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We study dynamic cooling, where an externally driven two-level system is cooled via reservoir, a quantum
system with initial canonical equilibrium state. We obtain explicitly the minimal possible temperature Tmin > 0
reachable for the two-level system. The minimization goes over all unitary dynamic processes operating on the
system and reservoir and over the reservoir energy spectrum. The minimal work needed to reach Tmin grows as
1/Tmin. This work cost can be significantly reduced, though, if one is satisfied by temperatures slightly above Tmin.
Our results on Tmin > 0 prove unattainability of the absolute zero temperature without ambiguities that surround
its derivation from the entropic version of the third law. We also study cooling via a reservoir consisting of N � 1
identical spins. Here we show that Tmin ∝ 1

N
and find the maximal cooling compatible with the minimal work

determined by the free energy. Finally we discuss cooling by reservoir with an initially microcanonic state and
show that although a purely microcanonic state can yield the zero temperature, the unattainability is recovered
when taking into account imperfections in preparing the microcanonic state.
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I. INTRODUCTION

Some physical systems have to be cooled before they can
demonstrate interesting features, for example, quantum prop-
erties of matter are typically displayed only after suitable cool-
ing. There are various cooling methods; we distinguish here
the “brute force method,” the Nernst setup, and the so-called
dynamic cooling. The brute force method of cooling amounts
to bringing the system in contact with a low-temperature
thermal bath, so that it relaxes to this lower temperature.

When trying to do without a pre-existing cold bath different
strategies are needed: Low temperatures can alternatively be
produced dynamically from an initially equilibrium system
via cyclic action of an external field [1–18]. In this case the
resulting cooled state should be exploited before the system
has time to relax back to equilibrium.

Within macroscopic quasiequilibrium thermodynamics
some of these methods have been summarized in the Nernst
setup of cooling, which supports a formulation of the third law
[1–7]. In fact, this law controls the cooling of a macroscopic
target initially in contact with an appropriate macroscopic
reservoir. The target is then typically subject to a two-step
cooling process in which an external field cycle is executed
under (quasiequilibrium) isothermal and adiabatic conditions,
respectively. A well-known realization of this Nernst setup is
the magnetocaloric effect, which was first observed in 1880,
but still attracts attention [8].

There are, however, other methods of cooling that became
important with the rise of low-temperature physics [9–18].
Here the target of cooling (or the reservoir, or both) is generally
not a macrosocpic system, while the process that produces
low temperatures ceases to be a quasiequilibrium one. Hence,
the understanding of these methods should rely on the actual
dynamics rather than on quasiequilibrium thermodynamics.
We therefore refer to them as dynamic cooling. A notable
example of this is the dynamical nuclear polarization in nu-
clear magnetic resonance (NMR) [9–14]. Within this method
the nuclear spins are cooled via transferring polarization

from electron spins by means of external microwave fields
[9–14]. It was originally employed in the solid-state NMR, but
since recently it is also applied for the liquid-state NMR in
view of its medical and biophysical applications [14]. Other
examples of dynamic cooling are algorithmic cooling [15,16],
bath-assisted cooling [17], and laser cooling of motional state
in atoms [18].

Dynamic nuclear polarization illustrates the basic ingredi-
ents of dynamic cooling processes that are seen already in the
Nernst setup: the target system to be cooled (nuclear spins),
the reservoir, which plays the role of a polarization source
or the entropy sink (electrons), and external fields that couple
these two together (microwave radiation at suitable frequency).
Recall that no cooling is possible without reservoir [19]; that is,
one can never cool the whole system (=target + reservoir) by
coherent fields. As already indicated, the operation of cooling
and the concept of the third law are intimately interrelated.
While we do not attempt to dwell on the general ideas behind
operationalism as originally promoted by Bridgman [20], it
is nevertheless worthwhile to stress the potential benefits of
such an approach even to modern thermodynamics, and, in
particular, for reaching the objectives of this paper. Our aim
here is threefold: to formalize cooling schemes in terms of
imposed limited resources, to parametrize specific reservoir
models, and to investigate the resulting minimal temperature
as a (scaling) function of those operational parameters.

In particular, we intend to study the minimal temperature
Tmin reachable within a sufficiently general setup of dynamic
cooling, where both the target and the reservoir are finite
quantum systems and where the final state of the reservoir
can generally be far from equilibrium. We determine how Tmin

depends on resources of the setup and note that the minimal
work necessary to achieve Tmin grows as 1

Tmin
whenever

Tmin → 0. Hence, the work is a diverging resource of dynamic
cooling, in contrast to the Nernst setup and the third law, where
the work done for cooling is always well bounded. We also
determine the minimal temperature (and the minimal work
needed to attain for it) for several concrete reservoir models.
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Our results on Tmin > 0 extend (to dynamic cooling) the
unattainability formulation of the third law. Hence, Sec. II
reviews the (frequently disguised) assumptions of the Nernst
setup and of the third law in its two formulations. (The reader
who is well aware of the third law may just consult Sec. II D
for relevant assumptions.)

The dynamic cooling setup is defined in Sec. III.
Section III C shows that dynamic cooling with a reservoir in an
initial canonical state does not allow to reach the absolute zero
of temperature [unattainability]. In Sec. III E we summarize
relevant conditions of the dynamic cooling setup.

The following three sections are concerned with reservoir
models. Section IV studies the maximal cooling possible
within the dynamic setup. It confirms that the work is a
relevant resource for cooling and determines the minimal work
necessary to achieve the maximal cooling. Section V studies
a reservoir with the homogeneous, nondegenerate spectrum,
while in Sec. VI the reservoir is modeled as a thermal bath
consisting of N � 1 spins. This model is complemented by
a discussion on the dynamic cooling process for an initially
microcanonic state of the reservoir.

In the last section we summarize our results and discuss
their relations with other microscopic approaches for studying
thermodynamic limits of cooling: The approach of Ref. [21],
where the cooling process is restricted to operations within
degenerate subspaces of the joint Hamiltonian of the system
and nonequilibrium reservoir, and the approach based on
quantum refrigerators [22–26]. We close by pointing out some
open issues.

II. OPERATIONAL ANALYSIS OF THE NERNST
SETUP AND THE THIRD LAW

A. Description of the Nernst setup

We are given a macroscopic system in contact with a much
larger thermal bath [1]. Both have initial temperature Tin. One
now switches on an external field g acting on the system and
changes it slowly from its initial value gin to its final value
gfin. The contact with the bath is held fixed. Hence, this is an
isothermal process. Let gin and gfin be chosen such that the
entropy S[T ,g] of the system decreases (see Fig. 1):

S[Tin,gin] > S[Tin,gfin]. (1)

The entropy difference is transferred to the bath.
Next, the system is thermally isolated (i.e., isolated from the

bath) and the field g is slowly returned back to its original value
gin, thereby completing the cooling cycle. (Note: The cyclic
condition only refers to the external field, that is, the time-
dependent Hamiltonian; it would be meaningless to require
the target to return to its initial state.) Hence, this part of the
process is thermally isolated and reversible (adiabatic). Since
the system is macroscopic, the adiabatic part is characterized
by constant thermodynamic entropy [1]:

S[Tfin,gin] = S[Tin,gfin], (2)

where Tfin is the final temperature of the system. Due to (1)
and ∂S

∂T
� 0, we get Tfin < Tin: some cooling has been achieved

[1–8]. Recall that ∂S
∂T

� 0 is one of basic conditions of local
thermodynamic stability (positivity of the specific heat) [1].

T

S

S gfin

S gin

Tin0 Tfin

FIG. 1. (Color online) A schematic representation of the relation
between the entropic formulation of the third law and the attainability
of T = 0. Here S and T denote entropy and temperature, respectively;
g is the external field. Bold (dashed) lines represent a situation,
where the entropic formulation holds (is violated). Arrows represent
the isothermal and adiabatic parts of the cooling cycle. We see
that the final temperature Tfin is greater than zero. However, it is
formally possible to attain T = 0 (dashed arrows) when the entropic
formulation is violated in the sense that S[T = 0] still depends on the
field g.

The system will stay cold as long as it is well isolated from
the bath.

This cooling cycle has a work cost. In terms of the free
energy,

F [T ,g] = U [T ,g] − T S[T ,g], (3)

of the system, where U [T ,g] is its energy, the work done in
the isothermal step is F [Tin,gfin] − F [Tin,gin]. The work in the
adiabatic step is U [Tfin,gin] − U [Tin,gfin]. Summing them up
and using (2) one has for the work W invested per cooling
cycle1:

W = F [Tfin,gin] − F [Tin,gin] > 0, (4)

which is always positive due to ∂F
∂T

= −S � 02 and Tin > Tfin.
Below, in Secs. III and VI, we relate (4) to the minimal work
cost of the dynamic cooling setup. Note that W according to
(4) is always finite, even for Tfin = 0.

B. Entropic formulations of the third law

The entropic formulation states that for each fixed and
finite value of the field g, the entropy S[T ,g] � 0 smoothly
goes to zero with temperature T : S[T ,g] → 0 for T → 0
[1–7] (see Fig. 1). The entropic formulation is frequently
deduced from the nondegeneracy of the system’s ground state.
However, this does not suffice for a derivation, because for a
macroscopic system the appropriate order for taking limits is
that first the thermodynamic limit is taken, the entropy density
is calculated, and then after that the low-temperature limit
goes [4,5]. Then the zero-temperature entropy starts to depend
on global features of the energy spectrum. The full derivation
within statistical mechanics was attempted several times [4–7]
but is regarded to be an open problem, because there are

1We use the sign convention W > 0, if the work source loses energy.
2We assume the convention where the entropy is defined to be

non-negative.
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different classes of theoretical Hamiltonian systems violating
the entropic formulation: The zero-temperature entropy for
them is not zero and depends on external fields [4,6,27–32].

It is believed that Hamiltonians which would violate
the entropic formulation are unstable with respect to small
perturbations [2,6]. Such perturbations would have to be
generated by some appropriate noise model. Unfortunately,
a general recipe for selecting such a model does not seem
to be known (or even exist).3 There are results showing
how one should select the noise model for particular cases
only [2,6,27,30,33,34].

C. Unattainability formulation of the third law

Already the entropic formulation of the third law can
be brought in contact with operational requirements. This
is even more so for the unattainability formulation. This
formulation states that it is impossible to reach absolute zero
of temperature, T = 0, by finite means, that is, via a tractable
physical process. Note that the unattainability formulation
is clearly different from the entropic formulation that refers
to a limiting feature of a definite function of temperature
(entropy). The unattainability formulation relies on the notion
of tractability, whose general formalization appears to be hard
to come by. Hence, the two formulations cannot be completely
equivalent [3].

Within the Nernst setup one naturally assumes that for a
tractable physical process the strength g of the external field
should not assume infinite values [1,2]. This suffices for a
heuristic derivation of the unattainability formulation from
the entropic formulation (see Fig. 1 and [1]). Indeed, Fig. 1
also shows that the unattainability is violated together with
counterexamples of the entropic formulation.4 However, there
are also examples that would violate the unattainability for-
mulation only [2,37].5 Again, one way out of this ambiguous
situation is to look for “sufficiently” stable Hamiltonians [2].

D. Summary of conditions

We finally try to summarize the Nernst setup in terms
of two lists of conditions: The first list N1–N6 specifies

3The reader may consult controversies with the validity of the
entropic formulation in the field of the Casimir effect [27,28,33] or
for black holes [29], criteria of this formulation for spin systems
[30,34], and classes of one-dimensional counterexamples to the
formulation [31,32]. The authors of [32] ensured robustness of their
counterexamples to a class of noise models.

4This would not imply that one can ever verify reaching T = 0,
since any temperature measurement has a finite precision. (The
situation with reaching a positive temperature, say 10 K, is different,
because one can arrange for passing through this temperature at some
[uncertain] time.) In particular, temperature fluctuations can prevent
a precise determination of low temperatures [35,36]. According to
the standard thermodynamic approach [35] these fluctuations will
grow for T → 0 due to the vanishing heat capacity. The issues
of temperature fluctuations was recently reconsidered and clarified
in [36] from the first principles of quantum mechanics.

5The mechanism of these counterexamples is that the entropy
nullifies at some Tc(g) > 0 and stays zero for T � Tc(g).

details of the task: It reflects our choice for implementing
a satisfactory cooling process. In part these conditions may
be tied to the actual technology. The second list T1–T3
introduces fundamental tractability conditions. These stress
the unavoidable finiteness of the resources at our disposal
and should remain intact within any future technology. The
respective process will be called tractable insofar as these
requirements can be fulfilled:

(N1) initial state, equilibrium for the system and bath;
(N2) system (target of cooling), macroscopic;
(N3) cooling process, quasiequilibrium;
(N4) bath, macroscopic, much larger than the system;
(N5) external field, changes cyclically;
(N6) the Hamiltonian of the target, stable with respect to

perturbations.
N1 recalls that we intend to start from a given finite tem-

perature, while N2–N4 are assumed because the process is to
be embedded into macroscopic equilibrium thermodynamics.
N2 and N3 reflect the technology of Nernst’s times. N5 is
assumed, because the cooled system has to be autonomous; that
is, once it was cooled, it can be used in other places, without
being kept under a constant external field. N6 is included here
because a general noise model for perturbations is not known:
The concrete stability requirement thus becomes a matter of
choice.

We now turn to the tractability conditions; this list is not
necessarily complete (cf. Sec. VI C):

(T1) external field has finite strength;
(T2) the work cost necessary for cooling is finite;
(T3) duration of the cooling cycle is finite.
T1 turns out to be essential for deducing the unattainability

formulation of the third law. It is also relevant for the entropic
formulation. (It is easy to find examples where the entropy
does not nullify with the temperature if simultaneously the
field goes to infinity [2].) Due to (4), T2 is guaranteed by
N1–N4. Typically, T3 becomes essential for certain scenarios:
Indeed, in frustrated systems reaching the true equilibrium may
demand unrealistically long observation times; on practically
relevant observation times the system may find itself trapped
in quasistationary states, where the nonequilibrium entropy
does not go to zero with the ambient temperature, though the
true equilibrium state does satisfy the entropic formulation.
This effect was observed experimentally [38]. It is also well
known for glassy systems [39] (residual entropy) (see [40] for
a review).

III. SETUP FOR DYNAMIC COOLING

A. System and reservoir

A reasonably general setup for dynamic cooling requires
to specify the class of Hamiltonians for the target system S
and the reservoir R, together with their initial state. Here both
subsystems will be taken to be finite-level quantum systems
with the overall Hamiltonian HS+R. The initial state of S + R
is a canonical equilibrium one with density matrix

ρS+R = e−βHS+R

tr [ e−βHS+R ]
, (5)
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and the initial temperature T = 1/β (kB = 1). We additionally
assume that in the initial state the coupling between S and R
is negligible:

HS+R = HS + HR, ρS+R = ρS ⊗ ρR. (6)

The action of external fields is described by an interaction term
in the time-dependent Hamiltonian of S + R:

HS+R(t) = HS + HR + V (t), (7)

which is switched on at time t = 0 and switched off at time
t = τ : V (t) = 0 for t < 0 and for t > τ (cyclic motion of the
external field). V (t) acts on both S and R; if it acts only on
S, no cooling is possible [19]. HS+R(t) generates a unitary
operator U that takes the initial state (5) to the final state of
S + R:

ρS+R(τ ) = UρS+RU †, (8)

ρS(τ ) = trRρS+R(τ ), ρR(τ ) = trSρS+R(τ ), (9)

where we defined also marginal final states of S and R.

B. Definition of cooling

How to define cooling of S in the nonequilibrium setting?
Note that the maximal cooling is always well defined, because
it means that the final ground state probability of S is [|0〉 is
the ground state of HS]

p0(τ ) ≡ 〈0|ρS(τ )|0〉 = 1 (or T = 0). (10)

Defining a nonmaximal cooling via p0(τ ) is reasonable for
two-level systems, since a larger p0(τ ) means that the energy
distribution in the final state is more shifted toward the ground
state.6 If in addition the state of S is diagonal in the energy
representation, one can equivalently express the cooling via
temperature defined as in (5). For a multilevel system S one
needs to take care in defining the meaning of a possibly
nonequilibrium state of S being colder than a given equilibrium
state.7

6One may define cooling via the maximal eigenvalue of the density
matrix and not the ground-state probability. In the optimal regime of
our setup both definitions agree with each other, because the final
state of S is energy-diagonal; see Sec. IV A.

7When comparing two systems with the same energy levels—e.g.,
the target of cooling before and after the cooling process realized
via a cyclically changing Hamiltonian—one can define cooling by
requiring that the whole energy distribution is shifted toward the
ground state. In effect, this amounts to using majorization as a
measure of cooling; see [41] and Appendix A for the definition of
this concept, see also [21] for a related approach. The drawback (or
viewing differently an advantage) of this definition is that when the
number of energy levels is larger than two, not every two states can
be said to be cold or hot relative to each other. Another (less preferred
by us) approach to cooling would be to employ global measures such
as entropy.

For simplicity we assume that S is a two-level system with
energies8

0 < ε (11)

and equilibrium probabilities

p0 ≡ 〈0|ρS(0)|0〉 = 1

1 + e−βε
, p1 = e−βε

1 + e−βε
. (12)

The reservoir R is a M-level system with energies

0 = μ0 � μ1 � · · · � μM−1 ≡ μ, (13)

and initial equilibrium probabilities [see (5), (6)]

πl = e−βμl

1 +∑M−1
k=1 e−βμk

, l = 0, . . . ,M − 1. (14)

The eigenvalues of the initial density matrix ρS+R read

{ωk}2M−1
k=0 = (p0π0, p1π0, p0π1, p1π1, . . .). (15)

C. Unattainability of the absolute zero

The above setup suffices for showing the unattainability of
the absolute zero, p0(τ ) > 1, for the target of cooling S, given
the initial state (5) of the reservoir. The final ground-state
probability p0(τ ) of S follows from(5)–(14) ,

1 − p0(τ ) =
1∑

i=0

M−1∑
α,γ=0

piπγ [1 − |〈0,α|U |i,γ 〉|2], (16)

where {|i〉}1
i=0 and {|α〉}M−1

i=0 are the eigenbases of, respec-
tively, HS and HR in (6), and {πα}M−1

α=0 is given by (14).
Since

∑1
i=0

∑M−1
γ=0 |〈0,α|U |i,γ 〉|2 = 1, some inequlities 1 �

|〈0,α|U |i,γ 〉|2 must be strict. Noting also piπγ > 0 we deduce
from (16)

p0(τ ) < 1 (strict inequality). (17)

This argument applies for M = ∞, where, for example,∑1
i=0

∑∞
γ=0|〈0,α|U |i,γ 〉|2 = 1 and

∑∞
γ=0πγ = 1 are conver-

gent series, and where U is unitary for M = ∞. Note that the
argument leading to (17) is essentially based on piπγ > 0 and
hence πγ > 0 [see (14)].

With trivial changes the derivation of (17) applies for a
multilevel system S.

D. Lower bounds for work

Here we summarize restrictions imposed by the second law
on the work needed for cooling. Our presentation uses the same
ideas and methods as [42,43]; see also [44] in this context.

8Consider a multilevel system whose energy gap between the
ground state and the first excited state is smaller than the gap
between the first and second excited state. For sufficiently low initial
temperatures this system can be regarded as effectively two-level
system, because populations of the second and higher energy levels
can be neglected.
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Recall that for the considered unitary (thermally isolated)
process the work done on the system is equal to the [average]
energy difference [42,43]:

W = tr{[ρS+R(τ ) − ρS+R]HS+R}, (18)

where we recall that the interaction V (t) with external fields
is switched off after the final time [see (7)].

Since the initial state (5) is at a Gibbsian equilibrium,
any unitary operator that changes this state costs some work.
Indeed, given the initial state (5) and the unitary dynamics
implemented by a cyclically changing Hamiltonian (7), (8),
the work (18) invested in S + R amounts to

βW = tr[ρS+R ln ρS+R − ρS+R(τ ) ln ρS+R] (19)

= tr[ρS+R(τ ) ln ρS+R(τ ) − ρS+R(τ ) ln ρS+R] (20)

≡ S[ρS+R(τ )||ρS+R] � 0, (21)

where in moving from (19) to (20) we used the unitarity of
dynamics [see (8)]. The relative entropy S[ρS+R(τ )||ρS+R]
is non-negative and nullifies only if ρS+R(τ ) = ρS+R; see
Ref. [45] for further features of the relative entropy and its
role in (quantum) information theory. Thus, any change of
the initially equilibrium state via a cyclic Hamiltonian process
costs some work. This work is also a resource of dynamic
cooling.

In the context of cooling one can derive more stringent
lower bounds on the work. Using (6) we rearrange (20):

βW = S[ρS(τ )||ρS] + S[ρR(τ )||ρR] + ISR(τ ), (22)

IS+R(τ ) ≡ tr[ρS+R(τ ) ln ρS+R(τ )]

−tr[ρS(τ ) ln ρS(τ )] − tr[ρR(τ ) ln ρR(τ )] � 0.

(23)

IS+R(τ ) is the mutual information between S and R in the final
state. IS+R(τ ) � 0 due to the subadditivity of the entropy.

Now (5), (6), (22) and (21), (23) produce

W � T S[ρS(τ )||ρS]

= F[ρS(τ )] − F[ρS] ≡ �F � 0, (24)

where for any density matrix σ and the initial temperature T

we defined

F[σ ] ≡ tr(HSσ ) + T tr(σ ln σ ). (25)

If σ is a Gibbsian density matrix at temperature T , F[σ ]
coincides with equilibrium free energy [cf. (3)].9

9If the reservoir is a thermal bath at temperature T , then—as
advocated in [46]—F in (25) can be interpreted as a nonequilibrium
generalization of the equilibrium free energy. However, in contrast
to the equilibrium free energy, F is not a state function, since it is
defined via the bath temperature T . Nevertheless, it has several useful
features; for example, it determines the maximal work extractable
from a nonequilibrium system in contact with a (canonic equilibrium)
thermal bath at temperature T [46]. From that viewpoint, one can
interpret (22) as follows. The work separates into three components:
the (nonequilibrium) free energy difference for S, the equilibrium
free energy difference for the bath R, and the energy stored in the
mutual information between S and R.

In general, however, �F in (24) is different from the free
energy difference (4) of the Nernst setup, where both the
initial and final states are at equilibrium. Hence, in (4) the
temperatures Tin and Tfin refer to the initial and final states,
respectively. For dynamic cooling only the initial states are at
Gibbsian equilibrium (5), so thatF in (24) and (25) exclusively
refers to the corresponding initial temperature.

To compare quantitatively (24) with (4), we note that gin in
(4) refers within dynamic cooling to the S-R (system-reservoir)
interaction that is zero both initially and finally. Assume that
the final state ρS(τ ) of S is Gibbsian (canonic equilibrium) at
temperature Tfin. Then the thermodynamic entropy in (3) is the
von Neumann entropy from (25). Recalling that Tfin < Tin ≡ T

we obtain from (4), (24)

F [Tfin,gin] − F [Tin,gin] − T S[ρS(τ )||ρS]

= −tr[ρS(τ ) ln ρS(τ )] (Tfin − Tin) � 0. (26)

Thus, the difference between (24) and (4) tends to disappear
with the final entropy of S. Such a situation will be met in
Sec. VI.

E. Summary of conditions

In analogy to Sec. II D we summarize the dynamical cooling
setup in terms of the following task list:

(D1) initial state, canonical equilibrium system and reser-
voir (they are uncoupled;

(D2) system (target of cooling), microscopic;
(D3) cooling dynamics, unitary in the space of the system +

reservoir (not necessarily quasiequilibrium);
(D4) reservoir, possibly microscopic (not necessarily larger

than the system);
(D5) system-reservoir interaction (driven by external field),

changes cyclically.
D2 makes obsolete the need for the entropic formulation

of the third law, since a thermally isolated process done on
a finite S is not uniquely characterized by its entropy [47]
(instead the full spectrum of the density matrix determines the
set of states that can be reached by unitary processes). In this
paper we assumed D2∗ rather than D2, that is, that the system
S is two-dimensional. This more restrictive condition should
be relaxed in future studies. D5 is motivated in the same way
as N5. To grasp the difference between N4 and D4, we study
in Sec. VI the dynamic cooling setup under condition N4.

As for the tractability we keep the conditions T1–T3 from
Sec. II D. The unattainability of the absolute zero is proven
in Sec. III C via D1 and D3, without explicit reference to
T1–T3. Nevertheless, T2 is needed below for understanding
limitations on reaching lowest (nonzero) temperatures, while
T3 is inherently demanded for applications of the dynamical
cooling: The cycle time now refers to the time needed to realize
the unitary operator (7) via a suitable Hamiltonian.

IV. OPTIMAL RESERVOIR

The task list of Sec. III E does not yet fully specify the
reservoir. In this section and the following two we investigate
three different models; their respective parameters are then
shown to characterize the way in which cooling can be
achieved.
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A. Max-min cooling scenario

The purpose of dynamic cooling is to increase the ground-
state probability of S subject to the constraints listed in
Sec. III E. Obviously, some setups work better for the desired
task than others. For studying principal limitations we should
thus optimize the design, that is, try to maximize this very
probability. This has to be done (i) over all unitary transfor-
mations U in (8) and (ii) over the energy level distribution of
the reservoir assuming that they are bounded from above; that
is, μ in (13) is a finite, fixed number. This parameter of the
upper energy level of the reservoir turns out below to control
dynamic cooling. We denote these maximization strategies as
maxU and maxμk

, respectively. The overall maximization is
maxU,μk

.
Generally, the above maximization procedure will specify

a set of equivalent scenarios only, that is, leave some free
parameters (see below). Additional requirements may be
imposed to reduce this ambiguity. Here we attempt to minimize
the work needed for given cooling effect. This is why our
intended goal requires a “max-min” scenario: First the ground-
state probability of S is maximized and only after that the work
is minimized.

B. Maximal cooling

Assume that R has an even number of energy levels:

M = 2n. (27)

Appendix A shows that the unitary operator, which leads to
the largest final ground-state probability for S, amounts to
permuting the elements (15) of the initial density matrix ρS+R.
We recall that it is diagonal in the energy representation.
Hence, in the maximal cooling regime the final state of the
two-level target is diagonal in the energy representation: It has
a well-defined temperature, which is hence not imposed, but
emerges out of optimization.

The fact that the two-level target of cooling ends up in
an energy diagonal density matrix (with the ground-level
probability greater than the excited level probability) is
straightforward to establish: Otherwise, there will be a unitary
operator acting only on the two-level system such that its
ground-state probability is increased.

Consider the eigenvalue vector of the final state of S + R
with the largest ground-state probability p0(τ ) of S. In this
vector the largest 2n elements of the vector (15) are at the
odd places [counting starts with 1], and the final, maximized
ground-state probability for S reads

maxU [p0(τ )] = smax2n

[ {ωk}4n−1
k=0

]
, (28)

where smaxk[a] returns the sum of k largest elements of vector
a. Finding the 2n maximal elements of {ωk}4n−1

k=0 leaves some
freedom in U . One represents (28) as

maxU [p0(τ )] = p0

∑n−1

k=0
πk + p1π0

+ smaxn−1[p1π1, . . . ,p1πn−1,p0πn, . . . ,p0π2n−2], (29)

where we used (15) and straightforward induction over n.

Maximizing (28) over the energy levels (13) amounts
to maximizing it over the Boltzmann weights vk = e−βμk

[see (13), (14)] under constraints

1 � v1 � . . . � v2n−1 � v = e−βμ. (30)

Since the left-hand side of (28) is a ratio of linear functions of
vk , it can maximize only at the borders of the allowed range of
vk; that is, some of vk’s are equal to 1, while others are equal
to v. The physical meaning of this result is that the optimal
reservoir is an effective two-level system, a fact that greatly
simplifies searching for the maximal (final) ground-state
probability of S. To illustrate this result, consider an example in
(29): n = 2, smax1[p1π1,p0π2] = max[p1π1,p0π2] = p1π1.
This reduces (29) to π0 + π1, which maximizes for v1 =
1,v2 = v.

It now remains to check all possible arrangements of energy
levels that render R an effectively two-level system. This check
produces the maximum of (29) for

μ0 = · · · = μn−1 = 0, μn = · · · = μ2n−1 = μ. (31)

Hence, the optimal reservoir for cooling a two-level system
has to have a degenerate ground state for n � 2. The maximal
ground-state probability now reads

maxU,μk
[ p0(τ ) ] =

n−1∑
k=0

πk = 1

1 + e−βμ
= 1

1 + e−ε/Tmin
,

(32)

where

Tmin = T ε/μ. (33)

Thus, (32) is the maximal probability for a reservoir with
maximal energy μ; Tmin is the minimal temperature. Note that
(33) is consistent with the unattainability argument (17). For
μ → ∞, Tmin would approach zero.

We get cooling, that is, maxU,μk
[p0(τ )] > p0, only when

the largest energy of R is larger than the energy of S:

μ > ε. (34)

This asymmetry ensures that the two-level is cooled in
presence of the reservoir.

C. Minimal work

We turn to calculating the minimal work given the maximal
probability (32). Write (15) under (31):

p0π,p1π, . . . ,p0π,p1π︸ ︷︷ ︸
2n elements

, p0π̃ ,p1π̃ , . . . ,p0π̃ ,p1π̃︸ ︷︷ ︸
2n elements

, (35)

where we defined π = 1
n(1+v) and π̃ = v

n(1+v) .
Equation (32) is found after the first 2n elements in (35) are

distributed over the odd places in the eigenvalue list of ρfin
S+R

[counting starts from 1]. Concrete places they occupy are not
important for obtaining the optimal cooling effect (32): Those
various orderings constitute an equivalence class. Concrete
places, however, become important for minimizing the work.
Note that for a fixed final ground-state probability of the two-
level system minimizing the work amounts to maximizing the
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overall probability of the lowest level μ0 = · · · = μn−1 = 0
for the final state of the reservoir [see (31)]. Then (35) implies
that the minimal work is obtained for a permutation that does
not touch the underlined elements in (35), but interchanges
those that are not underlined: each p1π with some element
p1π̃ ; see Appendix A for the argument reducing the considered
unitary to a permutation. Recalling that the initial energy of
the system + reservoir is μe−βμ

1+e−βμ + p1ε and using (18) we get

W = (μ − ε)

[
1

1 + e−βμ
− p0

]
, (36)

for the work. Now (36) shows that reaching the lowest possible
temperature Tmin requires the work

W � μp1 ∼ 1/Tmin. (37)

This constitutes a parametrization of the attainability con-
straints for dynamical cooling: Work W and and the inverse
temperature reached, 1/Tmin, are proportional. Accepting that
W cannot be infinite (see condition T2 in Secs. II D and III E),
we have to accept that the minimal temperature reached cannot
be zero.

Let now the number of energy levels of R be an odd number:
M = 2n + 1. Instead of (29) we get

maxU [p0(τ )] = p0

n−1∑
k=0

πk + p1π0

+ smaxn[p1π1, . . . ,p1πn−1,p0πn, . . . ,p0π2n−1]. (38)

The final ground-state probability is maximized for

μ0 = · · · = μn−1 = 0, μn = · · · = μ2n = μ, (39)

meaning again that the optimal reservoir has to have a
degenerate ground state for n � 2. The maximal ground-state
probability reads

maxU,μk
[p0(τ )] = n + p0e

−βμ

n + (n + 1)e−βμ
. (40)

Condition (34) is still needed, and the qualitative conclusion
from studying the work cost is the same as above.

In contrast to (32), expression (40) already depends on the
initial probability p0 of S. Equations (32) is recovered from
(40) for a many-level reservoir n � 1. Instead of assuming
such a many level reservoir with the optimal unitary operating
on the joint Hilbert space of this reservoir and the target system,
we can relate (40) to (32) under a weaker condition. Apply the
cooling protocol repeatedly with the reservoir—having a finite,
odd number of energy levels—reprepared in its equilibrium
state, for example, via fast relaxation, as it happens with
electronic spins in solid state NMR [9]. Then the ground-state
probability increases iteratively as [see (40)]:

p
[l+1]
0 = n + p

[l]
0 e−βμ

n + (n + 1)e−βμ
, l = 1,2, . . . . (41)

For l � 1 the result of this iteration converges to (32).

D. Trade-off between maximizing cooling and minimizing work

The existence of the above work cost for dynamic cooling
raises the following question: To what extent can we reduce this

cost if, given the upper bound on the reservoir energy spectrum
[see (13)], we sacrifice some ground-state probability of the
target system, that is, instead of reaching (32) we agree to
reach a somewhat lower final probability. As compared to (32),
this will require a different reservoir and a different unitary
transformation for cooling. The answer to this question is that
even a small decrease in the achieved ground-state probability
can significantly reduce the work cost. We illustrate this fact
via an example.

Let us take M = 2n = 4, and postulate a unitary operator
that permutes the eigenvalues of the initial state (15) so that
the final-state eigenvalues read

(p0π0, p0π2, p1π0, p1π2, p0π1, p0π3, p1π1, p1π3). (42)

The logic of obtaining (42) from (15) is as follows. The first
four probabilities p0π0, p1π0, p0π1, p1π1 in (15) are moved
to odd places, producing

p̂0(τ ) = π0 + π1 = 1 + e−βμ1

1 + e−βμ1 + e−βμ2 + e−βμ3
, (43)

which is similar to π0 + π1 in (32). The remaining four
probabilities p0π2, p1π2, p0π3, p1π3 [last four elements in
(15)] are then arranged in between without changing their
mutual order. The work and the final probabilities for the four
reservoir energy levels read

W = ε[p0 − p̂0(τ )] +
3∑

k=1

μk[πk(τ ) − πk], (44)

π0(τ ) = p0(π0 + π2), π1(τ ) = p1(π0 + π2), (45)

π2(τ ) = p0(π1 + π3), π3(τ ) = p1(π1 + π3). (46)

Let us assume that

βμ2 = βμ3 ≡ βμ � 1 (47)

is a fixed number. Hence, μ1 is the only parameter over which
we can minimize (44). In the limit βμ → ∞ both (32) and
(43) converge to 1:

maxU,μk
[ p0(τ ) ] → 1, p̂0(τ ) → 1, (48)

while their ratio is a finite number,

1 − maxU,μk
[ p0(τ ) ]

1 − p̂0(τ )
= 1

2
(1 + e−βμ1 ) + O[e−βμ], (49)

where O[e−βμ] can be neglected due to (47).
We now show that although (32) and (43) are quite

close to each other, the work needed to obtain (43) deviates
significantly from (36). Note that π2 and π3 are exponentially
small with βμ → ∞. We neglect such terms in (44) and obtain

W = −εp1 + μ1(p1π0 − π1) + μπ1, (50)

βW = p1 ln
p1

1 − p1
+ βμ1(p1 − e−βμ1 ) + βμe−βμ1

1 + e−βμ1
. (51)

To get (51) and (50) from (44)–(46) we employed (12)
and (14). It should now be clear that for βμ � 1 we get
a logarithmically growing work, βW = p1 ln[p1βμ

1−p1
], if we

choose βμ1 = ln(βμ). The minimization of the right-hand
side of (51) over βμ1 satisfying μ1 � μ produces a very
similar result. For βμ � 1 neglect in (51) all terms with
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e−βμ1 except the factor βμe−βμ1 , where a small term e−βμ1

is multiplied by the large βμ. Now substitute βμ1 = ln[ βμ

yp1
]

into (51), where y is a new variable. This produces βW =
p1 ln[ p1

1−p1
] + p1(y + ln[ βμ

yp1
]). After differentiating over y we

obtain for the minimum: y = 1, or

βW = p1 ln

[
βμ e

1 − p1

]
. (52)

and thus a logarithmic rather than linear increase of W with
μ, that is, with β ′. In the limit βμ → ∞ the corresponding
ground-state probability is only slightly reduced:

1 − maxU,μk
[ p0(τ ) ]

1 − p̂0(τ )
= 1

2

(
1 + p1

βμ

)
. (53)

This equation can be rewritten in terms of temperatures. Recall
(48) and (32), and introduce a temperature T̂ via p̂0(τ ) =
(1 + e−ε/T̂ )−1. Then (53) reads

1

T̂
− 1

Tmin
= 1

ε
ln

[
1

2

(
1 + p1

βμ

)]
. (54)

For βμ → ∞ the right-hand side of this equation goes to − ln 2
ε

.
If one allows further deviations from the maximal proba-

bility (32) [more than (53)], then it is possible to reduce the
work even below the logarithmic dependence (52). Appendix B
shows that the example (42) generalized to n = 4 (eight-
level reservoir) produces [for βμ � 1] the double-logarithmic
scaling of the minimal work, W � ln[ln[βμ]] provided that the
deviation from the maximal probability scales as

1 − maxU,μk
[ p0(τ ) ]

1 − p̂0(τ )
= 1

4

(
1 + O

[
1

ln(βμ)

])
. (55)

Realistic reservoirs tend to deviate from the optimal model
studied above. In the following we investigate models subject
to additional constraints.

V. HOMOGENEOUS SPECTRUM OF RESERVOIR

A. Finite number of levels

We saw above that the maximal energy μ [see (13)] is
an essential parameter for dynamical cooling via a reservoir
with a finite number of energy levels: Cooling to ground-
state probability 1 is possible only for μ → ∞. In the optimal
scenario (32) (with two levels only) μ conincides with the
energy gap.

Here we study the simplest cooling scenario, where μ can
be large without increasing the level spacing. This scenario
also illustrates the limit of the infinite-dimensional Hlibert
space for the reservoir.

We assume that R has M equidistant energy levels:

μk = δk, k = 0,1, . . . ,M − 1, (56)

where δ > 0 is the reservoir energy gap. We realize with
respect to this reservoir the same max-min scenario. However,
no optimization over the energy gaps of the reservoir is carried
out; that is, δ is a fixed parameter.

The initial-state eigenvalues of S + R read

1

Z
[p0,p1,p0v,p1v,p0v

2,p1v
2, . . . ,p0v

M−1,p1v
M−1], (57)

where we defined

v = e−βδ, Z =
M−1∑
k=0

vk = (1 − vM )/(1 − v). (58)

We define α from

p0v
α � p1 � p0v

α+1, α =
⌊

ln(p0/p1)

ln(1/v)

⌋
=
⌊ε

δ

⌋
, (59)

where �x� is the floor integer part of x; for example, �0.99�=0.
Let us reorder the elements of vector (57) (first the largest
element, then next to the largest, etc.):

�ω = 1

Z

[
p0,p0v, . . . ,p0v

α︸ ︷︷ ︸
α+1

, (60)

p1,p0v
α+1,p1v,p0v

α+2, . . . ,p1v
M−α−2,p0v

M−1︸ ︷︷ ︸
2(M−α−1)

, (61)

p1v
M−α−1,p1v

M−α, . . . ,p1v
M−1︸ ︷︷ ︸

α+1

]
, (62)

where the curly bracket shows the number of elements in each
group. In (60)–(62) we select the first M elements; their sum
will give the maximal final ground-state probability of the
target two-level system. Then the optimal unitary transforma-
tion amounts to distributing those M largest elements over the
odd places in the eigenvalue list of the final density matrix.
Clearly, M = α + 1 means that no cooling is possible with the
considered reservoir.

Let M − (α + 1) be an even number:

M − (α + 1) = 2s, (63)

where s is an integer. Now (61) is factorized as

(61) = p1,p0v
α+1, . . . ,p1v

s−1,p0v
α+s︸ ︷︷ ︸

M−α−1

,

p1v
s,p0v

α+s+1, . . . ,p1v
M−α−2,p0v

M−1︸ ︷︷ ︸
M−α−1

(64)

Thus, the final ground-state probability of the target two-level
system reads10

maxU [p0(τ )] = 1

Z

[
p0

α+s∑
k=0

vk + p1

s−1∑
k=0

vk

]

= 1 − p1v
s − p0v

α+s+1

1 − vM
. (65)

As expected, (65) is smaller than the bound (32) with μ =
δ(M − 1).

B. Infinite number of levels

For finite δ and α we get from (65):
maxU [p0(τ )] → 1 when M → ∞ and s → ∞. (66)

The minimal work necessary for (66) is finite. In showing
this let us restrict ourselves with the simplest case α = 0

10Likewise, for an odd M − (α + 1) we introduce M − α − 1 =
2u + 1, where u is an integer. Instead of (65) we get maxU [p0(τ )] =
1−p1vu+1−p0vα+u+1

1−vM , which implies the same consequence (66).
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in (63). Equations (60)–(62) now read

p0,p1, . . . ,p1v
(M−3)/2,p0v

(M−1)/2︸ ︷︷ ︸
M

,

p1v
(M−1)/2,p0v

(M+1)/2, . . . ,p0v
M−1,p1v

M−1︸ ︷︷ ︸
M

. (67)

Equation (67) implies for the minimal work in the limit (66)

W = ε[p0 − p0(τ )] + δ

Z

(
p1 + p0v

M+1
2
) (M−3)/2∑

k=0

(2k + 1)vk

+ δ

Z

(
p0v + p1v

M+1
2
) (M−3)/2∑

k=0

(2k + 2)vk − δ

Z

M−1∑
k=0

kvk

= (δ − ε)p1 + δv

1 − v
, (68)

which is clearly finite, positive and is larger than the bound
�F = − 1

β
ln(1 + e−βε) demanded by (24).

The convergence (66) does not mean that for M = ∞
(harmonic oscillator spectrum) we would get maxU [p0(τ )] =
1 (or Tmin = 0), because for M = ∞ the transformation that
leads to (65) is not even bijective, let alone unitary (i.e., the
limit of unitary processes for M → ∞ is not unitary); see
in this context our discussion after (17). Let us take α = 0
in (60)–(62). For a finite M the optimal unitary—which we
recall amounts to a permutation—distributes the first half of
the vector (60)–(62) over the odd places in the final vector.
The elements from the second half are distributed into even
places of the final vector. For M = ∞ this second (sub)process
disappears in infinity. Hence, the limit of the above permutation
for M → ∞ is not even bijective.

Cooling with the harmonic oscillator reservoir (M = ∞)
is a well-defined problem provided that one ensures that
the operator U stays unitary for M = ∞. For each such
unitary we have p0(τ ) < 1 [see (17)]. However, the maximum
maxU [p0(τ )] now does not exist. It can be substituted by
supremum

supU [p0(τ )] = 1, (69)

as follows from (66). Equation (69) points out on an important
difference between the infinite and finite-level situations.

VI. RESERVOIR CONSISTING OF N IDENTICAL SPINS

We study this modular case for two reasons: First, in
the thermodynamic limit N → ∞ the reservoir will become
a standard thermal bath; hence, one expects to establish
connections between the Nernst setup (Sec. II) and the
dynamic cooling setup (Sec. III). Second, the model is relevant
for polarization transfer experiments, and thus was widely
studied—albeit for the high-temperature limit only—in the
NMR literature [11,16].

A. Maximal cooling

Now reservoir R consists of N identical spins, each one
with energies 0 and δ > 0. The energy levels of the reservoir,

EA = δA, are equidistant with degeneracy

dA = N !

(N − A)! A!
. (70)

One can apply (60)–(62) to this situation—with α being
defined as in (59)—but now each element piv

A has to be
repeated dA times. The indices under the curly brackets in
(60)–(62) indicate now the number of distinct elements. Again,
we need to divide the vector �ω in (60)–(62) into two equal parts.
For simplicity [and without altering the asymptotic formulas
(75), (76)] assume that N is an odd number.

If α is an even number, dividing �ω into two equal parts
amounts to finding an integer m that satisfies

α∑
k=0

dk +
m∑

k=1

dα+k +
m∑

k=0

dk = 2N, (71)

since now the first half of �ω ends up with element p1v
m. This

leads to m = �N
2 � − α

2 , where �x� is defined after (59).
If α is an odd number, the first half of �ω ends up with

element p0v
α+m, and m = �N

2 � − �α
2 � is found from

α∑
k=0

dk +
m∑

k=1

dα+k +
m−1∑
k=0

dk = 2N .

For simplicity we focus on the even α case (71). Then
taking in (60)–(62) all the initial elements (together with
their degeneracies) up to the index m means dividing it into
two equal parts. Thus, the largest ground-state probability
achievable is equal to the sum of the elements from the first
half of �ω:

maxU [p0(τ )] = 1

(1 + v)N

[
p0

α+m∑
k=0

dk vk + p1

m∑
k=0

dk vk

]
,

m =
⌊

N

2

⌋
− α

2
. (72)

Examples of (72) are presented in Fig. 2.
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FIG. 2. (Color online) The relative cooling maxu[p0(τ )]−p0
p0

calcu-
lated according to (12) and (72) versus the initial inverse temperature
β = 1/T for various values of ε and N = 201, δ = 0.1. The relative
cooling is maximal at some intermediate β(ε). The maximum is
sharper for smaller values of ε.
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Let us now take the limit N � 1. Despite this limit both ε

and δ are finite; we neglect α in (72) by taking there m = ⌊N
2

⌋
[recall that α = 0 for ε < δ] and transform (72) via

1

(1 + v)N

m∑
k=0

dkv
k =

∑N
k=0 dkv

k −∑N
k=m+1 dkv

k

(1 + v)N

= 1 − vm+1dm+1

(1 + v)N

N−m−1∑
k=0

vk dk+m+1

dm+1
.

(73)

Since m = �N
2 � > Nv/(1 + v), vkdk+m+1 is a decaying

function of k; hence,
∑N−m−1

k=0 vk dk+m+1

dm+1
is dominated by its

first few terms and is bounded from above for N → ∞.11

We are left with estimating vm+1dm+1

(1+v)N for m = N
2 . Using the

Stirling’s formula (74)

N ! �
√

2πN (N/e)N, (74)

we get for N � 1

1

N
ln{1 − maxU [p0(τ )]} = −S

[
1

2
I ||σ

]
+ O

(
ln N

N

)
,

(75)

where the relative entropy S[ 1
2I ||σ ] between the probability

vectors ( 1
2 , 1

2 ) and ( v
1+v

, 1
1+v

) = σ satisfies

S

[
1

2
I ||σ

]
= ln

1 + v

2
√

v
= ln cosh

[
βδ

2

]
(76)

[see also (21)]. Note that σ is the state of the single reservoir
spin [the reservoir consists of N such identical spins]. Note
that for N � 1 the asymptotic behavior of p0(τ ) does not
depend on ε.

Thus, for N → ∞, the (small) deviation of p0(τ ) from 1 is
controlled by the relative entropy (76). The final temperature
of the two-level system reads from (75) and (76)

Tmin = ε

NS
[

1
2I ||σ ] . (77)

Note that (77) is consistent with the unattainability argument
(17).

Let us now turn to calculating the minimal work needed for
this cooling.

B. The minimal work

The message of the following calculations is to show that the
minimal work required for cooling (75) and (76) can converge
to its thermodynamic lower bound (24) in the thermodynamic
limit N � 1.

11For numerics one can use the hypergeometric function∑N−m−1
k=0 vk dk+m+1

dm+1
= 2F1[1,m − N + 1,2 + m, − v] that holds for

any N − m − 1 > 0. This formula is derived by expressing dk+m+1
dm+1

via Euler’s γ functions [recall (70)], extending the summation
to infinity:

∑N−m−1
k=0 =∑∞

k=0, and employing the standard defini-

tion 2F1(a, b, c; z) =∑∞
k=0

(a)k (b)k
(c)k

· zk

k! of the hypergeometric func-

tion [48]. Here (a)k = �(a+k)
�(a) and (−a)k = (−1)k �(a+1)

�(a−k+1) are the
Pochhammer symbols, and �(z) denotes the γ function.

We start by the case ε → 0. Conceptually, this case of
degenerate target system energy levels is interesting, because
no brute force method (i.e., a low-temperature bath) can ever
increase the occupation of one of the energy levels. In addition,
the work done for cooling is not blurred by the energy released
from the two-level system. Starting with this case is also
useful for technical reasons, moreover that ε > 0 will not bring
essential news. The reader not interested in technical details
can immediately turn to (93) and the discussion afterward.

As follows from the discussion around (71), the vector
(60)–(62) can be written via its two halves as

�ω = (�a,�b), (78)

�a = 1

2(1 + v)N
[v0,v0, . . . ,v[N/2],v[N/2]], (79)

�b = 1

2(1 + v)N
[v[N/2]+1,v[N/2]+1, . . . ,vN ,vN ], (80)

�c = [ 0,1,2, . . . ,N ], (81)

and where �c is the vector of the reservoir energies. Recall that
in (79) and (80) each factor vk is repeated dk times. Likewise,
in (81) each symbol k is repeated dk times. Vectors �a, �b and �c
have equal number of components 2N .

The discussion around (71) implies that �a contains the
largest 2N elements of the vector (60)–(62). Thus, the minimal
final reservoir energy needed for the optimal cooling (75) is
the following inner product:

δ(�a + �b)�c. (82)

Once reservoir’s initial energy δNv/(1 + v) is known, the
initial and final energies of the target spin are known as well,
the minimal work is determined via (82).

Note that dkv
k is peaked around

k =
⌊
N

v

1 + v

⌋
≡ Nξ, (83)

where �x� is defined after (59), v = e−βδ and the difference
|ξ − v

1+v
| fluctuates for different N � 1 only by the amount

1/N . Hence, in �a we can focus on dominant energy levels

{δ(Nξ + m)}�m=−�, (84)

where � is determined by requiring that the ratio dNξ±�vNξ±�

dNξ vNξ

of the central (maximal) probability to the probability at the
edge of the interval (84) is exponentially (over N ) small. This
guarantees that considering only (84) suffices for calculating
quantities that are not exponentially small. Employing for
N � 1 Stirling’s formula (74), we get

dNξ±� vNξ±�

dNξ vNξ
= e

− �2

2ξ (1−ξ )N +O( �3

N2 )+O( �
N

)
. (85)

For achieving the sought exponential smallness we need to
require � = Na+1/2, where a is a fixed small number; for
example, a = 1/10. Hence, the total probability of energy
levels that do not fall in the interval (84) is O[Ne−N2a

] → 0.
Now in (82) we can neglect �b�c and keep in �a�c only those
elements of �a whose energies lay in the interval (84).

Within interval (84) we select a segment consisting of
vm+Nξ ’s only. In �a it occupies positions with numbers from
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1 +∑Nξ+m−1
k=0 2dk to

∑Nξ+m

k=0 2dk . Its length is 2dm+Nξ . It
appears that there are only two energies �m − 1 and �m that
correspond to that segment in �c. We write �m = Nξ + m +
�m, where �m is the minimal integer that satisfies

Nξ+m+�m−1∑
k=0

dk −
Nξ+m−1∑

k=0

2dk ≡ Dm � 0. (86)

The reason for having only two energies for each segment in
the dominant interval (84) is that �m does not depend on m, as
we see below.

Each sum in (86) is dominated by its largest summand.
Recalling from (70)

dk+1

dk

= 1 − k
N

k
N

[
1 + O

(
1

N

)]
, (87)

we get a general pattern for approximating such sums12:∑Nξ

k=0
dk = dNξ

1 − v

[
1 + O

(
1

N

)]
. (88)

Equation (86) rewrites as [neglecting factors O( 1
N

)]

Nξ+m+�m∑
k=Nξ+m+1

dk = dNξ+m

�m∑
k=1

1

vk
�

Nξ+m∑
k=0

dk = dNξ+m

1 − v
. (89)

These relations imply

�m = � =
⌈

ln 2

ln 1
v

⌉
=
⌈

ln 2

βδ

⌉
, (90)

where �x� is the ceiling integer part of x; for example,
�0.99� = 1, �1.1� = 2. As anticipated, �m does not depend
on m.13 Hence, we write for the minimal work (82)

δ�a�c = δ

2(1 + v)N

�∑
m=−�

vNξ+m[Dm(Nξ + m + � − 1)

+ (2dNξ+m − Dm)(Nξ + m + �)], (91)

where Dm is defined in (86). Equation (89) implies

Dm = dNξ+m

v(v−� − 2)

1 − v

[
1 + O

(
1

N

)]
. (92)

Note that 2dNξ+m − Dm > 0 for the considered range of m.14

Using (92) we get for (91)

δ

�∑
m=−�

dNξ+mvNξ+m

(1 + v)N

[
Nξ + � − v(v−� − 2)

2(1 − v)
+ m

]

12Note that both (87) and (88) contain error O( 1
N

). The error O( 1
N

)

from (87) does not accumulate in (88), because the sum
∑Nξ

k=0dk is
dominated by few (smaller than N ) terms around k = Nξ .
13This fact together with (90) and the reasoning above it makes it pos-

sible to guess an upper bound δ� for the work W . This bound is con-
firmed by (93) and makes it possible to deduce quickly the fact of (94).

14In view of (92) this reduces to 2
v

> v−�−2
1−v

.

0.0 0.2 0.4 0.6 0.8 1.0
0.68

0.70

0.72

0.74

0.76

δ

W

FIG. 3. (Color online) The minimal work W (δ) for ε = 0 and
T = 1. The horizontal line is T ln 2, the lower bound (24) for W (δ).

Neglecting15 ∑�
m=−�

mdNξ+mvNξ+m

(1+v)N we get for the work

W = δ

[
� − v(v−� − 2)

2(1 − v)

]
, (93)

where v = e−βδ and � is defined in (90). Equation (93) implies
several important conclusions.

(i) The initial and final reservoir energy differ from each
other by a factor W = O(1); hence, the state of each reservoir
particle changes by a quantity of order O(1/N), neglegible for
N � 1.

(ii) When ln 2
βδ

approaches to an integer number from below,
(90) and (93) predict

W → T ln 2. (94)

According to (4) and (24) [and recalling that ε → 0] T ln 2
is the minimal possible work—both within the Nernst setup
and within the dynamic cooling—necessary to cool from the
absolutely disordered state [the equilibrium state with ε → 0]
to an almost ordered state (75). Hence, the thermodynamic
bound (24) is reachable for certain finite δ’s. The behavior of
W (δ) is shown in Fig. 3. For a finite N , W is larger than T ln 2
even if ln 2

βδ
is an integer (see Table I for numerical results).

(iii) For δ > T ln 2, (93) yields W (δ) = δ
2(1−v) : Now the

minimal work monotonically increases with δ (reservoir
energy gap). Recall from (75) and (76) that for a large but
finite N the deviation of maxU [ p0(τ ) ] from 1 is controlled by
S[ 1

2I ||σ ], which also grows with δ. Thus, enhanced cooling
demands more work. Moreover, one observes

W ≈ �F + T S[ρ||σ ], for T ln 2 � δ, (95)

15Recall (70) and denote d̃A = (N−1)!
(N−A−1)! A! . Put m = Nξ + m − Nξ

in
∑�

m=−�

mdNξ+mvNξ+m

(1+v)N
and using kdk = Nd̃k−1 write it as

ξN

⎧⎨⎩
�−ξ̃∑

m=−�−ξ̃

d̃Ñξ+mvÑξ+m

(1 + v)Ñ
−

�∑
m=−�

dNξ+mvNξ+m

(1 + v)N

⎫⎬⎭ ,

where Ñ = N − 1 and ξ̃ = 1 − ξ . Each sum in the curly brackets is
equal to 1 minus exponentially small terms [cf with (85)].
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TABLE I. The minimal work W as a function of N for δ = ln 2 =
0.693 147, ε = 0, and T = 1.

N W

N = 601 0.716 891
N = 1001 0.711 592
N = 1401 0.708 766
N = 2001 0.706 23

where �F = T ln 2 is the free-energy difference from (4) and
(24), ρ = 1

2I [for ε = 0] is the initial state of the target two-
level system, and σ is the initial state of any reservoir spin.
Equation (95) becomes exact for δ � T ln 2.

The case ε > 0 does not require any new idea as compared
to the above derivation; only algebraic steps are more tedious.
Hence, we quote only the final result for the minimal work:

W =
⎧⎨⎩

δ
[
� − f −uα

1+u

]− εu
1+u

for f � 1,

δ
[
� − 1+uv−α (f −1)−uα

1+u

]− εu
1+u

for f > 1,

(96)

where v = e−βδ , u = e−βε , α is defined in (59), and where

� =
⌈

ln(1 + vα)

ln 1
v

⌉
, f = v(v−� − 1 − vα)

1 − v
. (97)

For ε = 0 both branches of (96) are equal, so no conditioning
is needed.

Our conclusion on the reachability of the thermodynamic
lower bound (24) remains valid also for ε > 0: Consider
ln(1+vα )

ln 1
v

reaching an integer number from below and ε
δ

reaching

an integer number from above. Then (96) produces W =
T ln(1 + e−βε). This is the bound (24) [recall (75), (76)].

C. Microcanonical initial state of the reservoir

1. Unattainability

So far we considered the reservoir starting its evolution from
a canonical equilibrium state (5) and (6). Another notion of
equilibrium is provided by the microcanonical density matrix,
where all the energy levels in the vicinity [E − κ,E + κ]
of a given energy E have equal probability, while all other
energy levels have zero occupation. While the canonical
state describes a system prepared via a thermal bath, the
microcanonical state refers to a closed macroscopic system
whose energy is fixed up to a small uncertainty 2κ [46,49].
Hence, κ should be large enough for [E − κ,E + κ] to
incorporate many energy levels and account for unavoidable
environmental perturbations, but small compared with E

[46,49].
The canonical and microcanonical notions of equilibria are

normally equivalent for macroscopic observables of systems
containing sufficiently many particles (see [50] for a review).
The microcanonical state can apply for systems with a finite
number particles provided that the interaction Hamiltonian
does have certain chaoticity features (see [49,51] and ref-
erences therein). There are situations—such as systems in
the vicinity of phase transitions, or systems with long-range
interactions–where the equivalence between canonical and mi-
crocanonical state is broken even for macroscopic observables

(see, e.g., [50,52,53] and [54] for review). Generally, these
states are different regarding some important aspects [52–54].
In particular, the local stability conditions (i.e., stability with
respect to small perturbations) for the microcanonic state are
less restrictive than for the canonic state (with the same
temperature) [54]. Hence, in several physically interesting
situations the canonic state is unstable, but the microcanonic
state is stable and serves as the only description of the
equilibrium [52–54].

For the reservoir consisting of N � 1 identical spins the
microcanonical state concentrated at the energy δK with
K � 1 is especially easy to define: The dK degenerate energy
levels δK [see (70)] have equal probability 1

dk
, while all other

energies have zero probability. Because the energy level δK is
already exponentially degenerate we restricted ourselves with
the minimal width κ → 0.

Given this initial state of the reservoir it is easy to see using
the same construction as in (60)–(62) [see our discussion after
(70)] that the maximal final ground-state probability for the
two-level system interacting with such a reservoir is just equal
to 1:

maxU [ p0(τ ) ] = 1. (98)

The result (98) does not require N → ∞ or κ → 0. It is
also not specific to the microcanonical density matrix. Any
density matrix for an M-level reservoir that is diagonal in
the energy representation, and that has at least �M

2 � zero
eigenvalues would lead to (98) (cf. with our discussion in
Sec. III C). For example, it also applies to the so-called θ

ensemble, where all the energy levels below a certain E

are equally populated, while the energies above E have zero
probability.

Equation (98) was obtained via the standard definition of the
microcanonical state, but it contains an essential idealization:
It is assumed that at least �M

2 � energies have exactly zero
probability. Consider the emergence of the microcanonic state.
Classically, any single system is in a state with definite energy.
Weak and inevitable interactions with environment smear this
energy over the interval 2κ . This, however, does not ensure that
energies outside [E − κ,E + κ] have strictly zero probability.

Quantum mechanically, we cannot know the state of a single
system unless we prepared it, for example, by measurement.
One general method of preparing a microcanonical state is
to do a selective measurement of energy and then isolate
the system.16 Generally, after a selective measurement all
energies will be populated, because the measurement itself
may be noisy due to our inability to control the measurement
interaction and/or the system Hamiltonian. Alternatively, the
system may be weakly coupled to its environment prior
to the energy measurement, which then necessarily refers
to measuring the local energy value. For an open system

16The selection will produce (Luders’ postulate) a density matrix
∝�(E,κ)ρin�(E,κ), where ρin is the initial state of the system
and where �(E,κ) is the projector on the Hilbert subspace with
energies [E − κ,E + κ]. If ρin was a sufficiently smooth function of
the Hamiltonian (e.g., a Gibbs state), a microcanonic state results. If
ρin was an arbitrary state we face an additional problem of relaxation
toward the microcanonic state.
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FIG. 4. The minimal work W (needed for maximal cooling)
versus the initial energy δ K of the microcanonical state, where the
initial state of the N -spin reservoir is the mixture of N!

K!(N−K)! energy

eigenstates with the energy δK . We considered N = 7 × 104, δ = 1,
ε = 0.

the latter observable is not strictly conserved.17 Again, both
these mechanisms will generally populate energies outside
the interval [E − κ,E + κ]. It now suffices to give a small,
but nonzero probability to more than �M

2 � energy levels, and
maxU [p0(τ )] in (98) will be smaller than one, as we saw in
Sec. III C.

Hence, the unattainability of T = 0 for the microcanonic
state of the reservoir is recovered provided the microcanonic
state contains such tails. Admittedly, we currently lack any
general condition for how small these tails of the microcanonic
state could be made. It is also unclear which generic (not
ad hoc) conditions one has to impose on the coupling to
environment or on the measurement noise to ensure the tails
needed for unattainability. In this context one anticipates an
additional tractability condition T4 – referring to a finite
environmental coupling or a finite measurement noise—to be
added to conditions T1–T3 in Secs. II D and III E.18

2. Differences between canonic
and microcanonic reservoir

Note the difference: The reachability of low temperatures
for a canonical reservoir with a fixed upper energy would
require an ever increasing energy gap (related to an ever
increasing work cost), while for a microcanonic reservoir (with
a fixed upper energy again) reaching low temperatures requires
small tails around the central energy.

Another essential difference is that there is no work cost
associated with the microcanonic reservoir: The minimal work

17If the environmental coupling is not weak, the local energy has
to be properly defined; see [49] for a concrete proposal (LEMBAS
principle).
18Conversely, if the unattainability of the absolute zero is regarded

to be a law of nature, it can constrain the microscopic processes of
environmental coupling and selective measurement. Although this
possibility contradicts to the current paradigm of deriving the laws
of thermodynamics from microscopic theories, it needs to be taken
seriously.

necessary for the maximal cooling need not be positive (i.e.,
no work has to be consumed) (see Fig. 4). This is related
to the general fact that the microcanonical ensemble is not
passive [43,55]: There exists for it a class of unitary operations
(generated by a suitable cyclically changing Hamiltonians)
that leads to sizable work extraction even from a macroscopic
microcanonic reservoir [56]. Importantly, the unitary realizing
the maximal cooling for the microcanonical reservoir can be
put into that class, as Fig. 4 shows.

VII. SUMMARY

In this paper we have studied dynamical cooling of a two-
level system (as target) in contact to various types of quantum
reservoirs prepared in various types of initial states. Based on
operational ideas these schemes have been placed within the
context of given resource constraints; the operational meaning
of the third law can thus be clarified.

A. Canonical initial state: Complementarity
between cooling and work

Unattainability of T = 0 is a direct consequence of the
dynamic cooling setup (see Sec. III C). In contrast to the
unattainability formulation of the third law, it does not involve
unproven or disguised assumptions. For a given reservoir with
a fixed upper energy starting its evolution from a canonical
equilibrium, and for a two-level system as the target of cooling,
we explicitly predict the lowest nonzero temperature (32)
achievable within dynamic cooling. The lowest temperature
(32) would approach zero whenever the upper energy of the
reservoir goes to infinity.

We have been able to reinterpret this functional dependence
in terms of the work intake: Reaching the lowest temperature
demands work growing as the inverse of this temperature
[see (36)]. However, this linear relation only applies for reach-
ing that nominal lowest temperature possible: Compromising
for a slightly increased final target temperature would allow to
change the work growth regime from the linear to (multiple)
logarithmic (see Sec. IV D).

Next, we studied concrete models of reservoir. For them we
found the minimal temperature attainable (and the minimal
work necessary to reach it) by optimizing over cooling
dynamics. In Sec. VI we modeled the reservoir via a thermal
bath consisting of a large number, N � 1, of identical spins
and established relations between the resources of cooling
and certain relative entropies. The lowest temperature Tmin

reachable with such a reservoir scales as the inverse of N

and the relative entropy S[ 1
2I ||σ ], where I is the 2 × 2 unit

matrix and σ is the initial state of a bath spin [see (77)]. The
minimal work W needed to reach this temperature has basically
two different expressions. If the reservoir gap is sufficiently
larger than temperature, δ � T , we get W → �F + S[ρ||σ ],
where �F is the free energy difference of the cooled two-level
system, and where ρ is its initial (hot) state. Recall that
�F is the minimal work required by thermodynamics for
achieving cooling [see (24) and (4)]. If δ � T ln 2, W is close
to �F = T ln 2. Hence, enhancing cooling demands a larger
work, but a substantial cooling can already be achieved with
the minimal work �F demanded by the second law. We
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should thus stress that approaching T = 0, while using only the
amount of work �F , is feasible for several limits of reservoir
parameters.

Note that the existence of the lowest temperature is related
to a finite upper energy of the reservoir. Either it really has this
feature, or one considers only that class of cooling operations,
where only finite reservoir energies couple to the target of
cooling. If the upper energy of the reservoir is infinite (and
one allows system-reservoir interactions coupling to arbitrary
high reservoir energies), the unattainability of T = 0 is still
there, but the minimum temperature does not exist. Instead,
the infimum temperature is zero (see Sec. V B).

B. Microcanonical initial state

The unattainability of T = 0 can be recovered also for a
reservoir starting its evolution from a microcanonical state
(see Sec. VI C). However, the origin of the strictly nonzero
minimal temperature is different: It relates to tails of the
energy distribution resulting from a weak interaction with the
environment (and thus our inability to avoid such marginal
couplings). Put differently, the difference between canonical
and microcanonical reservoir concerns the physics of the T →
0 limit. Low temperatures in the canonical situation require a
large energy gap in the reservoir. For the microcanonical case,
low temperatures require a sufficiently large system which can
be prepared in a state with an almost definite energy. There is
no work cost involved in cooling via a microcanonic reservoir.

C. Comparison with other approaches

Reference [21] studies a cooling setup with three com-
ponents: the system S to be cooled, the resource R, and
the environment E with Hamiltonians HS, HR, and HE,
respectively. S and E start in, respectively, the Gibbs states γS
and γE with the same fixed initial temperature Tin. Then [21]
allows only for cooling operations that are unitary on the
Hilbert space of S + R + E and commute with the interaction
free joint Hamiltonian HS + HR + HE. Hence, no work cost
is related to implementing this unitary and cooling is only
possible if the resource deviates from its Gibbs state γR at
the same temperature Tin; that is, a resource being in its
Gibbs state is “worthless” [see in this context (22)–(24)]. If
the resource RN := R×N consists of N identical copies, the
lowest temperature that can be achieved for S is asymptotically
determined by an analog of (77), where instead of S[ 1

2I ||σ ]
one has S[γR||ρR] [21]. Here γR is the Gibbs state and ρR the
actual state of one resource copy. This relation between (77)
and the results of [21] relates to the fact that in our present
setting the reservoir that consists of N identical subsystems
can (asymptotically) be used for cooling if and only if the
subsystems are not in their maximally mixed state 1

2I (see
Sec. VI). Hence, relative entropies other than free energies
determine the value of a resource (reservoir) both in the present
paper and in [21]. Note that the relative entropy S[γR||ρR] must
not to be confused with S[ρR||γR], which is essentially the free
energy up to constants. As opposed to free energy, S[γR||ρR]
diverges if ρR gets a zero eigenvalue. Thus, the absolute zero
is reachable only for a resource state having a zero eigenvalue,
an aspect closely related to the microcanonic treatment of
Sec. VI C.

Alternatively, the features of the limit T → 0 can be studied
via refrigerators that cyclically operate between two thermal
baths at temperatures Tc and Th (Tc < Th) and cool the (finite)
low-temperature bath at the expense of consuming work from
an external source [22–26]. If the refrigerator works at a finite
efficiency, then for Tc → 0 the heat taken per unit of time from
the low-temperature bath scales as T a+1

c with a � 0 [23,24],
showing that cooling the low-temperature bath is progressively
slowed down. The optimal behavior a = 0 is reached for the
refrigerator model studied in [26].

D. Open issues

An important aspect of practical implications is the issue
of time required to complete the cooling transformation.
In our present operational analysis we have dealt with this
problem rather formally, assuming that once the needed
unitary transformation is constructed, there is always a (time-
dependent) Hamiltonian that realizes it. Provided that we
do not restrict the magnitude of the external fields realizing
the Hamiltonian, this realization could, in principle, take an
arbitrary short time; that is, the external fields can be assumed
to function in the pulsed regime. However, if we demand that
the optimal cooling unitary transformations are implemented
in terms of a well-defined base of realizable unitary operations,
the cooling process may turn out to be complex: It may take
a long sequence of the realizable operations to construct the
needed unitary. This complexity (and hence time) resource
needs further studies.

Another open issue concerns target systems with more than
two energy levels. This should be interesting especially with
respect to nonequilibrium aspects. Moreover, cooling to very
low temperatures may, in fact, demand considering many-body
targets of cooling, because at such low temperatures the
standard assumptions of the weak coupling between the target
and the reservoir—as well as between different parts of the
target – may be broken [57].
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APPENDIX A

Here we show that the unitaries implementing optimal
cooling can be chosen to be permutations of energy eigenstates.

We are given two sequences � = (λ1, . . . ,λN ) and D =
(d1, . . . ,dN ) of real numbers. Let {λ↓

k }Nk=1 and {d↓
k }Nk=1 be the

nonincreasing arrangements of their elements:

λ
↓
1 � λ

↓
2 · · · � λ↓

n, d
↓
1 � d

↓
2 · · · � d↓

n . (A1)

� majorizes D if the following N conditions hold [41]:

m∑
k=1

λ
↓
k �

m∑
k=1

d
↓
k for m = 1, . . . ,N − 1, (A2)

m∑
k=1

λ
↓
k =

m∑
k=1

d
↓
k . (A3)
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In words, for each m = 1, . . . ,N , the sum of the m largest
elements of � is at least as large as the sum of the k largest
elements of D, with equality for m = N .

Birkhoff showed that � majorizes D if and only if there is
a double-stochastic matrix S such that

D = S�, (A4)

where double-stochastic means that Sij � 0,
∑N

j=1 Sij =∑N
i=1 Sij = 1 [41].
Let � be the sequence (15) of initial eigenvalues. Denote

by {|i〉}2M−1
i=0 the set of eigenvectors for the initial Hamiltonian

(6). Let D = {〈i|ρS+R(τ )|i〉}2M−1
i=0 be the probability vector

of energy level occupations in the final state (8). Equation (8)
implies (A4) with a double-stochastic matrix Sij = |〈i|U |j 〉|2,
where the unitary operator U is defined by (7) and (8).

The Birkhof theorem implies that the sum of the largest k

elements of D is not larger than that of �. For the purpose of
cooling we want to make the sum of M largest elements of D

as big as possible, and thus it has to be equal to the sum of
M largest elements of �. This is realized if S permutes the M

largest elements of �.

APPENDIX B

The example (42) was developed for M = 2n = 4. It can
be generalized to arbitrary n:

p̂0 = π0 + π1 + · · · + πn−1, k = 0, . . . ,n − 1, (B1)

π̂2k = p0(πk + πn+k), π̂2k+1 = p1(πk + πn+k), (B2)

W = ε(p̂1 − p1) +
2n−1∑
k=1

μk(π̂k − πk). (B3)

We assume

βμk ≡ βμ � 1 for k � n. (B4)

Hence,

πk�n → 0, p̂0 → 1, (B5)

W = −εp1 +
n−1∑
k=1

μk(π̂k − πk) +
2n−1∑
k=n

μkπ̂k (B6)

= −εp1 +
n−1∑
k=1

μk(π̂k − πk) + μn

2n−1∑
k=n

π̂k. (B7)

Consider in detail the case n = 4, that is, eight-level reservoir:

βW = p1 ln
p1

1 − p1
+ βμ1(p1π0 − π1)

+βμ2(p0π1−π2) + βμ3(p1π1 − π3) + βμ4(π2 + π3)

= [
1 + e−βμ1 + e−βμ2 + e−βμ3

]−1
[βμ1(p1 − e−βμ1 )

+βμ2(p0e
−βμ1 − e−βμ2 ) + βμ3( p1e

−βμ1 − e−βμ3 )

+βμ4(e−βμ2 + e−βμ3 )], (B8)

where we used (12) and (14). We now minimize this expression
over μ1 � μ2 � μ3 assuming that βμ4 � 1 is fixed [see
(B4)]. First we introduce new variables y2 and y3,

βμ2 = ln

[
βμ4

y2

]
, βμ3 = ln

[
βμ4

y3

]
, (B9)

substitue them into (B8) and obtain after minimization:

y2 = p0e
−βμ1 , y3 = p1e

−βμ1 . (B10)

Note that y2 > y3 seen from (B10) due to p0 > p1 is consistent
with μ2 < μ3. Next, we put (B10) back into (B8):

βW = p1 ln
p1

1 − p1

+ βμ1p1 + e−βμ1 ln[βμ4e
1+h[p0]]

1 + e−βμ1
, (B11)

where h[p] ≡ −p ln p − (1 − p) ln(1 − p). Now the right-
hand side of (B11) is to be minimized over μ1. This is done
similarly to (51) and (52). Provided that ln[βμ4e

1+h[p0]] is
sufficiently large, the maximization over βμ1 produced

βμ1 = ln

[
1

p1
ln[βμ4e

1+h[p0]]

]
, (B12)

βW = p1 ln
p1

1 − p1
+ p1 ln

[
e

p1
ln[βμ4e

1+h[p0]]

]
. (B13)

Hence, the work needed for cooling scales double-
logarithmically with maximal energy gap μ4. The deviation
of the ground-state probability (B1) from its maximal value
(32) is controlled by (55) [see (B9), (B10), and (B12) in this
context].

Equations (B9) and (B12) show that the reservoir spectrum
is self-similar: βμ3 and βμ2 depend logarithmically on βμ4,
while μ1 depend on βμ4 doubly logarithmically.

Continuing this reasoning one can show that for a 2m−1 level
reservoir the work can scale ln[· · · [ln[βμ]] · · ·] (logarithm is
repeated m times) as a function of the gap.

[1] H. B. Callen, Thermodynamics (Wiley, New York, 1985).
[2] J. C. Wheeler, Phys. Rev. A 43, 5289 (1991); 45, 2637

(1992).
[3] P. Landsberg, Am. J. Phys. 65, 269 (1997).
[4] R. B. Griffiths, J. Math. Phys. 6, 1447 (1965); in A Critical

Review of Thermodynamics, edited by E. B. Stuart, B. Gal-Or,
and A. J. Mainard (Mono, Baltimore, 1970).

[5] M. J. Klein, in Thermodynamics of Irreversible Processes,
Scuola Internazionale di Fisica “Enrico Fermi,” edited by
S. R. de Groot (Societa Italiana di fisica, Bologna, 1960).

[6] H. B. Callen, in Modern Developments in Thermodynamics,
edited by B. Gal-Or (Wiley & Sons, New York, 1974).

[7] G. Falk, Phys. Rev. 115, 249 (1959).
[8] K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, Rep.

Prog. Phys. 68, 1479 (2005).
[9] A. Abragam and M. Goldman, Rep. Prog. Phys. 41, 395

(1978).
[10] R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of

Nuclear Magnetic Resonance in One and Two Dimensions
(Oxford University Press, London, 1987).

041109-15

http://dx.doi.org/10.1103/PhysRevA.43.5289
http://dx.doi.org/10.1103/PhysRevA.45.2637
http://dx.doi.org/10.1103/PhysRevA.45.2637
http://dx.doi.org/10.1119/1.18483
http://dx.doi.org/10.1063/1.1704681
http://dx.doi.org/10.1103/PhysRev.115.249
http://dx.doi.org/10.1088/0034-4885/68/6/R04
http://dx.doi.org/10.1088/0034-4885/68/6/R04
http://dx.doi.org/10.1088/0034-4885/41/3/002
http://dx.doi.org/10.1088/0034-4885/41/3/002


ALLAHVERDYAN, HOVHANNISYAN, JANZING, AND MAHLER PHYSICAL REVIEW E 84, 041109 (2011)

[11] O. W. Sorensen, Prog. Nucl. Magn. Reson. Spectrosc. 21, 503
(1989).

[12] C. P. Slichter, Principles of Magnetic Resonance (Springer,
Berlin, 1990).

[13] D. Suter, J. Chem. Phys. 128, 052206 (2008).
[14] D. A. Hall et al., Science 276, 930 (1997); J. H. Ardenkjær-

Larsen et al., Proc. Natl. Acad. Sci. USA 100, 10158
(2003).

[15] P. O. Boykin et al., Proc. Natl. Acad. Sci. USA 99, 3388 (2002);
J. M. Fernandez et al., Int. J. Quantum Inf. 2, 461 (2004);
F. Rempp, M. Michel, and G. Mahler, Phys. Rev. A 76, 032325
(2007).

[16] L. J. Schulman, T. Mor, and Y. Weinstein, Phys. Rev. Lett. 94,
120501 (2005).

[17] A. E. Allahverdyan, R. S. Gracia, and T. M. Nieuwenhuizen,
Phys. Rev. Lett. 93, 260404 (2004).

[18] J. Eschner et al., J. Opt. Soc. Am. B 20, 1003 (2003).
[19] W. Ketterle and D. E. Pritchard, Phys. Rev. A 46, 4051 (1992);

A. Bartana, R. Kosloff, and D. J. Tannor, J. Chem. Phys. 106,
1435 (1997); 99, 196 (1993).

[20] P. W. Bridgman, The Nature of Thermodynamics (Harvard
University Press, Cambridge, 1941).

[21] D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and Th. Beth, Int. J.
Theor. Phys. 39, 2217 (2000).

[22] Z. Yan and J. Chen, J. Phys. D 23, 136 (1990); S. Velasco, J. M.
M. Roco, A. Medina, and A. C. Hernandez, Phys. Rev. Lett. 78,
3241 (1997).

[23] R. Kosloff, E. Geva, and J. M. Gordon, J. Appl. Phys. 87, 8093
(2000).

[24] Y. Rezek et al., Europhys. Lett. 85, 30008 (2009).
[25] D. Segal, Phys. Rev. Lett. 101, 260601 (2008).
[26] A. E. Allahverdyan, K. Hovhannisyan, and G. Mahler, Phys.

Rev. E 81, 051129 (2010).
[27] V. B. Bezerra, G. L. Klimchitskaya, V. M. Mostepanenko, and

C. Romero, Phys. Rev. A 69, 022119 (2004).
[28] M. Bordag and I. G. Pirozhenko, Phys. Rev. D 82, 125016

(2010).
[29] R. M. Wald, Phys. Rev. D 56, 6467 (1997); G. Chirco, S. Liberati,

and T. P. Sotiriou, ibid. 82, 104015 (2010).
[30] Y. Chow and F. Y. Wu, Phys. Rev. B 36, 285 (1987).
[31] U. Behn and V. A. Zagrebnov, J. Phys. A 21, 2151 (1988).
[32] G. Watson, G. Canright, and F. L. Somer, Phys. Rev. E 56, 6459

(1997).
[33] S. A. Ellingsen, Phys. Rev. E 78, 021120 (2008).
[34] H. S. Leff, Phys. Rev. A 2, 2368 (1970).

[35] J. Wu and A. Widom, Phys. Rev. E 57, 5178 (1998).
[36] T. Jahnke, S. Lanery, and G. Mahler, Phys. Rev. E 83, 011109

(2011).
[37] B. Derrida, Phys. Rev. B 24, 2613 (1981).
[38] C. Nisoli, R. Wang, J. Li, W. F. McConville, P. E. Lammert,

P. Schiffer, and V. H. Crespi, Phys. Rev. Lett. 98, 217203 (2007);
G. C. Lau et al., Nat. Phys. 2, 249 (2006).

[39] M. Huang and J. P. Sethna, Phys. Rev. B 43, 3245 (1991); J. J.
Brey and A. Prados, ibid. 43, 8350 (1991); D. A. Parshin and
A. Wurger, ibid. 46, 762 (1992).

[40] S. M. Stishov, Sov. Phys. Usp. 31, 52 (1988).
[41] A. W. Marshall and I. Olkin, Inequalities: Theory of Majoriza-

tion and its Applications (Academic Press, New York, 1979).
[42] G. Lindblad, Non-Equilibrium Entropy and Irreversibility

(D. Reidel, Dordrecht, 1983).
[43] A. Lenard, J. Stat. Phys. 19, 575 (1978); I. M. Bassett, Phys.

Rev. A 18, 2356 (1978); W. Thirring, Quantum Mechanics of
Large Systems, Vol. 4 of A Course in Mathematical Physics
(Springer-Verlag, Wien, 1980).

[44] J. M. R. Parrondo, C. Van den Broeck, and R. Kawai, New J.
Phys. 11, 073008 (2009).

[45] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
UK, 2000); V. Vedral, Rev. Mod. Phys. 74, 197 (2002).

[46] L. D. Landau and E. M. Lifshitz, Statistical Physics I (Pergamon
Press, Oxford, 1978).

[47] A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen,
Europhys. Lett. 67, 565 (2004).

[48] A. F. Nikiforov and V. B. Uvarov, Special Functions of
Mathematical Physics (Birkhaeuser, Basel, Switzerland, 1988).

[49] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermody-
namics (Springer, New York, 2004).

[50] H. Touchette, R. S. Ellis, and B. Turkington, Physica A 335, 518
(2004).

[51] F. Borgonovi and F. M. Izrailev, Phys. Rev. E 62, 6475 (2000).
[52] M. Kastner and O. Schnetz, J. Stat. Phys. 122, 1195 (2006).
[53] A. Ramirez-Hernandez, H. Larralde, and F. Leyvraz, Phys. Rev.

E 78, 061133 (2008).
[54] A. Campa, T. Dauxois, and S. Ruffo, Phys. Rep. 480, 57 (2009).
[55] A. E. Allahverdyan and Th. M. Nieuwenhuizen, Physica A 305,

542 (2002).
[56] A. E. Allahverdyan and K. V. Hovhannisyan, Europhys. Lett.

95, 60004 (2011).
[57] Th. M. Nieuwenhuizen and A. E. Allahverdyan, Phys. Rev. E

66, 036102 (2002).

041109-16

http://dx.doi.org/10.1016/0079-6565(89)80006-8
http://dx.doi.org/10.1016/0079-6565(89)80006-8
http://dx.doi.org/10.1063/1.2838166
http://dx.doi.org/10.1126/science.276.5314.930
http://dx.doi.org/10.1073/pnas.1733835100
http://dx.doi.org/10.1073/pnas.1733835100
http://dx.doi.org/10.1073/pnas.241641898
http://dx.doi.org/10.1142/S0219749904000419
http://dx.doi.org/10.1142/S0219749904000419
http://dx.doi.org/10.1103/PhysRevA.76.032325
http://dx.doi.org/10.1103/PhysRevA.76.032325
http://dx.doi.org/10.1103/PhysRevLett.94.120501
http://dx.doi.org/10.1103/PhysRevLett.94.120501
http://dx.doi.org/10.1103/PhysRevLett.93.260404
http://dx.doi.org/10.1364/JOSAB.20.001003
http://dx.doi.org/10.1103/PhysRevA.46.4051
http://dx.doi.org/10.1063/1.473973
http://dx.doi.org/10.1063/1.473973
http://dx.doi.org/10.1063/1.465797
http://dx.doi.org/10.1023/A:1026422630734
http://dx.doi.org/10.1023/A:1026422630734
http://dx.doi.org/10.1088/0022-3727/23/2/002
http://dx.doi.org/10.1103/PhysRevLett.78.3241
http://dx.doi.org/10.1103/PhysRevLett.78.3241
http://dx.doi.org/10.1063/1.373503
http://dx.doi.org/10.1063/1.373503
http://dx.doi.org/10.1209/0295-5075/85/30008
http://dx.doi.org/10.1103/PhysRevLett.101.260601
http://dx.doi.org/10.1103/PhysRevE.81.051129
http://dx.doi.org/10.1103/PhysRevE.81.051129
http://dx.doi.org/10.1103/PhysRevA.69.022119
http://dx.doi.org/10.1103/PhysRevD.82.125016
http://dx.doi.org/10.1103/PhysRevD.82.125016
http://dx.doi.org/10.1103/PhysRevD.56.6467
http://dx.doi.org/10.1103/PhysRevD.82.104015
http://dx.doi.org/10.1103/PhysRevB.36.285
http://dx.doi.org/10.1088/0305-4470/21/9/028
http://dx.doi.org/10.1103/PhysRevE.56.6459
http://dx.doi.org/10.1103/PhysRevE.56.6459
http://dx.doi.org/10.1103/PhysRevE.78.021120
http://dx.doi.org/10.1103/PhysRevA.2.2368
http://dx.doi.org/10.1103/PhysRevE.57.5178
http://dx.doi.org/10.1103/PhysRevE.83.011109
http://dx.doi.org/10.1103/PhysRevE.83.011109
http://dx.doi.org/10.1103/PhysRevB.24.2613
http://dx.doi.org/10.1103/PhysRevLett.98.217203
http://dx.doi.org/10.1038/nphys270
http://dx.doi.org/10.1103/PhysRevB.43.3245
http://dx.doi.org/10.1103/PhysRevB.43.8350
http://dx.doi.org/10.1103/PhysRevB.46.762
http://dx.doi.org/10.1070/PU1988v031n01ABEH002535
http://dx.doi.org/10.1007/BF01011769
http://dx.doi.org/10.1103/PhysRevA.18.2356
http://dx.doi.org/10.1103/PhysRevA.18.2356
http://dx.doi.org/10.1088/1367-2630/11/7/073008
http://dx.doi.org/10.1088/1367-2630/11/7/073008
http://dx.doi.org/10.1103/RevModPhys.74.197
http://dx.doi.org/10.1209/epl/i2004-10101-2
http://dx.doi.org/10.1016/j.physa.2003.11.028
http://dx.doi.org/10.1016/j.physa.2003.11.028
http://dx.doi.org/10.1103/PhysRevE.62.6475
http://dx.doi.org/10.1007/s10955-005-8031-9
http://dx.doi.org/10.1103/PhysRevE.78.061133
http://dx.doi.org/10.1103/PhysRevE.78.061133
http://dx.doi.org/10.1016/j.physrep.2009.07.001
http://dx.doi.org/10.1016/S0378-4371(01)00605-7
http://dx.doi.org/10.1016/S0378-4371(01)00605-7
http://dx.doi.org/10.1103/PhysRevE.66.036102
http://dx.doi.org/10.1103/PhysRevE.66.036102

