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Reconstructing signals from noisy data with unknown signal and noise covariance
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We derive a method to reconstruct Gaussian signals from linear measurements with Gaussian noise. This new
algorithm is intended for applications in astrophysics and other sciences. The starting point of our considerations
is the principle of minimum Gibbs free energy, which was previously used to derive a signal reconstruction
algorithm handling uncertainties in the signal covariance. We extend this algorithm to simultaneously uncertain
noise and signal covariances using the same principles in the derivation. The resulting equations are general
enough to be applied in many different contexts. We demonstrate the performance of the algorithm by applying it
to specific example situations and compare it to algorithms not allowing for uncertainties in the noise covariance.
The results show that the method we suggest performs very well under a variety of circumstances and is indeed
qualitatively superior to the other methods in cases where uncertainty in the noise covariance is present.
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I. INTRODUCTION

The problem of signal inference consists of reconstructing
a set of parameters or even a continuous field s from some data
set d, which is influenced in some way by the signal:

d = f (s) + n. (1)

Two problems will arise. First, the function f may not be
invertible and, second, the noise term n will not be known.
In the Bayesian framework, one uses prior information on the
signal and the noise term to calculate a best estimate for the true
signal realization or, ideally, the whole probability distribution
for the signal given the prior information and the information
contained in the data.

Symmetry considerations and knowledge about the un-
derlying physics of the signal and the measurement process
may restrict the class of priors that one has to consider. They
might, however, still contain some free parameters that then
become part of the inference problem. The case in which the
signal covariance contains uncertain parameters was tackled
in Ref. [1], producing a whole class of filters for this problem.
The filter that we extend in this work was reproduced in
Ref. [2], where the principle of minimum Gibbs free energy
was introduced (cf. also Sec. III) and successfully applied in
an astrophysical setting in Ref. [3].

Here we focus on the case where we can assume zero-mean
Gaussian priors both for the signal and for the noise. The
priors are therefore completely characterized by the respective
covariance matrices. Our goal is to extend the study of
Ref. [2] to the case in which both the signal covariance and
the noise covariance contain parameters that are not known
a priori. This is motivated mainly by applications from the
field of astrophysics. The theory and resulting filter formulas,
however, are of general applicability. Gaussian noise, e.g.,
is omnipresent in nearly every area of the natural sciences,
and the situation in which its variance is not precisely known
should be a rather common one.

Previous work dealing with the problem of unknown noise
variance has mainly dealt with specific applications. One of
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these applications is the field of image reconstruction. Here
it is usually assumed that the measured picture is the sum of
the underlying signal and a white Gaussian noise term. Often
it is further assumed that the noise level, i.e., its variance,
is the same in every image pixel. A comparison of different
algorithms for noise estimation under these assumptions can
be found, e.g., in Ref. [4]. An example for an algorithm
allowing for inhomogeneous noise is presented in Ref. [5],
where a wavelet transform of the image is applied and the
lack of correlated noise is exploited. Most of these algorithms,
however, are not derived by rigorous statistical calculations
but rather by a combination of intuition and experience.

From a mathematical viewpoint, the problem of an un-
known noise prior has received some attention in the theory
of density deconvolution, which deals with the inference of
the probability density for a signal from measurements with
additive noise. Here the signal is usually assumed to consist
of independent identically distributed variables. The case of
Gaussian noise with unknown variance has been considered,
e.g., by Refs. [6] and [7].

In this work we create a general setting with well-defined
assumptions and a traceable derivation of a general filter
formula within a Bayesian framework, not losing sight of its
applicability. Our result can accommodate a host of different
assumptions and models, such as correlated or uncorrelated
noise. It allows for a distinction between the data space and
the signal space, with possibly different numbers of degrees
of freedom.

The remainder of the paper is organized as follows. In Sec. II
we introduce our model for the measurement process and the
notation that is required. The derivation of the filter formulas
follows in Sec. III. We then demonstrate the usefulness of our
filter by applying it in a set of mock observational situations
in Sec. IV and discuss the implications in Sec. V.

II. SIGNAL MODEL AND NOTATION

We assume a linear measurement process where the data
are a superposition of a linear signal response and a noise term:

d = Rs + n. (2)
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Here both the data and noise and the signal can be finite-
dimensional vectors or continuous fields defined on some
manifold. The response matrix R maps a field in the signal
space to a field in the data space. In the continuous limit the
matrix vector product becomes

(Rs)i =
∫

dxRixsx, (3)

where the index denotes the value of a field at this position. In
physical applications the data vector will always be discrete,
since only a finite number of measurements can be taken,
while the signal space might well be continuous. The result of
any numerical signal reconstruction, however, will at best be
a discretized version of the continuous field.

Further, we assume Gaussian prior statistics both for the
signal and for the noise contribution, i.e., s ←↩ G(s,S), n ←↩

G(n,N ), where

G(a,A) = 1√|2πA| exp

(
−1

2
a†A−1a

)
(4)

denotes a multivariate Gaussian distribution in a with covari-
ance matrix A. We use the dagger symbol to indicate a scalar
product,

a†b =
∫

dxa∗
xbx, (5)

and the asterisk to denote complex conjugation. This corre-
sponds to the notation introduced in Ref. [8].

The problem of signal reconstruction is to find an optimal
estimate m for the signal realization that the measured data
arose from. Optimality in an L2-norm sense leads to

m = 〈s〉P(s|d) :=
∫

DssP(s|d), (6)

i.e., the posterior mean. The integration is performed over
all possible signal configurations. In the discrete case this
becomes a product of one-dimensional integrals,∫

Ds =
∫ +∞

−∞
ds1

∫ ∞

−∞
ds2 · · · , (7)

where s = (s1,s2, . . .) is the vector of signal values at locations
1,2, . . .. Ideally, we would also like to obtain some information
on the posterior distribution P(s|d) other than its mean. If the
signal and noise covariances are known, the posterior is a
Gaussian G(s − m,D) with mean

m = Dj (8)

and covariance D, where j = R†N−1d is called the infor-
mation source and D = (S−1 + R†N−1R)−1 the information
propagator (see Ref. [8]), and the dagger attached to a matrix
denotes its Hermitian conjugate.

In this paper we are concerned with the case in which
neither the signal covariance matrix S nor the noise covariance
matrix N is known. We parametrize these matrices as sums of
their eigenvalues p̃k and η̃j multiplied with the projectors onto
the respective eigenspaces S̃k and Ñj . The parameters can be
rescaled by including some numerical values s̃k and ñj in the

projection-like matrices, making the rescaled version of the
parametrization

S =
∑

k

pkSk, (9)

N =
∑

j

ηjNj , (10)

where

pk = p̃k

s̃k

, ηj = η̃j

ñj

(11)

and

Sk = s̃kS̃k, Nj = ñj Ñj . (12)

Furthermore, we define the pseudo-inverse matrices S−1
k =

s̃−1
k S̃k and N−1

j = ñ−1
j Ñj , so that S−1

k Sk and N−1
j Nj are

identity operators on the respective eigenspaces.
We assume here that the eigenspaces corresponding to the

different eigenvalues are known a priori, e.g., from symmetry
considerations. However, the formalism allows for eigenvalues
of different eigenspaces becoming equal a posteriori.

Finally, we also need to define some priors for the
parameters pk and ηj . As was done in Refs. [1] and [2], we
assume each parameter to be a priori independent from all
the others and use inverse Gamma distributions, i.e., power
laws with exponential cutoff, as priors for the individual
parameters,

P(p,η) = P(p)P(η), (13)

P(p) =
∏
k

1

qk�(αk − 1)

(
pk

qk

)−αk

exp

(
− qk

pk

)
, (14)

P(η) =
∏
j

1

rj�(βj − 1)

(
ηj

rj

)−βj

exp

(
− rj

ηj

)
. (15)

The parameters αk and βj determine the steepness of the
power law, and the parameters qk and rj give the position of
the cutoff. In the limit (αk,βj ) → (1,1) and (qk,rj ) → (0,0),
this turns into the so-called Jeffreys prior, which is flat on
a logarithmic scale and can therefore be characterized as
noninformative.

III. DERIVATION OF THE FILTER FORMULAS

With the priors for s, n, p, and η, we can calculate the joint
probability of the signal and the data by marginalizing over
the parameters p and η,

P(s,d) =
∫

Dp

∫
DηP(s,d|p,η)P(p,η)

=
∫

Dp

∫
DηP(d|s,p,η)P(s|p)P(p,η)

=
∫

Dp

∫
DηG(d − Rs,N)G(s,S)P(p,η). (16)
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Solving the integrals yields

P(s,d) =
∏
k

�(γk)qαk−1
k

�(αk − 1)(2π )ρk/2

(
qk + 1

2
s†S−1

k s

)−γk

×
∏
j

�(δj )r
βj −1
j

�(βj − 1)(2π )μj /2

×
[
rj + 1

2
(d − Rs)†N−1

j (d − Rs)

]−δj

, (17)

where ρk = tr(S−1
k Sk), μj = tr(N−1

j Nj ), γk = ρk/2 + αk − 1,
and δj = μj/2 + βj − 1. Note that the posterior is propor-
tional to this joint likelihood for any given data set.

One could construct the maximum a posteriori estimator;
however, this was shown in Ref. [1] to perform poorly due
to a perception threshold; i.e., modes with too little power
in the data are completely filtered out. A better estimate for
the posterior mean of the signal can be constructed using
the formalism of minimum Gibbs free energy, derived in
Ref. [2], where thermodynamic quantities are introduced by
identifying the posterior probability density with a canonical
density function according to

P(s|d) = P(s,d)

P(d)
= e−T −1H (s,d)

Z(d)
. (18)

The Gibbs energy is then

G = U − T SB, (19)

where U = 〈H 〉P(s|d) is the internal energy, SB =
〈− logP(s|d)〉P(s|d) the Boltzmann entropy, and H =
− logP(s,d) is called the information Hamiltonian. The
temperature T serves as a tuning parameter, shifting the weight
between the internal energy term and the entropy term in the
Gibbs free energy.

Approximating the posterior with a Gaussian with mean m

and covariance D,

P(s|d) ≈ G(s − m,D), (20)

gives an approximate internal energy Ũ , an approximate
entropy S̃B , and therefore an approximate Gibbs energy

G̃(m,D) = Ũ (m,D) − T S̃B

= 〈H (s,d)〉G(s−m,D) − T

2
tr[1 + log(2πD)]. (21)

For T = 1, this approximate energy is, apart from an additive
constant, identical to the nonsymmetric Kullback-Leibler
distance [9] between the full posterior and the Gaussian
approximation,

G̃(m,D) = 〈H (s,d) + log[G(s − m,D)]〉G(s−m,D)

=
∫

DsG(s − m,D) log

[G(s − m,D)

P(s,d)

]

=
∫

DsG(s − m,D) log

[G(s − m,D)

P(s|d)

]
+ log[P(d)]

= dKL[G(s − m,D),P(s|d)] + log[Z(d)], (22)

as was shown already in Ref. [2].

The approximate internal energy in our case, calculated
from the joint probability of Eq. (17), is

Ũ (m,D) ∼=
∑

k

γk

〈
log

(
qk + 1

2
s†S−1

k s

)〉
G(s−m,D)︸ ︷︷ ︸

=:Ak

+
∑

j

δj

〈
log

[
rj + 1

2
(d − Rs)†N−1

j (d − Rs)

]〉
G(s−m,D)︸ ︷︷ ︸

=:Bj

,

(23)

where we have dropped terms that are independent of m and
D. The logarithms can be expanded in an asymptotic power
series, giving

Ak = log(q̃k)

−
∞∑
i=1

(−1)i

iq̃i
k

〈(
qk + 1

2
s†S−1

k s − q̃k

)i
〉
G(s−m,D)︸ ︷︷ ︸

=:Ãki

(24)

and

Bj = log(r̃j ) −
∞∑
i=1

(−1)i

ir̃ i
j

×
〈[

rj + 1

2
(d − Rs)†N−1

j (d − Rs) − r̃j

]i
〉
G(s−m,D)︸ ︷︷ ︸

=:B̃ji

,

(25)

where we have chosen the linear dependencies to be captured
by

q̃k = 〈
qk + 1

2 s†S−1
k s

〉
G(s−m,D)

= qk + 1
2 tr
[
(mm† + D)S−1

k

]
(26)

and

r̃j = 〈
rj + 1

2 (d − Rs)†N−1
j (d − Rs)

〉
G(s−m,D)

= rj + 1
2 tr
{
[(d − Rm)(d − Rm)† + RDR†]N−1

j

}
, (27)

respectively.
Here, we restrict ourselves to the zeroth-order solution; i.e.,

we neglect all contributions from Ã and B̃. Furthermore we set
T = 1. The case with T �= 1 is discussed up to second order
in the Appendix.

Now we search for the optimal Gaussian approximation to
the posterior by minimizing the approximate Gibbs energy,
which is equivalent to minimizing the Kullback-Leibler
distance between the two probability densities, according to
Eq. (22). Taking the functional derivatives of Eq. (21) with
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respect to m and D and equating them to zero yields the
equations

m = Dj, (28)

j =
∑

j

δj

r̃j

R†N−1
j d, (29)

D =
⎛
⎝∑

k

γk

q̃k

S−1
k +

∑
j

δj

r̃j

R†N−1
j R

⎞
⎠−1

. (30)

By comparing these expressions to the Wiener filter formula,
Eq. (8), we can read off the parameters pk = q̃k

γk
and ηj = r̃j

δj

for the signal and noise covariance matrix, respectively.
So altogether the equations that need to be solved simulta-

neously are

m = Dj, (31a)

pk = qk + 1
2 tr
[
(mm† + D)S−1

k

]
ρk

2 + αk − 1
, (31b)

ηj = rj + 1
2 tr
{
[(d − Rm)(d −Rm)† + RDR†]N−1

j

}
μj

2 + βj − 1
. (31c)

Thus, we find both the posterior mean and the posterior
covariance for the signal. Note that the first two of these
three equations were already found in Refs. [1] and [2], where
the reconstruction of signals with unknown power spectra is
discussed. The term critical filter was coined in Ref. [1] to
refer to this filter since it belongs to a family of filters lying
on a line in the parameter plane of Ref. [1] that separates
the filters with a perception threshold from those without. The
additional uncertainty in the noise covariance that we introduce
here simply adds one more equation, leading to an extended
critical filter.

IV. APPLICATION TO SIMULATED SIGNALS

Here we demonstrate the performance of our signal
reconstruction algorithm under different circumstances. The
computations were performed using the HEALPIX [12] and
SAGE [13] software packages.

A. Setup

We consider two different scenarios. First, we consider
a simple one-dimensional test case, where the signal is
supposed to be a real field defined over some interval with
periodic boundary conditions. We discretize the interval into
2048 pixels. For simplicity, we set the response matrix R

to be the identity operator, so that our data set consists of
2048 individual points as well. We further assume statistical
homogeneity for the signal field, leading to a covariance matrix
that is diagonal in Fourier representation,

Skk′ = 〈sks
∗
k′ 〉P(s) = δkk′Ps(k), (32)

with the power spectrum Ps(k) on its diagonal. For this power
spectrum we choose a simple power law

Ps(k) ∝ (1 + k)−2 (33)

and draw a random realization of the signal from it.

Motivated by astrophysical applications, we also consider
a real signal field on the sphere,

s : S2 −→ R. (34)

Using again R = 1, the data and noise are also fields on the
sphere,

d,n : S2 −→ R. (35)

In the numerical implementation, we use the HEALPIX [10]
discretization scheme at a resolution of Nside = 16, which
leads to 3072 pixels. Under the assumption of statistical
homogeneity and isotropy, the signal covariance matrix in this
case becomes diagonal in the basis given by the spherical
harmonics components,

S(�m)(�′m′) = 〈s�ms∗
�′m′ 〉P(s) = δ��′δmm′C�, (36)

where C� are the angular power spectrum components. We
draw our signal realization again from a power-law spectrum,

C� = (1 + �)−2. (37)

We assume the noise to be uncorrelated in the position basis,
making the noise covariance matrix diagonal in this basis,

Nn̂n̂′ = 〈nn̂nn̂′ 〉P(n) = δn̂n̂′σ 2
n̂ , (38)

where n̂ and n̂′ denote positions on the sphere or on the interval,
respectively. Within this framework, we consider three cases
for the noise statistics. In the first one, we use homogeneous
noise with variance σ 2

n̂ = 1/4 independent of n̂. For the
second case we divide the data space into three zones. In the
left/southern third, we suppress the noise variance by a factor
of nine, and in the right/northern third we enhance it by a factor
of nine, while we leave it unchanged in the middle. Finally,
in the third case we again assume homogeneous noise with
variance 1/4, but we enhance the variance in five percent of the
pixels, randomly selected, by a factor of 100. Both the signal
and the three resulting data realizations are shown in Fig. 1
for the one-dimensional case and in Fig. 2 for the spherical
case, along with the results of different reconstructions that
we discuss next.

B. Reconstructions

We first apply the standard Wiener filter formula, the results
of which are shown in the second row of Fig. 1 for the
one-dimensional case and in the middle row of Fig. 2 for the
spherical case. For this we assume the correct power spectrum
to be known, but we assume homogeneous noise with variance
1/4 in all three cases. In the case where this assumption
is correct, the reconstruction is known to be optimal, and
this is confirmed by visual inspection of the outcome. In
the cases with inhomogeneous noise, the Wiener filter fails
to completely filter out the noise structures in the data in
the regions where the noise is underestimated and therefore
reproduces some of them in the reconstruction, as one would
expect. This is true for the right (northern) third in the middle
column of Fig. 1 (Fig. 2), as well as the noisy pixels in the
right column. The opposite should happen in the left (southern)
third in the middle column of Fig. 1 (Fig. 2), where the noise is
overestimated. One would expect that structures in the data that
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Wiener filter
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FIG. 1. (Color online) Comparison of different filter algorithms in the one-dimensional test case. Each column corresponds to a different
setting. The signal, drawn from a power-law power spectrum, is the same in each case and depicted in each panel with a solid line. The left
column contains homogeneous noise, while in the middle column, the noise is suppressed in the left third of the interval and enhanced in the
right third, and in the right column the noise is enhanced in some individual pixels. The first row shows the signal realization along with the
data. The second row shows the reconstruction using the Wiener filter formula, assuming the correct power spectrum and under the assumption
of homogeneous noise; the third row shows the critical filter reconstruction, assuming the power spectrum to be unknown, but still assuming
homogeneous noise. The last row shows the extended critical filter reconstruction in which both the signal power spectrum as well as the noise
variance are assumed to be unknown. The respective reconstructions are depicted by a dashed line that lies on top of the solid one in many
cases. In the two right panels of the first row, some of the data points lie outside the area that is shown.

are actually due to the signal get filtered out. This is actually
happening, although it is barely visible in the resulting plots.

Next we assume that the power spectrum is not known
a priori: i.e., we apply the critical filter. The resulting plots are
shown in the third row of Fig. 1 for the one-dimensional case

and the fourth row of Fig. 2 for the two-dimensional case. In
the one-dimensional case we define the Sk operators of Eq. (9)
to be projections onto bins of width k = 2 in Fourier space,
effectively assuming that the two scales that enter the bin have
the same power. This binned power is then represented by

041118-5



OPPERMANN, ROBBERS, AND ENßLIN PHYSICAL REVIEW E 84, 041118 (2011)

FIG. 2. (Color online) Comparison of different filter algorithms in the spherical case. Each column corresponds to a different setting.
The signal, drawn from a power-law power spectrum, is the same in each case. The left column contains homogeneous noise, while
in the middle column, the noise is suppressed in the southern third of the sphere and enhanced in the northern third, and in the right
column the noise is enhanced in some individual pixels. The first row shows the signal realization and the second row the data. The third row
shows the reconstruction using the Wiener filter formula, assuming the correct power spectrum and under the assumption of homogeneous
noise; the fourth row shows the critical filter reconstruction, assuming the power spectrum to be unknown, but still assuming homogeneous
noise. The last row shows the extended critical filter reconstruction in which both the signal power spectrum as well as the noise variance are
assumed to be unknown.

the parameter pk in Eq. (9). This binning is necessary in one
dimension since each individual Fourier component contains
only two degrees of freedom [14]. In the spherical case, we
can directly use the angular power spectrum components C�

as parameters, and the projection-like operators Sk become
actual projections onto the �-th angular scale, which contains
2� + 1 degrees of freedom. In both cases we assume Jeffreys
prior for the unknown parameters. Then we simply iterate the

first two lines of Eq. (31), while keeping the assumption of
homogeneous noise with variance 1/4.

In the cases where our assumptions about the noise are
true, the resulting map is very close to the Wiener filter
reconstruction, confirming the assessment of Refs. [1–3] that
the critical filter can yield a very accurate reconstruction,
even if the power spectrum is completely unknown. In the
cases where we have made false assumptions about the noise,
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however, we see the same problems that the Wiener filter
reconstruction has, only much stronger pronounced. This
is because the reconstructed power spectrum now actually
accounts for the features in the data that are due to noise
where this is underestimated. With this power spectrum, the
map reconstruction tends to favor these features even more
than when the correct power spectrum is used. This amplifying
effect is again much more prominent where the noise was
underestimated than where it was overestimated.

Finally, we account for the possibility that we might have
misestimated the noise statistics by applying the full extended
critical filter, derived in Sec. III. As projection-like matrices
Nj we choose projections onto the j th pixel of the interval
and sphere, respectively, multiplied with our original guess
for the noise variance in that pixel, σ 2

j = 1/4. In this way, the
parameters ηj become correction factors for the noise variance
of each data point. For the prior parameters we choose βj = 2
and we adapt rj such that 〈log(ηj )〉P(η) = 0. After iterating
the full set of Eqs. (31), we obtain the results shown in the
bottom rows of Figs. 1 and 2. In the case with homogeneous
noise, we still get a result that is similar to the Wiener filter
one. This shows that we do not lose much by allowing for
some uncertainty in the noise covariance. In the cases in which
our original noise estimate was wrong, however, we obtain
reconstructions of a much higher quality than from the critical
filter. Obviously, our algorithm succeeds in uncovering the
false error bars in our data set and correcting them. This works
especially well in the case where only individual pixels have
underestimated noise variance. This setting makes it especially
easy for the algorithm to infer the signal statistics from all
the other pixels and find the pixels in which the data points
and the signal are inconsistent with one another. However,
even in the case where one-third of the space is covered with
underestimated noise, our algorithm still does a good job in
reconstructing the original signal. In the spherical case, the
extended critical filter performs even better than the Wiener
filter. This is also true for the one-dimensional case in the
scenario where the noise in individual pixels is enhanced. In
the scenario with enhanced and suppressed noise in one-third
of the one-dimensional interval, the Wiener filter performs
better than the extended critical filter. It should be noted,
however, that using the Wiener filter is not an option if the
power spectrum of the signal is not known a priori.

Some further insight can be gained by looking at the
reconstructed angular power spectra for the spherical case.
These are shown in Fig. 3. In the case with homogeneous
noise, the critical filter recovers the true power spectrum almost
perfectly, while the extended critical filter misses some power
on the smallest scales; i.e., some of the small-scale power in the
data is falsely attributed to noise and therefore not represented
in the signal power spectrum. This effect is small, however,
and does not greatly influence the resulting map.

In the case in which the noise is highly inhomogeneous,
being higher and lower in one-third of the data space each,
the extended critical filter misses quite a lot of power on small
scales. This results in the slightly oversmoothed map seen in
Fig. 2. The critical filter, however, which operates under wrong
assumptions for the noise statistics, overestimates the power
on small scales significantly. This is in agreement with the
very noisy reconstructed map.
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FIG. 3. Comparison of the different reconstructed angular power
spectra for the spherical scenario. The solid line depicts the theoretical
power spectrum, which is also used in the Wiener filter reconstruc-
tions. The dashed line corresponds to the power of the specific signal
realization and the dash-dotted and dotted lines to the power spectrum
reconstructed with the critical filter and the extended critical filter,
respectively. Panel (a) shows the case with homogeneous noise, panel
(b) the one in which the noise is enhanced and suppressed in one-third
of the sphere each, and panel (c) the one in which the noise is enhanced
in individual pixels.

It is in the third case, in which the noise is greatly enhanced
in individual pixels, that the extended critical filter shows its
full strength. While the critical filter attributes the power in
the faulty pixels to the signal and therefore overestimates the
signal power by orders of magnitude, the extended version
accounts for the misestimated error bars and does not account
for these pixels in the signal power spectrum. While the result
is a power spectrum that is slightly underestimated on the
smallest scales, this is again only a comparatively small error,
still leading to a good reconstruction.

These findings are confirmed by Fig. 4, which shows
the differences of the nine reconstructions and the signal
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FIG. 4. (Color online) Absolute value of the pixelwise difference between the reconstructed maps and the signal realization for the spherical
scenario. Each row shows the results for a different filter algorithm. As in Fig. 2, the left column shows the case with homogeneous noise, the
middle column the one with enhanced noise in the northern third of the sphere and suppressed noise in the southern third, and the right column
shows the case where the noise is enhanced in individual pixels. Note that the color bar differs from the one used in Fig. 2.

realization. Our extension of the critical filter clearly brings the
strongest improvement in the case where the noise is enhanced
in individual pixels, while also lowering the error in the case
with an extended region of underestimated noise. The same
can directly be seen for the one-dimensional case in Fig. 1.

Finally, we plot the standard deviation per pixel of the
Gaussian approximation (20) to the posterior probability
distribution, i.e., the square root of the diagonal of the
covariance matrix in the pixel basis, σ = √

diag(D), in Fig. 5

for the extended critical filter. This can be interpreted as an
estimate for the 1σ error bar of the reconstructed maps. The
region with enhanced noise in the second scenario is clearly
marked out by a higher uncertainty of the reconstruction due
to the corrected entries of the noise covariance matrix entering
the information propagator D. Note, however, that the full
posterior is non-Gaussian and the 1σ range can therefore
not necessarily be interpreted as a 68% confidence interval,
especially since we are using a zeroth-order approximation to

FIG. 5. (Color online) Pixelwise uncertainty of the extended critical filter reconstructions in the spherical scenario. The left panel shows
the case with homogeneous noise, the middle panel the case with enhanced noise in the northern third and suppressed noise in the southern
third, and the right panel the case with enhanced noise in individual pixels.

041118-8



RECONSTRUCTING SIGNALS FROM NOISY DATA WITH . . . PHYSICAL REVIEW E 84, 041118 (2011)

-1

-0.5

 0

 0.5

 1

-1

-0.5

 0

 0.5

 1

-1

-0.5

 0

 0.5

 1 extended critical filterextended critical filterextended critical filter

FIG. 6. (Color online) Pixelwise uncertainty of the extended critical filter reconstructions in the one-dimensional scenario. The left panel
shows the case with homogeneous noise, the middle panel the case with enhanced noise in the right third and suppressed noise in the left third,
and the right panel the case with enhanced noise in individual pixels. The dark curves represent ±σ and the light curve the difference between
the reconstruction and the correct signal.

calculate the Gaussian approximation. In fact, in our spherical
example only about 50% of the pixels of the reconstructions
lie within 1σ of the correct signal in all three noise scenarios.

Figure 6 extends this study to the one-dimensional case. We
plot the difference of the signal and the reconstruction result
of the extended critical filter, along with lines depicting ±σ ,
for the three different noise settings. In the case where the
noise variance is constant within each third of the interval, the
one-sigma curve exhibits a steplike behavior at the boundaries
of the thirds, although this effect is relatively small. In the case
of homogeneous noise, the 1σ curve is roughly constant while
the individual noisy pixels in the last scenario are reflected in
the 1σ curve by its large variations from pixel to pixel. The
fraction of the pixels for which the reconstruction lies within
1σ of the correct signal in the one-dimensional case is 50%
in the case with homogeneous noise, 63% in the case with
enhanced and suppressed noise in a third of the interval each,
and 69% in the case with enhanced noise in individual pixels.

V. DISCUSSION

Using the formalism of minimum Gibbs free energy we
have extended the critical filter algorithm, developed in
Refs. [1] and [2], to an algorithm that allows for uncertainties
both in the signal covariance and in the noise covariance.
We have demonstrated the performance of our algorithm,
Eqs. (31), by applying it to a set of mock observations on
the sphere, as well as in a simple one-dimensional test case.

These applications have shown that the extended critical
filter performs outstandingly if only a few individual data
points have a misestimated error bar. However, even in a case
where large portions of the data are affected, the algorithm was
shown to perform inarguably better than the critical filter, using
a fixed—and faulty—assumption about the noise statistics. We
have also compared the results to those obtained from a Wiener
filter reconstruction, using the correct power spectrum, which
is known to be optimal if the assumptions about the noise
statistics are correct. This filter was demonstrated, however, to
lead to reconstructed maps that are much further from the true
signal than the results of the extended critical filter in some
cases where the assumptions are not correct.

The choice of the two-sphere as the space on which our
signal is defined was motivated by astrophysical applications,
where we could think of the signal as an all-sky field or
some quantity defined on the surface of a star or a planet.
Applications in other fields of physics are abundant. However,
it should be noted that there is nothing special about the sphere.
We could equally well have chosen a more-dimensional
Euclidean space, using the power spectrum defined in Fourier
space instead of the angular power spectrum, as we have done
in the one-dimensional scenario.

Furthermore, our choice of the identity operator as response
matrix was made only on account of simplicity. It allowed us to
represent the data in the same fashion as the signal. It should be
clear, however, that the derived filter formulas, Eqs. (31), are
valid for any response matrix, even a singular one. Applications
of the critical filter with nontrivial response matrices were
presented in Refs. [1] and [3], and such a response would not
pose a problem for the extended version of the filter.

The problem of signal reconstruction with some uncertainty
in the noise variance is certainly one of general interest. There
are several ways in which uncertainty in the noise variance
might arise. It may be due to questionable assumptions that
enter in the calculation of the error bars of the data. Another
possibility is that it arises from the definition of the signal
itself. The quantity of interest may only be part of what has
been measured in the first place in which case the rest of
the data would be noise with essentially unknown variance.
All these factors come together in the reconstruction problem
considered in Ref. [3]. An extension of that reconstruction,
using additional sets of data and the improved algorithm
presented here, is planned [11].

It should be noted, however, that even with the extended
critical filter, some knowledge about either the parameters in
the signal covariance or the ones in the noise covariance is
needed to arrive at a sensible reconstruction. Leaving them
both completely free would lead to a degeneracy between
signal and noise that cannot be resolved. Only by assigning an
informative prior to at least one of the two sets of parameters
is this degeneracy broken. Furthermore, the functional bases
in which the signal and noise covariances are diagonal, i.e.,
their eingenspaces, need to differ to allow for a separation of
noise from signal.
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APPENDIX: HIGHER-ORDER SOLUTIONS

Here we briefly list the results for nontrivial temperatures up
to second order, i.e., considering terms up to i = 2 in Eqs. (24)
and (25). Since the first-order terms are zero for our choice of
q̃k and r̃j , we list only the resulting filter formulas for the
zeroth- and second-order internal energy.

1. Zeroth order

The zeroth-order solution with arbitrary temperature is
rather similar to the one with T = 1 presented in Sec. III.
It is given by

m = D′j, (A1)

j =
∑

j

δj

r̃j

R†N−1
j d, (A2)

D′ =
⎛
⎝∑

k

γk

q̃k

S−1
k +

∑
j

δj

r̃j

R†N−1
j R

⎞
⎠−1

(A3)

D = T D′. (A4)

The mean m is completely unchanged. However, the covari-
ance D of the Gaussian approximation is now T times the
information propagator D′; i.e., the Gaussian approximation
becomes wider at higher temperature.

2. Second order

The second-order solution is given by

m = D′j, (A5)

j =
∑

j

δj

r̃j

YjR
†N−1

j d, (A6)

D′ =
⎛
⎝∑

k

γk

q̃k

Xk +
∑

j

δj

r̃j

YjR
†N−1

j R

⎞
⎠−1

, (A7)

Xk =1 + 1

q̃2
k

tr

[(
mm† + 1

2
D

)
S−1

k DS−1
k

]
− 1

q̃k

S−1
k D, (A8)

Yj = 1 + 1

r̃2
j

tr

{[
(d − Rm)(d − Rm)†+ 1

2
RDR†

]

×N−1
j RDR†N−1

j

}
− 1

r̃j

R†N−1
j RD, (A9)

D = T

⎧⎨
⎩D′−1 −

∑
k

γk

q̃2
k

S−1
k (mm†)S−1

k −
∑

j

δj

r̃2
j

R†N−1
j

× [(d − Rm)(d − Rm)†]N−1
j R

}−1

. (A10)

Again, the only effect of the temperature is to broaden the
approximate Gaussian. However, in the second-order solution
the operators Xk and Yj appear, destroying the one-to-one
correspondence between the terms in these expressions for D,
D′, and j and the Wiener filter formula, Eq. (8). Therefore,
the values of the parameters pk and ηj are not immediately
determined by these equations. Note, however, that the goal
was not to determine the signal and noise covariance matrices,
but to find the optimal Gaussian approximation to the signal
posterior, given by m and D.
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