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Deterministic Brownian motion generated from differential delay equations
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This paper addresses the question of how Brownian-like motion can arise from the solution of a deterministic
differential delay equation. To study this we analytically study the bifurcation properties of an apparently simple
differential delay equation and then numerically investigate the probabilistic properties of chaotic solutions of
the same equation. Our results show that solutions of the deterministic equation with randomly selected initial
conditions display a Gaussian-like density for long time, but the densities are supported on an interval of finite
measure. Using these chaotic solutions as velocities, we are able to produce Brownian-like motions, which show
statistical properties akin to those of a classical Brownian motion over both short and long time scales. Several
conjectures are formulated for the probabilistic properties of the solution of the differential delay equation.
Numerical studies suggest that these conjectures could be “universal” for similar types of “chaotic” dynamics,
but we have been unable to prove this.
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I. INTRODUCTION

In 1828, Robert Brown reported his observations of the
apparently erratic and unpredictable movement of small
particles suspended in water, a phenomena now known
as “Brownian motion.” Almost three-quarters of a century
later, a theoretical (and essentially molecular) explanation of
this macroscopic motion was given by Einstein, in which
Brownian motion is attributed to the summated effect of
a vary large number of tiny impulsive forces delivered to
the macroscopic particle being observed [1] (A nice English
translation of this and other works of Einstein on Brownian
motion can be found in Fürth [2]). Brownian motion has
played a central role in the modeling of many random
behaviors in nature and in stochastic analysis and formed
the basis for the development of an enormous branch of
mathematics centered around the theory of Wiener pro-
cesses.

Since Brownian motion is typically explained as the
summated effect of many tiny random impulsive forces, it is of
interest to know if and when Brownian motion can be produced
from a deterministic process (also termed as deterministic
Brownian motion) without introducing the assumptions typ-
ically associated with the theory of random processes. Studies
starting from this premise have been published in the past
several decades, and there are numerous investigations that
have documented the existence of Brownian-like motion from
deterministic dynamics in both discrete time maps and flows
[3–9]. These models have included the motion of a particle
subjected to a deterministic but chaotic force (also known
as microscopic chaos) [3,5] or a many-degree-of-freedom
Hamiltonian [8,9]. Experimental evidence for deterministic
microscopic chaos was reported in Ref. [6] by the observation
of Brownian motion of a colloidal particle suspended in water
(cf. Ref. [10] for a more tempered interpretation, and Ref. [11]
(chap. 18) for other possible interpretations of experiments
like these).

Several investigators have shown that a Brownian-like
motion can arise when a particle is subjected to impulsive
kicks, whose dynamics are modeled by the following equations
[3,12,13] {

dx
dt

= v

mdv
dt

= −γ v + f (t).
(1)

In Eq. (1), f is taken to be a fluctuating “force” consisting of
a sequence of δ-function-like impulses given by, for example,

f (t) = mκ

∞∑
n=0

ξ (t)δ(t − nτ ), (2)

and ξ is a “highly chaotic” deterministic variable generated by
ξ (t + τ ) = T (ξ (t)), where T is an exact map or semidynamical
system, e.g., the tent map on [−1,1] (for more discussions
and terminologies, see Refs. [7,13] and references therein).
In the Eqs. (1) and (2), the impulsive forces are described
by ξ (t)δ(t − nτ ), which are assumed to be instantaneously
effective and independent of the velocity v(t). Dynamical
systems of the form (1) have received extensive attention
and are known to be able to generate a Gaussian diffusion
process [3,12–15].

In this study, we sought an alternative continuous time
description of the “random force” f (t), which was assumed to
depend on the state (velocity) of a particle, but with a lag time
τ , i.e.,

f (t) = F (v(t − τ )), (3)

and where F has the appropriate properties to generate chaotic
solutions. Thus, we consider the following differential delay
equation {

dx
dt

= v

mdv
dt

= −γ v + F (v(t − τ )),

v(t) = φ(t), − τ � t � 0,

(4)
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where φ(t) denotes the initial function that must always
be specified for a differential delay equation. The second
equation in Eq. (4) is known to have chaotic solutions for
some forms of the nonlinear function F ; for example, see
Refs. [16–20]. In these cases, the force F (v(t − τ )) is certainly
deterministic but also unpredictable (in practice but not in
principle) given knowledge of the initial function. In this
paper, we will examine how a Brownian motion can be
produced by the differential delay equation (4). In particular,
we investigate the statistical properties of the velocity v(t),
and 〈[�x(t)]2〉, the mean square displacement (MSD), of the
solutions defined by Eq. (4). We note that unlike Eq. (1),
which is linear and nonautonomous, Eq. (4) is a nonlinear
autonomous system. Numerical simulations have shown that
the second equation in Eq. (4) can generate processes with a
Gaussian-like distribution [16,18]. Nevertheless, to the best of
our knowledge, there is no analytic proof for the existence of
Brownian motion based on the differential delay equation (4).

We first make some observations about the second equation
in Eq. (4) that determines the dynamics of the velocity. A
simple form of the “random” force is binary and fluctuates
between ±f0, for instance, given by

F (v) = 2f0
{
H (sin(2πβv)) − 1

2

}
, (5)

where H is the Heavyside step function, i.e.,

H (v) =
{

0 for v < 0

1 for v � 0.
(6)

We then have following equation

dv

dt
= −γ v + 2

{
H (sin(2πβv(t − 1))) − 1

2

}
,

(7)
v(t) = φ(t), − τ � t � 0.

Here and later we always assume the mass m = 1 and f0 = 1
that can be achieved through the appropriate scaling. The
delay differential equation (7) with a binary “random force”
can be solved iteratively by the method of steps.1 Despite its
simplicity, it can display behaviors similar to a random process.
An example solution of Eq. (7) is shown in Fig. 1, which looks
like noise.

The “random force” in Eq. (7) is discontinuous and gives
a continuous zigzag velocity curve (cf. inset in Fig. 1). In

1A solution of Eq. (7) is associated with a time sequence t0 < t1 <

· · · < tn < · · · , which is defined such that sin(2πβv(t)) � 0 when t ∈
[t2k,t2k+1) and sin(2πβv(t)) < 0 when t ∈ [t2k−1,t2k). Furthermore,
if the sequence (t0, . . . ,tn) is known, then the solution v(t) when
t ∈ (tn,tn + 1) can be obtained explicitly, and therefore, tn+1, which
is defined as sin(2βv(tn+1)) = 0, is determined by (t0, . . . ,tn). Once
we obtain the entire sequence {tn}, the solution of Eq. (7) consists
of exponentially increasing or decreasing segments on each interval
[tn,tn+1]. Nevertheless, the nature and properties of the map tn+1 =
Fn(t0,t1, . . . ,tn) is still not characterized and has defied analysis to
date.
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FIG. 1. (Color online) A sample solution of (7) with β = 10,

γ = 1, and an initial function φ(t) ≡ −0.1,t ∈ [−1,0]. The rectangu-
lar inset shows the solution segment for 98 � t � 100.

this paper, we will instead study an analogous but different
differential delay equation

dv

dt
= −γ v + sin(2πβv(t − 1)),

(8)
v(t) = φ(t), − 1 � t � 0.

In Eq. (8), the parameter β measures the frequency of
the nonlinear function and will turn out to be an essential
parameter in the present study. Note that one can rescale and
translate the variables such that Eq. (8) can be rewritten as

dv

dt
= −v + μ sin(v(t − τ ) − x0),

(9)
v(t) = φ(t), − τ � t � 0.

Equation (9) (also known as the Ikeda equation) was proposed
by Ikeda et al. to model a passive optical bistable resonator
system and shows chaotic behaviors at particular parameters
such as μ = 20,x0 = π/4, and τ = 5 [19,21].

In this paper, we will study the dynamical properties of
the solutions of Eq. (8), both analytically and numerically. We
focus in particular on the probabilistic properties of the chaotic
solutions. We then investigate chaotic solutions of{

dx
dt

= v

dv
dt

= −γ v + sin(2πβv(t − 1)), (10)

v(t) = φ(t), − 1 � t � 0,

and characterize the statistical properties as completely as we
can. The main result is to show that Eq. (10) can reproduce
experimentally observed data of Brownian motion over a wide
range of time scales, in spite of the fact that the evolution
equation is deterministic. Therefore, deterministic Brownian
motion can be generated from Eq. (10).

The outline of the rest of this paper is as follows. We
first perform a bifurcation analysis for Eq. (8) in Sec. II. In
Sec. III we study the probabilistic properties of the chaotic
solutions numerically. In Sec. IV, we numerically examine the
dynamics of the chaotic solutions of Eq. (10) and compare our
results with recent experimental measurements of the motion
of a Brownian particle [22]. Section V presents five hypotheses
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based on our studies that we have been unable to prove
but that we believe to be true. These hypotheses indicate a
possible direction for the analytical proof of the existence
of deterministic Brownian motion from differential delay
equation (4). Finally, we conclude the paper with discussion
and conclusions in Sec. VI.

II. BIFURCATION ANALYSIS

In this section, we commence our study by performing a
bifurcation analysis for equation (8). We always assume γ = 1.

The bifurcation structure of the Ikeda equation has been
studied several times from different perspectives [23–28].
Here, we present a complete picture (see Theorem 1 below)
for the bifurcation structure of Eq. (8), which has not, to the
best of our knowledge, appeared previously.

A. Steady-state solutions

The steady states of Eq. (8) are given by the solutions of

v = sin(2πβv). (11)

When β � 1/(2π ), Eq. (11) has only one real solution, namely
v = 0. When β > 1/(2π ), (11) has (4[β] + 1) real solutions
where [β] denotes the integer part of β. These solutions are
separated by critical points that are given by the roots of

1 = 2πβ cos(2πβv),

i.e.,

k

β
± 1

2πβ
arccos

(
1

2πβ

)
, − [β] � k � [β].

Let v∗ be a steady state of Eq. (8). Linearization of Eq. (8)
around v = v∗ gives

dṽ

dt
= −ṽ + 2πβ cos(2πβv∗)ṽ(t − 1). (12)

Thus, the steady-state solution v(t) ≡ v∗ is locally stable if
and only if

sec ω � 2πβ cos(2πβv∗) � 1,

where ω + tan ω = 0, ω ∈ (0,π ). (13)

In particular, if 2πβ cos(2πβv∗) = sec ω, the linearized equa-
tion (12) has a pair of complex conjugate eigenvalues and,
therefore, has a periodic solution with frequency ω. In this
case, (β,v∗) is a Hopf bifurcation point of Eq. (8). (Throughout
this paper we will use the notation (β,v∗), where β is the
bifurcation parameter and v∗ is the bifurcation point.) Figure 2
graphically displays the steady states for 0 � β � 6.

We will first state the following lemma before giving the
main results of our bifurcation analysis.

Lemma 1. For any α ∈ (−∞,0) ∪ ( 1
2π

, + ∞), let

p(β) = 2πβ

√
1 −

(
α

2πβ

)2

− arccos

(
α

2πβ

)
. (14)

Then for any k ∈ N∗, the equation

2πk = p(β) (15)
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FIG. 2. (Color online) Steady states v∗ of Eq. (8) for different
values of β (here γ = 1). The inset shows the detail in the small
rectangular area. Black denotes locally stable steady states (ss),
whereas green (light gray) denotes unstable steady states (us).

has a unique solution β � |α|/2π . In particular, when α = 1
and k = 0, we have β = 1/2π .

Proof. Since p( |α|
2π

) � 0, and when β >
|α|
2π

,

p′(β) = 4πβ2 − α

β
√

4π2β2 − α
>

α(2πα − 1)

β
√

4π2β2 − α
> 0,

the first part of the lemma follows. It is easy to verify that
when α = 1, then p( 1

2π
) = 0. �

In the following, we define sequences {ak} and {bk} such
that

2πk = 2πak

√
1 −

(
1

2πak

)2

− arccos

(
1

2πak

)
, k ∈ N∗,

(16)

and

2πk = 2πbk

√
1 −

(
sec ω

2πbk

)2

− arccos

(
sec ω

2πbk

)
, k ∈ N∗.

(17)

Note that a0 = 1/2π . Furthermore, since sec2 ω > 1 and
arccos( sec ω

2πβ
) > arccos( 1

2πβ
), we have

2πβ

√
1 −

(
sec ω

2πβ

)2

− arccos

(
sec ω

2πβ

)

< 2πβ

√
1 −

(
1

2πβ

)2

− arccos

(
1

2πβ

)
,

and therefore bk > ak . When k → ∞, the solution of (15) is
approximately

β � k + 1

4
+ α(α − 2)

4π2k
+ o(k−1).

Thus, for large k we have

bk − ak = (sec ω − 1)2

4π2k
+ o(k−1). (18)
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Note that the sequences {ak} and {bk} can be ordered as

0 < a0 < b0 < a1 < b1 · · · < ak < bk < · · · . (19)

In the following theorem, we prove that {ak} are saddle node
bifurcation points and {bk} are Hopf bifurcation points of
Eq. (8).

Theorem 1. Consider Eq. (8) and its steady-state solutions.
Let {ak} and {bk} be defined as above. Then:

(1) When 0 � β < a0, Eq. (8) has only one steady state
v∗ = 0, and it is locally stable.

(2) When β = a0, (β,v) = (a0,0) is a pitchfork bifurcation
point of Eq. (8).

(3) When β > a0, the steady state v∗ = 0 is unstable.
(4) For any k ∈ N∗, let

yk = k

ak

+ 1

2πak

arccos

(
1

2πak

)
. (20)

Then (β,v) = (ak, ± yk) are saddle node bifurcation points of
Eq. (8).

(5) For any k ∈ N∗, let

zk = k

bk

+ 1

2πbk

arccos

(
sec ω

2πbk

)
. (21)

Then (β,v) = (bk, ± zk) are Hopf bifurcation points of Eq. (8).
(6) For every k ∈ N0, and ak as defined above, there is a

function fk(β) that is continuous on [ak,∞), such that fk(ak) =
yk , and when β � ak , v = ±fk(β) satisfies (11), and

1 − 2πβ cos(2πβfk(β)) � 0. (22)

The steady-state solutions v(t) ≡ ±fk(β) are unstable.
(7) For every k ∈ N0, and ak,bk as defined above, there

is a function gk(β), which is continuous on [ak,∞), such
that gk(ak) = yk , gk(bk) = zk , and when β � ak , v = ±gk(β)
satisfy (11), and

1 − 2πβ cos(2πβgk(β)) � 0. (23)

Further,
(a) When ak < β < bk , the steady-state solutions v(t) ≡
±gk(β) are locally stable.
(b) When β > bk , the steady-state solutions v(t) ≡ ±gk(β) are
unstable.

(8) When β increases past the Hopf bifurcation point bk ,
the two steady-state solutions v(t) ≡ ±gk(β) lose stability
and generate a periodic solution, with angular frequency ω.
Therefore there exists a sequence {ck}, such that the periodic
solutions generated from the Hopf bifurcations are stable when
bk < β < ck .

Proof of Theorem 1 is given in the Appendix.
From Theorem 1, when β increases from 0, in any interval

β ∈ (ak,bk), Eq. (8) has two stable steady-state solutions. The
length of the intervals (ak,bk) tends to zero as 1/k as k → ∞.
In other situations, however, all steady states are unstable, and
therefore complicated dynamical behaviors may be expected.
An exploration of the nature of these constitutes the remainder
of this paper.

B. Periodic solutions and chaotic attractors

In this section, we numerically investigate the long-term
behavior of the solutions of Eq. (8). For each value of the

parameter β > 0, we solve Eq. (8) to obtain 100 independent
sample solutions, each with randomly selected constant initial
function

v(t) = v0 (−1 � t � 0),

where v0 ∈ (−1,1) and is uniformly distributed. Each solution
is obtained using Euler’s method (with a time step �t = 0.001)
up to t = 500, such that the solution reaches a stable state
(either oscillatory or steady state), and the resulting data from
300 � t � 500 are used for further analysis as detailed below.

To distinguish oscillatory solutions from constant solutions
in the simulation, we investigated the upper and lower bounds
of v(t) in 300 � t � 500, denoted by vmax and vmin, respec-
tively. Therefore, a solution is considered to have approached
a stable steady state if vmax � vmin and approached a stable
oscillatory solution between vmin and vmax if vmin � vmax.

Figure 3 shows the simulation results. For each value of
β ∈ (0,3), there are 100 pairs of dots from 100 initial functions,
corresponding, respectively, to vmin [red (light gray) dots] and
vmax (blue dots) of a solution. Stable steady-state solutions
are shown by the superposition of blue and red (light gray)
dots. We are interested in the oscillatory solutions, which are
indicated by well-separated blue and red (light gray) dots in
Fig. 3. There are two types of oscillatory solutions. Regular
periodic solutions appear when β is close to (but greater than)
the Hopf bifurcation points bk . The amplitude of these regular
solutions depend only on the parameter β. Irregular oscillatory
solutions occur for almost all β (β > 0.85 except small gaps
at β ∈ (1.019,1.033) and β ∈ (1.270,1.360), respectively. The
amplitude of these irregular oscillatory solutions depend on the
parameter β as well as the initial functions.

The bifurcation diagram in Fig. 3 shows clear evidence for
multistability of the solutions of Eq. (8):

(1) When a0 < β < b0, there are two stable steady states.
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FIG. 3. (Color online) Bifurcation diagram of Eq. (8) for different
β (here γ = 1). Here PF denotes the occurrence of a pitchfork
bifurcation, HP stands for a Hopf bifurcation, and SN a saddle node
bifurcation. In the diagram, black dots denote stable steady states (ss),
green denotes unstable steady states (us) (also refer to Fig. 2), blue is
used to indicate the upper bound (ub) of oscillatory solutions, and red
(light gray) indicates the lower bound (lb) of oscillatory solutions.
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FIG. 4. (Color online) Sample solution segment examples for different values of β (from small to large) as indicated in each panel. The
time point 0 in figures correspond to t = 400 in the simulations. Each panel contains between one and four solution curves (marked by
different colors and also locations), each of which corresponds to a stable oscillatory solution. For a given values of β, the initial functions
of these solutions differ from each other and are taken as constant in the interval −1 � t � 0. The constant initial functions are as follows:
β = 0.6: v0 = 0.55, − 0.55; β = 0.77: v0 = 0.41129, − 0.41129,0.630575, − 0.630575; β = 1.0: v0 = 0.55; β = 1.025: v0 = 0.55; β = 1.2:
v0 = 0.55; β = 1.3: v0 = 0.55; β = 1.45: v0 = 0.975,0.1, − 0.975; β = 1.75: v0 = 0.1. Here γ = 1.

(2) When b0 < β < c0, there are two stable periodic solu-
tions.

(3) When ak < β < bk(k ∈ N∗), there are two stable state
states and stable irregular oscillations.

(4) When bk < β < ck(k ∈ N∗) there are two stable peri-
odic solutions and stable irregular oscillations.

Some sample solution examples for different values of β

are shown in Fig. 4, and these also illustrate the existence of
multistability of solutions dependent on the initial function.

III. PROBABILISTIC PROPERTIES

In the numerical bifurcation analysis of Sec. II, we have
shown that when γ = 1 and β > 0.85, the differential delay
equation (8) has irregular oscillatory solutions that display
chaotic behavior. In this section, we numerically study the
probabilistic properties of these irregular solutions. We will
show in Sec. III F that when β is sufficiently large, on a
sufficiently long time scale these chaotic solutions behave like
a noise source with a “truncated” Gaussian density.

A. Numerical scheme

Throughout this section, the probabilistic properties of
solutions of Eq. (8) are studied numerically. In the numerical

simulations, for a given set of parameters, we solve Eq. (8)
with a randomly selected constant initial function

v(t) = v0 ∈ (−1,1), (−1 � t � 0), (24)

where v0 is drawn from a uniformly distributed density. The
solution v(t) is solved using Euler’s method (with a time step
�t = 0.001) up to t = 105 and is sampled every 103 steps to
generate a time series {vn}, where vn = v(n × 103�t). The
resulting time series of values {vn} is used to characterize the
statistical properties of the solution. In particular, we focus on
the mean value μ, the upper bound K , the standard deviation
σ , and the excess kurtosis γ2 of the time series, which are,
respectively, defined by

μ = 1

N

N∑
n=1

vn, K = max
n

|vn|, σ 2 = 1

N

N∑
n=1

(vn − μ)2,

(25)

γ2 = μ4

σ 4
− 3, where μ4 = 1

N

N∑
n=1

(vn − μ)4.

The excess kurtosis γ2 measures the sharpness of the density
of the sequence, and a value of γ2 = 0 is characteristic of a
normal Gaussian distribution.
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In the following discussion, we will show that when β is
outside the region of bistability, i.e.,

β ∈ I =
(

1

2π
, + ∞

) ∖ ∞⋃
k=0

[ak,ck], (26)

the statistical properties are independent of the initial function
v0 and sampling frequencies. Therefore, the quantities defined
by Eq. (25) depend only on the parameters β and γ , and this
dependence is discussed below.

B. Stationary density of solutions

From the bifurcation analysis in Sec. II, Eq. (8) displays
bistability when β ∈ [ak,ck] for some k ∈ N. This suggests
that when

β ∈ I0 =
⋃
k∈N

[ak,ck], (27)

a solution of Eq. (8) with a randomly selected initial function
will converge to one of the stable branches (a steady state,
a periodic solution, or an irregular oscillatory solution) as
shown by Fig. 3. Thus, the stationary density of all solutions
of Eq. (8) is expected to be multimodal, and, therefore, the
limiting statistical properties of a solution (as mirrored in the
density constructed along the solution trajectory) depend on
the initial condition. The upper two panels of Fig. 5(a) show the
multimodal distributions of the stationary densities when β =
1.25 and β = 1.35, respectively. The results are obtained from
105 independent solutions at t = 100, each with a randomly
selected constant initial function as given by (24).

In the following discussion, we focus on the alternative
situation in which

β ∈ I =
(

1

2π
,∞

) ∖
I0. (28)

In this case, the numerical bifurcation analysis shown in
Fig. 3 indicates that any solution of Eq. (8) converges to an
irregular oscillatory solution irrespective of the initial function.
(Note that solutions with different initial functions will not,
in general, converge to the same solution as can be seen by
multiple values of the upper and lower bounds of the oscillatory
solutions in Fig. 3.) Despite the fact that the solutions in such
situations are not the same, we will see that these solution
trajectories share the same statistical properties. Figure 5(a)
(black curve in the lowest panel) shows the stationary density
obtained from 105 independent solutions (here β = 2.0 ∈ I ),
each with a randomly selected constant initial function (24).
The result is a unimodal density of the distribution of solution
values along the trajectory. Alternatively, the same density
can also be obtained through a time series {vn} of a solution
with randomly selected constant initial function [Fig. 5(a), red
(light gray) curve in the lowest panel, refer to Sec. III A for
details]. Furthermore, we have found that the same density of
the distribution is obtained when we choose different forms
for the initial function, such as a sinusoidal initial function or
a polynomial initial function (data not shown). These results
strongly suggest that these irregular solutions are ergodic in
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FIG. 5. (Color online) (a) Stationary density functions of solu-
tions of Eq. (8) for different values of β (as shown in the panels).
The density functions are obtained from 105 independent solutions,
each with a randomly selected constant initial function as in Eq. (24).
The red (light gray) curve in the lowest panel is the density function
obtained from a random solution trajectory with a constant initial
function. (b) Example of a segment of a single solution with β = 2.0,
and initial function v0 = 0.04. (c). Power spectrum of the solution in
(b). In the simulations, γ = 1.0.

some sense, i.e., the statistical properties of one solution are
the same as those of an ensemble of independent solutions.2

In what follows, we focus on quantifying the statistical
properties of these irregular solutions. An example of one
of these irregular solutions is shown in Fig. 5(b), with the
corresponding power spectrum w(f ) shown in Fig. 5(c). Note
that the power spectrum is essentially flat with no predominant
characteristic frequency, indicating that the solution is, indeed,
chaotic.

2It is important to realize, however, that the notion of ergodicity for
an infinite dimensional semidynamical system, like the differential
delay equations we are studying, is not well defined and has resisted
all attempts to do so.
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C. Dependence of the statistical properties on β

We now take γ = 1 and β ∈ [1,50] to numerically study the
statistical properties of the irregular solutions. For each β the
sampled time series {vn} of a solution v(t) is used to obtain
the mean value μ, the upper bound K , the standard deviation σ ,
and the excess kurtosis γ2 [refer Eq. (25) for these definitions].
Figure 6 shows these four statistical indicators as functions of
the parameter β.

Figure 6(a) shows the mean value as a function of β,
indicating that μ(β) � 0. Figure 6(b) shows the bound K as
a function of β. The numerical results show that K decreases
with β and can be accurately approximated by

K = 1

0.68
√

β + 0.60
. (29)

Note that as β → ∞, solutions of Eq. (8) are bounded and K
varies as β−1/2. Figure 6(c) shows the standard deviation σ as
a function of β. The standard deviation decreases with β, and
can be fitted with

σ = 0.32β−1/2. (30)

As in the case of the upper bound, when β → ∞, we also find
that σ varies as β−1/2.
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FIG. 6. (Color online) (a) Mean value μ as a function of β. (b) The
upper bound K as a function of β. The solid curve shows the fit to K =
1/(0.68

√
β + 0.60). (c) Standard deviation σ as a function β. The

solid curve is the graph of σ = 0.32β−1/2. (d) Excess kurtosis γ2 as a
function of β. Solid curve shows the fit to γ2 � −1/β. Remember that
for all of these results, γ = 1, and the initial functions are constants
as in Eq. (24).

Figure 6(d) shows the excess kurtosis γ2 as a function of
β, and the numerical results reveal that the excess kurtosis
increases with β toward 0, approximately as −1/β. The
negative value indicates that the distribution is platykurtic (the
tail of the distribution is thinner relative to a Gaussian). This
is because the solution is bounded, and, therefore, the tail is
truncated. Note that a larger β means a smaller absolute value
of the excess kurtosis and, thus, that the distribution is more
like a Gaussian distribution.

D. Dependence of the statistical properties on γ

We now fix β = 20 and study the dependence of the
statistical properties on γ . Figure 7 shows the simulation
results with the same statistical indicators plotted as in Fig. 6.
The red (light gray) curves in Fig. 7 are fit by

K(β,γ ) = 1√
γ (0.68

√
β + 0.60

√
γ )

, (31)

σ (β,γ ) = 0.32√
βγ

, (32)

γ2(β,γ ) = −γ

β
. (33)

The functions (31)–(33) give the general dependence of the
statistical indicators with equation parameters β and γ and are
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FIG. 7. (Color online) (a) Mean value μ as a function of γ .
(b) The upper bound K as a function of γ . (c) Standard deviation
σ as a function γ . (d) Excess kurtosis as a function of γ . Solid
curves in (b)–(d) show the fits (31)–(33). Here β = 20 and the initial
functions are constants as in Eq. (24). Results for γ > 30 are not
shown due to numerical instability.
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obtained as follows. First, we rescale Eq. (8) by introducing
u = γ v,β ′ = β/γ . Then u(t) satisfies

du

dt
= γ {−u + sin(2πβ ′u(t − 1))}. (34)

The statistical indicators K , σ , and γ2 for solutions u(t) of
Eq. (34) are independent of γ (data not shown) and depend
on β ′ through the same functions as in Fig. 6. Therefore, we
obtain the functions (31)–(33) with the scaling v = u/γ .

E. Correlation function

Next, we investigate the correlation function of a solution of
the differential delay equation (8). The normalized correlation
function of a solution is defined as

C(r) = lim
T →∞

∫ T

0 v(t)v(t + r)dt∫ T

0 v(t)2dt
. (35)

Figure 8(a) shows the correlation function C(r) for different
values of β (with γ = 1). From Fig. 8, the correlation function
can be approximated as an exponential function of the form

C(r) � e−r/t0 ,

where the constant t0 gives the correlation time. Figures 8(b)
and 8(c) show that the correlation time is largely independent
of β and that it is approximately given by 1/γ .

F. Quasi-Gaussian distribution

From our numerical results in Secs. III C and III D, it is clear
that the excess kurtosis γ2 of one of the irregular solutions of
Eq. (8) varies with β and γ according to γ2 � −γ /β. Thus,
the distribution approaches a Gaussian-like distribution when
β is large (and γ is fixed), but one with a truncated tail so
it is supported on a set of finite measure. We call such a
truncated Gaussian distribution a quasi-Gaussian distribution
and consider these further in this section.

Let μ and σ be the mean and standard deviation of a quasi-
Gaussian noise and assume that the noise signal is supported

on an interval [μ − K,μ + K]. The density function is then
given by

p(v; μ,σ,K) =
{
Ce

− (v−μ)2

2σ2 if |v − μ| � K

0 otherwise,
(36)

where

C = 1√
2πσ [�(K/σ ) − �(−K/σ )]

(37)

and

�(z) =
∫ z

−∞
e−s2/2ds = 1

2

[
1 + erf

(
z√
2

)]
. (38)

In particular, when μ = 0 and σ = 1, we have a standard
quasi-Gaussian distribution, with density function

p(v; 0,1,K0) =
{
C0e

−v2/2, |v| � K0

0, otherwise,
(39)

where

C0 = 1√
2π

∫ K0

−K0
e−s2/2ds

. (40)

There is only one adjustable parameter, namely the bound K0,
in a standard quasi-Gaussian distribution.

We can now compare the distribution function obtained
from our simulation data with the quasi-Gaussian distribution.
To this end, we first normalized the signal sequence {vn}. From
Sec. III D, let ζn = vn/σ (β,γ ) so the sequence {ζn} has mean
μ = 0, standard deviation σ = 1, and is bounded by

K0 = K(β,γ )

σ (β,γ )
�

√
β/γ

0.21
√

β/γ + 0.19
. (41)

Equation (41) gives the relation between the equation param-
eter β/γ and the adjustable distribution parameter K0, which
is shown in Fig. 9(a). We have K0 � 5 when β/γ is large.

Figure 9(b) shows the result of fitting the density function
Eq. (39) with our simulation data. We can see that Eq. (39)
provides a reasonable fit for the simulation data when β � 6
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FIG. 8. (Color online) (a) Correlation function C(r). Here, γ = 1 and β = 5 (blue circles), 10 (red up-triangles), 15 (black down-triangles),
20 (green squares), respectively. (b) Correlation time as a function of β (with γ = 1). (c) Correlation time as a function of γ (with β = 20),
solid curve is the fit with t0 = 1/γ .
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FIG. 9. (Color online) (a) The normalized bound K as a function
of β/γ . The solid curve shows the fit with

√
β/γ /(0.21

√
β/γ +

0.19). Circles are data from simulations in Secs. III C and III D.
(b) Density functions obtain from a solution of the differential delay
equation with given value of β (and with γ = 1). Solid curve shows
the density function of quasi-Gaussian distribution according to
Eq. (39) and with K0 obtained from β = 10.

(and γ = 1). Thus, the simulation results indicate that when
β/γ is large, the density of the distribution of irregular
solution trajectories of the differential delay equation (8) can
be approximated by a quasi-Gaussian distribution.

IV. DETERMINISTIC BROWNIAN MOTION

Now, we will show that the differential delay equation (10),
in a suitable parameter region, can generate dynamics with
many of the properties of Brownian motion in spite of the fact
that the evolution equation is deterministic. Therefore, these
dynamics are examples of deterministic Brownian motion.

Consider solutions of the following deterministic system:{
dx
dt

= v

dv
dt

= −γ v + sin(2πβv(t − 1)).
(42)
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FIG. 10. (Color online) (a) The numerically produced determin-
istic Brownian motion x(t). Here β = 20,γ = 1. Initial velocities are
constants as in Eq. (24). (b) Density functions of �x(t) [=x(t) − x(0)]
at different times t . The symbols are taken from the numerical
solutions, while the solid curves show the density function of the
corresponding quasi-Gaussian distribution.

Here x(t) measures the position of a particle with velocity v(t).
Figure 10(a) shows sample solutions x(t) of Eq. (42), which
are akin to the dynamics of a Brownian particle. Figure 10(b)
shows the density functions of �x(t), the displacement from
the particle initial position at different times t . These numerical
results show that at any time t , �x(t) has Gaussian like
distribution.

Figure 11 shows 〈[�x(t)]2〉, the dependence of the MSD,
as a function of t . In the simulations, we set β = 20 and
chose different values of γ (as shown in the figure panel). For
each γ , the MSD 〈[�x(t)]2〉 is obtained from 103 independent
trajectories, each with a randomly selected constant initial
velocity. In Fig. 11, we normalized the results for different
parameters through D = σ 2/γ , the “diffusion constant.” Our
simulations show that 〈[�x(t)]2〉 = 2Dt at long time scales,
as predicted by Einstein’s theory for Brownian motion [1].
At short time scales, we have 〈[�x(t)]2〉 = cDt2, where the
prefactor c depends on the initial condition. This result agrees
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FIG. 11. (Color online) Mean square displacement (MSD)
〈[�x(t)]2〉 of deterministic Brownian motions. Here D = σ 2/γ ,
which is analogous to the diffusion constant of a Brownian particle
in solution. The dashed lines show 〈[�x(t)]2〉/D = t2 at short times
and 〈[�x(t)]2〉 = 2t for a longer time scale, respectively. Here β = 20
and γ are shown in the figure panel.

well with recent measurements of Brownian motion using an
optical tweezer [22]. In the interpretation of experimental
data, it is a long-debated question if and by what means
we can distinguish whether an observed irregular signal is
deterministically chaotic or stochastic [29,30]. Results in
the current study indicate that experimentally observed data
for Brownian motion can be reproduced by solutions of a
deterministic differential delay equation over a wide range
of time scales (six orders of magnitude). Thus, differential
delay equations provide an alternative way for reproducing
“random” signals.

V. HYPOTHESES

The results that we have presented to this point are so
intriguing that we are led to formulate a series of hypotheses.
Though we believe these to be true, all efforts to prove them
have proved fruitless to date. We present them in the hope that
others will find their proof a challenge that they are able to
overcome.

In formulating these hypotheses, we focus on the irregular
solutions for large β, and, therefore, we will always assume
that β is such that Eq. (8) has no stable steady state or stable
periodic solution. In particular, according to Theorem 1, we
will always assume γ = 1 and β ∈ I , with I defined by (26).

Let vβ(t ; φ) be the solution of{
dv
dt

= −v + sin(2πβv(t − 1)),

v(t) = φ(t), − 1 � t � 0.
(43)

Define

μ(β; φ) = lim
T →∞

1

T

∫ T

0
vβ(t ; φ)dt, (44)

K(β; φ) = lim
T →∞

sup
0�t�T

|vβ(t ; φ)|, (45)

σ (β; φ) = lim
T →∞

√
1

T

∫ T

0
vβ(t ; φ)2dt, (46)

μ4(β; φ) = lim
T →∞

1

T

∫ T

0
vβ(t ; φ)4dt. (47)

In these hypotheses, we always assume that the initial
function φ(t) is taken such that the solution vβ(t ; φ) is not
a steady-state solution, i.e., φ satisfies the condition:

−φ(t) + sin(2πβφ(t)) �≡ 0, − 1 � t � 0. (48)

We then have the following hypotheses.
Hypothesis 1. For any φ ∈ C([−1,0],R) that satisfies (48),

we have

μ(β; φ) = 0 (49)

for any β ∈ I .
Remark 1. When β �∈ I , we have to exclude the cases in

which vβ(t ; φ) converges to either a stable steady state or a
stable periodic solution arising through a Hopf bifurcation.
Thus, with this exclusion, the solution vβ(t ; φ) will converge
to either a periodic solution that is symmetric about 0 or an
irregular solution. Equation (49) always holds for a symmetric
solution. Therefore, to prove Hypothesis 1 we only need to
show that (49) is satisfied by the irregular solutions for any
β > 0.

Hypothesis 2. For any φ ∈ C([−1,0],R) satisfying (48), the
limit

lim
β∈I,β→∞

β1/2K(β; φ) (50)

exists, independent of φ, and is positive.
Hypothesis 3. For any φ ∈ C([−1,0],R) satisfying (48), the

limit

lim
β∈I,β→∞

β1/2σ (β; φ) (51)

exists, independent of φ, and is positive.
Hypothesis 4. For any φ ∈ C([−1,0],R) satisfying (48), we

have

lim
β∈I,β→∞

μ4(β; φ)

σ 4(β; φ)
= 3. (52)

From Hypotheses 2 and 3, the constant

K0 = lim
β∈I,β→∞

K(β; φ)

σ (β; φ)
(53)

is well defined for any φ ∈ C([−1,0],R) satisfying (48) and
independent of φ. Hypothesis 4 suggests that when β ∈ I

is sufficiently large, the density of the distribution of the
time series vβ(t ; φ) tends to a Gaussian with mean μ = 0,
and standard deviation σ (β; φ), but is truncated at ±K(β; φ).
Therefore, let

Pβ(z; φ) = lim
T →∞

1

T

∫ T

0
H (zσ (β; φ) − vβ(t ; φ))dt, (54)

where H (·) is the Heaviside step function. Then Pβ(z; φ)
measures the probability that vβ(t ; φ) < zσ (β; φ).
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Hypothesis 5. Let K0 be given by (53) and p(v; 0,1,K0) be
defined by (39). For any φ ∈ C([−1,0],R) satisfying (48), we
have

lim
β∈I,β→∞

Pβ(z; φ) =
∫ z

−∞
p(v; 0,1,K0)dv (55)

for all z ∈ R.
Hypothesis 5 can be thought of as a central limit theorem

result for the irregular solutions of the differential delay
equation (8).

These conjectures were based on our numerical studies of
the differential delay equation

dv

dt
= −v + F (v(t − 1)) (56)

with the nonlinear function F (v) taken to be a sinusoidal
function. We suspect that the same results also hold for
any bounded and oscillating nonlinear function such that the
solution is “chaotic.” For example, Fig. 12 shows the numerical
results for the step function nonlinearity

F (v) = 2
{
H (sin(2πβv)) − 1

2

}
(57)

and the quasiperiodic nonlinearity

F (v) = 1
2 [sin(2πβv) + sin(2

√
2πβv)], (58)

respectively. Therefore, the proposed conjectures may be
universal for these deterministic “chaotic” dynamics.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied a simple differential delay
equation that displays a variety of behaviors, including chaotic
solutions.

In Sec. II we carried out a complete bifurcation analysis
for the steady-state solutions. When γ = 1, our analysis show
that for any positive integer k, there is an interval Ik = (ak,bk)
that contains k + 1/4, such that when β ∈ Ik , there are two
stable steady states (which are symmetric with respect to 0).
Furthermore, (β,v) = (ak, ± yk) are saddle node bifurcation
points, and (β,v) = (bk, ± zk) are Hopf bifurcation points.
Explicit expressions for ak,bk,yk,zk are given in Sec. II A.
When β increases past bk , two stable periodic solutions
are generated at the Hopf bifurcation points. In addition to
these regular solutions, when β > 0.85, the equation also has
irregular solutions, which show chaotic behaviors.

In Sec. III, we numerically studied the probabilistic prop-
erties of the irregular (chaotic) solutions. Our simulations
suggest that when β is large (γ = 1), the discrete sequences
{vn} generated by irregular solutions v(t) [obtained by sam-
pling each numerical solution every 1000 steps, i.e., vn =
v(n × 1000�t)] have the character of Gaussian distributed
noise but are truncated at the bound ±K which varies as
β−1/2. The variance of the time series {vn} also depends on
β as β−1/2. When β is sufficiently large, the density of the
distribution of the normalized solution approaches a quasi-
Gaussian distribution (39) with parameter K0 = K/σ � 5.

In Sec. III, the quasi-Gaussian distribution was obtained
from the time series {vn} of solutions v(t) of Eq. (8) with
constant initial functions, and each solution is sampled every
1000 steps. We also noted that the stationary density function
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FIG. 12. (Color online) (a) Upper bound K and standard devia-
tion σ for solutions of Eq. (56) with the step function (57) (hollow)
and quasiperiodic function (solid) nonlinearities, respectively. The
dashed lines show the dependence K ∼ β−1/2 and σ ∼ β−1/2. In
the case of the quasiperiodic function, the result for β = 4 (marked
by an arrow) is exceptional because the solutions are not chaotic
(in fact, they are periodic solutions). (b) Normalized distributions
obtained from the numerical solutions of Eq. (56) with a step
function (blue circles) and quasiperiodic function (magenta triangles)
nonlinearity, respectively. The solid curve is the density function of
the quasi-Gaussian distribution. Here β = 10.

is independent of the initial function. We argue that the main
results obtain in Sec. III are independent of the sampling
frequency. Thus, Fig. 13 shows the bound K and standard
deviation σ , for different values of β, of the time series {vn}
when we sample the numerical solutions of Eq. (8) every 1
step [vn = v(n�t)]. The results obviously show K ∼ β−1/2

and σ ∼ β−1/2, as we have seen in Sec. III. Figure 13(b)
shows the distribution obtained from the time series obtained
by sampling a solution with different frequencies (every 1 step,
500 steps, and 1000 steps, respectively). These simulation
results suggested several hypotheses (which we have been
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FIG. 13. (Color online) (a) Upper bound K and standard devia-
tion σ obtained from time series {vn} obtained by sampling numerical
solutions every 1 step, i.e., vn = v(n�t). Dashed lines show the
dependence K ∼ β−1/2 and σ ∼ β−1/2. Here γ = 1. (b) Normalized
distributions obtained from time series obtained by sampling a
solution with different frequencies [every 1 step (green circles), every
500 steps (black squares), and every 1000 steps (magenta triangles)].
Here β = 10,γ = 1.

unable to prove) for the probabilistic properties of the solutions
of Eq. (8) as given in Sec. V.

Section IV has shown that a Brownian motion–like be-
havior can be reproduced from the quasi-Gaussian distributed
solution of the differential delay equation. This deterministic
Brownian motion shows behavior similar to that of experimen-
tally observed Brownian motion and, therefore, provides an
alternative way to model apparently erratic behavior in nature.
For example, the close to 50% efficiency exhibited in certain
biological processes is very difficult to explain from a purely
thermodynamic point of view [31]. The dynamical alternative
presented here could afford another possible explanation,
which could originate in a coherent, dynamical behavior at
the molecular level of description. We feel that the application

of the concept of a deterministic Brownian motion in modeling
physical or biological phenomena that display stochastic
aspects will be of great interest in future studies. Finally, in
Sec. V we have formulated five hypotheses derived from our
extensive numerical studies of this paper. We hope that these
serve as a challenge to others.

The significance of these results is, we feel, interesting.
All experimental measurements typically exhibit fluctuations
around some value, and it is customary (indeed the norm) to
interpret these as “noise” and the implicit assumption is that
these fluctuations are due to some random process that has no
deterministic origin. The density of the distribution of these
fluctuations is, moreover, typically approximately Gaussian
distributed but they are never truly Gaussian distributed (in
the sense that the density is supported on the entire real line)
but are always quasi-Gaussian in the sense that we have used
it here. The numerical studies that we have presented lend
strong circumstantial support to the alternative interpretation
that what is typically held to be the signature of a random (i.e.,
nondeterministic) process could equally well be the signature
of a completely deterministic process [29,30]. The same
implications were pointed out by Mackey and Tyran-Kamińska
[13] based on analytic computations in a similar situation.
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APPENDIX: PROOF OF THEOREM 1

To prove Theorem 1, we first need the following two
lemmas, which are obvious from the implicit function theorem,
and the proofs are omitted.

Lemma 2. Let (β0,v0) satisfy (11), and assume that

1 − 2πβ0 cos(2πβ0v0) �= 0.

Then there is a function g(β), such that:
(1) The function g(β) satisfies g(β0) = v0, and

g(β) = sin(2πβg(β))

for β in a neighborhood of β0.
(2) The function g(β) is differentiable, and

dg(β)

dβ
= 2πg(β) cos(2πβg(β))

1 − 2πβ cos(2πβg(β))
. (A1)

(3) The function g(β) satisfies

d{β cos(2πβg(β))}
dβ

= cos(2πβg(β)) − 2πβ

1 − 2πβ cos(2πβg(β))
(A2)

for β in a neighborhood of β0.
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Lemma 3. Let (β0,v0) satisfy (11), and assume that

2πv0 cos(2πβ0v0) �= 0.

Then there is a function h(v) such that:
(1) The function h(v) satisfies h(v0) = β0, and

h(v) = sin(2πh(v)v)

for v in a neighborhood of v0.
(2) The function h(v) is differentiable, and

dh(v)

dv
= 1 − 2πh(v) cos(2πh(v)v)

2πv cos(2πh(v)v)
. (A3)

(3) The function h(v) satisfies

d{h(v) cos(2πh(v)v)}
dv

= cos(2πh(v)v) − 2πh(v)

2πv cos(2πh(v)v)
(A4)

for v in a neighborhood of v0.
Proof of Theorem 1. Points (a), (b), and (c) are obvious.
Point (d). Here, we only consider the positive solutions

v, as the negative solutions are symmetric. The saddle node
bifurcation points are given by solutions of the equations

v = sin(2πβv), 2πβ cos(2πβv) = 1. (A5)

When v > 0 is a solution of (A5), then sin(2πβv) > 0 and
cos(2πβv) > 0. Therefore solutions of (A5) will always
satisfy

2kπ < 2πβv < 2kπ + π

2
, k ∈ N0.

Hence, Eqs. (A5) are equivalent to

v2 +
(

1

2πβ

)2

= 1, 2πβv = 2kπ + arccos
1

2πβ
,

k ∈ N0. (A6)

Consequently, the bifurcation points are given by the solutions
of ⎧⎨

⎩ 2πk = 2πβ

√
1 − (

1
2πβ

)2 − arccos 1
2πβ

,

v = k
β

+ 1
2πβ

arccos 1
2πβ

k ∈ N0.

(A7)

From Lemma 1, these equations have a unique solution, which
gives the saddle node bifurcation points (β,v) = (ak,yk).

Point (e). The Hopf bifurcation points are given by the
solutions of

v = sin(2πβv), 2πβ cos(2πβv) = sec ω. (A8)

Similar to our previous argument in Point (d), we only consider
positive solutions v that are given by the solutions of⎧⎨

⎩ 2πk = 2πβ

√
1 − (

sec ω
2πβ

)2 − arccos sec ω
2πβ

,

v = k
β

+ 1
2πβ

arccos sec ω
2πβ

k ∈ N0,

(A9)

which give the Hopf bifurcation points (bk,zk).
Point (f). Let

F (β,v) = v − sin(2πβv).

For any k ∈ N∗, our previous arguments indicate that (ak,yk)
satisfies

F (ak,yk) = 0,

and, further,

∂F (ak,yk)

∂β
= −2πyk cos(2πakyk) �= 0.

Thus, from Lemma 3, there is a function β = hk(v), such that
ak = hk(yk), and it is differentiable in a neighborhood of yk .

We will show that the function hk(v) can be continued to
the interval v ∈ (0,yk]. If not, there is v∗ ∈ (0,yk] and β∗ such
that

F (β∗,v∗) = 0

and

∂F (β∗,v∗)

∂β
= −2πv∗ cos(2πβ∗v∗) = 0,

which implies cos(2πβ∗v∗) = 0. Therefore we should have

(v∗)2 = (sin(2πβ∗v∗))2 = 1.

However, this is impossible since yk < 1. Thus, we conclude
that the function hk(v) can be continued to the entire interval
(0,yk] and, further, that cos(2πhk(v)v) > 0 for any v ∈ (0,yk].

Next, we will show that hk(v) is a decreasing function for
v ∈ (0,yk]. From (A4), we have

d{hk(v) cos(2πhk(v)v)}
dv

= cos(2πhk(v)v) − 2πhk(v)

2πv cos(2πhk(v)v)
< 0.

Thus, for v ∈ (0,yk), we have

2πhk(v) cos(2πhk(v)v) > 2πak cos(2πakyk) = 1.

Note that hk(v) > a0 = 1/(2π ) and cos(2πhk(v)v) > 0.
Therefore, from Lemma 3

dhk(v)

dv
= 1 − 2πhk(v) cos(2πhk(v)v)

2πv cos(2πhk(v)v)
< 0.

Now, the function β = hk(v) is well defined and decreasing
for v ∈ (0,yk]. Thus, the inverse function, denoted by v =
fk(β), is also well defined, continuous at β ∈ [ak,∞), and such
that v = ±fk(β) satisfy (11) and (22). From Eq. (22), it is easy
to conclude that the steady-state solutions v(t) ≡ ±fk(β) are
unstable, and Point (f) is proved.

Point (g). For any k ∈ N0, the Hopf bifurcation point (bk,zk)
satisfies

1 − 2πbk cos(2πbkzk) = 1 − sec ω > 0.

Therefore, we can apply Lemma 2, and there is a function
gk(β) such that v = gk(β) satisfies (11) and zk = gk(bk).

When β > bk (>a0), from (A2) in Lemma 2, we have

d{1 − 2πβ cos(2πβgk(β))}2

dβ

= −4π{cos(2πβgk(β)) − 2πβ} > 0.
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Thus, we have ∂F (β,v)/∂v �= 0 for β > bk and the function
gk(β) can be continued to β ∈ (bk,∞), and the steady-state
solutions v(t) ≡ ±gk(β) are unstable.

When β < bk , we will show that the function gk(β) can be
continued to β ∈ (ak,bk). If not, there is β∗ ∈ (ak,bk) such that

F (β∗,v∗) = 0

and
∂F (β∗,v∗)

∂v
= 1 − 2πβ∗ cos(2πβ∗v∗) = 0.

Therefore, we must have β∗ = ak′ for some k′ ∈ N0. However,
ak is the maximum of such values that are less than bk , and,
thus, we must have β∗ = ak . Therefore, the function gk(β) can
be continued to β ∈ (ak,bk), and gk(ak) = yk . These arguments
show that the function gk(β) is well defined in the interval
(ak,bk) and satisfies yk = gk(ak),zk = gk(bk).

Now, we only need to show that when ak < β < bk , the
steady-state solutions v(t) ≡ ±gk(β) are stable. Since {1 −
2πβ cos(2πβgk(β))}2 is increasing with respect to β, and{

1 − 2πak cos(2πakgk(ak)) = 0,

1 − 2πbk cos(2πbkgk(bk)) = 1 − sec ω > 0,

we have

0 < 1 − 2πβ cos(2πβgk(β)) < 1 − sec ω,

i.e.,

sec ω < 2πβ cos(2πβgk(β)) < 1

for any β ∈ (ak,bk). Therefore the steady-state solutions
v(t) ≡ gk(β) are stable, and Point (g) is proved.

Point (h) is obvious from the above arguments, and the the-
orem is proved. �
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