isothermal process 1 → 2, the energy of the
system must not decrease in this process, yielding E(L1)

E(L2) =
(L2
L1

)α 2σ +(1−2σ )ξ (L1,TH )
2σ +(1−2σ )ξ (L2,TH ) � 1, i.e., ( L2

L1
)α � 2σ +(1−2σ )ξ (L2,TH )

2σ +(1−2σ )ξ (L1,TH ) . We

thus have the relation ( L2
L1

)α < 2σ . Combing Eqs. (34) and
(39), we have the inequality

η = 1 − EC

EH

< 1 − TC

TH

= ηc. (40)

This implies that under the same conditions, the quantum
engine with heat baths at constant temperatures runs more
efficiently than the quantum engine with energy baths at
constant energies.

VII. CONCLUSIONS

We have considered the optimization region and the positive
work condition for the quantum heat engine, using a single-
mode radiation field in a cavity as the working substance,
under the approximation that only two levels are included. Our
performance analysis has been generalized to a heat engine
working at an arbitrary power-law trapping potential. The
expression of the efficiency for such a heat engine model has
been shown to be analogous to that of Carnot efficiency and
independent of the form of the potential. It has been found that
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the value of the efficiency depends on the form of the potential
and is bounded from above the Carnot value.

A natural extension of this work would be to consider
the engine models consisting of other physical systems,
such as interacting particles confined in a potential under
conditions in which occupation probabilities correspond to
either microcanonical [25] or canonical forms [26]. Such an
issue deserves a deeper study in view of the substantial recent

progress in theoretical considerations and the ability to handle
particles in a potential.
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