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Approximate thermodynamic structure for driven lattice gases in contact

Punyabrata Pradhan, Robert Ramsperger, and Udo Seifert
II. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart D-70550, Germany

(Received 4 July 2011; published 6 October 2011)

For a class of nonequilibrium systems, called driven lattice gases, we study what happens when two systems are
kept in contact and allowed to exchange particles with the total number of particles conserved. For both attractive
and repulsive nearest-neighbor interactions among particles and for a wide range of parameter values, we find
that, to a good approximation, one could define an intensive thermodynamic variable, such as the equilibrium
chemical potential, that determines the final steady state for two initially separated driven lattice gases brought
into contact. However, due to nontrivial contact dynamics, there are also observable deviations from this simple
thermodynamic law. To illustrate the role of the contact dynamics, we study a variant of the zero-range process and
discuss how the deviations could be explained by a modified large-deviation principle. We identify an additional
contribution to the large-deviation function, which we call the excess chemical potential, for the variant of the
zero-range process as well as the driven lattice gases. The excess chemical potential depends on the specifics of
the contact dynamics and is in general a priori unknown. A contact dependence implies that, even though an
intensive variable may equalize, the zeroth law could still be violated.
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I. INTRODUCTION

Equilibrium systems, which satisfy detailed balance and
therefore do not have any particle or energy current, are
based on a well-founded thermodynamic theory. Studies of
equilibrium systems start with the zeroth law, which is the
cornerstone of equilibrium thermodynamics. The zeroth law
states that, in equilibrium, there exists a set of intensive
variables, each of which is conjugate to a corresponding
extensive conserved quantity, and these intensive variables
equalize when two systems are kept in contact and allowed to
exchange the conserved quantities. Specifically, an equilibrium
system in contact with a reservoir is characterized by the
familiar Boltzmann distribution where the probability of a
microstate C is given by P (C) ∼ exp[−β{H (C) − μN}], with
H (C) the internal energy of configuration C, N the number
of particles in the system, and the intensive variables β and
μ the inverse temperature and the chemical potential of the
reservoir, respectively. These variables β and μ are conjugate
to the energy and particle number of the system. Moreover, in
equilibrium, there is a class of general fluctuation-response re-
lations, collectively called the fluctuation-dissipation theorem,
which relates the response of a system upon the change of an
intensive variable (e.g., chemical potential) to the fluctuation
in the corresponding extensive variable (e.g., particle number).

One could inquire whether there can be a similar thermo-
dynamic structure for nonequilibrium systems as well. Among
the vast class of nonequilibrium systems, one ubiquitous
subclass is that of systems having a nonequilibrium steady state
(NESS) [1,2]. The systems in a NESS have time-independent
macroscopic properties that are similar to those of systems
in equilibrium. However, unlike in equilibrium, they have
a steady current and generally cannot be characterized by
the Boltzmann distributions with an a priori known energy
functions. Perhaps not surprisingly, even for this conceptually
simplest class of driven systems with a NESS, there is no
well-founded thermodynamic structure. Intensive studies in
this direction to find a suitable framework for the description
of a NESS have been undertaken [1,3–7]. In this paper we

ask whether a homogeneously driven many-particle system
can be characterized in terms of an intensive thermodynamic
variable that equalizes for two systems in contact. We address
this question using a simple class of stochastic models called
driven lattice gases.

Although there have been many attempts to define an
intensive variable for driven systems in various specific
contexts [8–11], there was no general formulation in this regard
until recently when a prescription to define such a variable for
driven systems was proposed by invoking a hypothesis called
the asymptotic factorization property [12]. This property has
been shown to be satisfied for a class of driven systems having
short-range spatial correlations such as the zero-range process
(ZRP).

The ZRP is one of the simplest examples of driven
interacting many-particle systems that do not satisfy detailed
balance and have nonequilibrium steady states [13]. Previ-
ously, the ZRP was mainly considered as a model system for
various mass transport processes and was used to study the
phenomenon of the condensation transition in nonequilibrium
systems [14]. Recently, it was demonstrated [15] that the
systems governed by the ZRP have a simple thermodynamic
structure where a suitably defined intensive variable, such
as the equilibrium chemical potential, indeed equalizes for
two such systems in contact. There is also a corresponding
fluctuation-response relation between the compressibility and
the fluctuation in the particle number, which is satisfied
exactly for a system in contact with a particle reservoir. The
main advantage of studying these simple models such as
the ZRP was that the steady-state probability distributions,
which have simple factorized forms, can be calculated exactly
and therefore various features of driven systems in contact
can be studied analytically. Due to the simple form of the
steady-state distribution, it was also possible to analyze the
role of dynamics in the contact region between two systems.

However, for driven systems with nontrivial steady-state
properties, the situation is expected to be far more complex.
Here we consider a simple model of a driven interacting
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many-particle system known as the Katz-Lebowitz-Spohn
(KLS) model [16,17]. The KLS model, first introduced to study
fast ionic conductors [18], is a paradigm in nonequilibrium
statistical mechanics. The model describes a stochastic lattice
gas of charged particles that is homogeneously driven by a
constant externally applied electric field. Initially, the primary
motivation behind studying the KLS model was to understand
the nontrivial spatial structures and phase transitions in generic
bulk-driven systems with nonequilibrium steady states. Since
its introduction, the KLS model has been studied intensively.
At present, the phase diagram in the plane of the temperature
and electric-field strength is quite well known, mainly from
extensive simulations [16,17,19,20] as well as the results from
mean-field theory [21] and renormalization-group analysis of
a continuum version of the model [20,22]. However, there is
still no well-founded thermodynamic theory for these driven
interacting many-particle systems.

In this paper we explore the equilibration between two
driven lattice gases when they are brought into contact.
Recently we studied the KLS model, with repulsive nearest-
neighbor interactions among particles [23], which revealed
a simple but approximate thermodynamic structure. Here
we extend our previous studies to systems with attractive
interactions as well. Interestingly, for both attractive and
repulsive interactions and for a wide range of parameter values,
we find that, to a very good approximation, there is an intensive
thermodynamic variable, such as the equilibrium chemical
potential, that determines the final steady state while two
systems are allowed to exchange particles. Consequently, the
zeroth law of thermodynamics and the fluctuation-response
relation between the compressibility and the fluctuations in
particle number are satisfied remarkably well in a wide range
of parameter values.

There are, however, observable deviations from this sim-
ple thermodynamic structure, especially at high interaction
strengths and large driving fields. We explain these deviations
by expressing the asymptotic factorization property, which was
initially proposed by Bertin et al. [12,15] and later discussed
by us for driven lattice gases in Ref. [23], in a modified form
where contributions to the large-deviation functions due to the
contact dynamics are identified. To illustrate the origin of these
deviations, we study the nontrivial role of the contact dynamics
using first a simple variant of the ZRP and later the KLS model.
We find that, depending on the various parameter values, the
contact dynamics can amount to an excess chemical potential
across the contact for the variant of the ZRP as well as the KLS
model. This excess chemical potential is generally a priori
unknown and in some sense arbitrary for an arbitrarily chosen
contact dynamics. Therefore, it may not always be possible
to assign to the individual systems an intensive variable that
is independent of the contact between the two systems, thus
accounting for the deviations from the zeroth law.

The paper is outlined as follows. In Sec. II we describe the
model. In Sec. III we present the numerical results concerning
the zeroth law for the KLS model and possible deviations
from the law. In Sec. IV we discuss the excess chemical
potential for a variant of the ZRP as well as a variant of
the equilibrium KLS model. In Sec. V we describe how the
large-deviation principle can be written in a modified form
that can capture the deviations from the zeroth law and then
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FIG. 1. (Color online) Schematic diagram of two nonequilibrium
steady states in contact with the contact regions Ṽ1 and Ṽ2. Particles
are allowed to be exchanged through the contact regions Ṽ1 and Ṽ2. In
this process the total number of particles N = N1 + N2 is conserved,
where N1 and N2 are the number of particles in systems 1 and 2,
respectively.

discuss the excess chemical potential for the KLS model. We
summarize in Sec. VI. In Appendix A we give a proof of the
ansatz for the steady-state probability distribution in the case
of the ZRP. In Appendix B we discuss the fluctuation-response
relation for the ZRP as well as for the KLS model.

II. MODEL

We consider stochastic lattice gases of charged particles
that are driven out of equilibrium by constant externally
applied electric fields in the bulk and therefore have spatially
homogeneous steady states [16]. Particles move on a discrete
lattice and jump stochastically from one site to any of its
nearest-neighbor sites, preferably in the direction of the
external driving field of magnitude E. Due to hard-core
repulsion among particles, a lattice site can be occupied by
at most one particle. In addition, particles may also interact
with each other through a nearest-neighbor pair potential of
interaction strength K . We define the occupation variable η(r)
at a site r ≡ {rx,ry}, where η(r) = 0,1: If a site r is occupied,
η(r) = 1; otherwise η(r) = 0. We consider two systems of
lattice gases where systems 1 and 2 are confined, respectively,
in volume V1 and volume V2 (see Fig. 1). When two such
systems are brought into contact, they are connected at a finite
set of points V ′

1 and V ′
2, which are subsets of V1 and V2,

respectively (V ′
1,V

′
2 � V1,V2), and while in contact they can

exchange particles with each other. The energy function H of
the two systems, combined, is given by

H = K1

∑
〈r1,r′

1〉
η(r1)η(r′

1) + K2

∑
〈r2,r′

2〉
η(r2)η(r′

2), (1)

where 〈 , 〉 denotes sum over nearest-neighbor sites with
r1,r′

1 ∈ V1 and r2,r′
2 ∈ V2 and K1 and K2 are the strengths

of interactions among particles for the respective systems.
Note that systems may in general have different microscopic
dynamics depending on the interaction strengths K1 and
K2. Constant driving fields E1 and E2 in systems 1 and
2, respectively, are applied in the x direction, with periodic
boundary conditions imposed in both the x and y directions.

We choose jump rates of particles such that they satisfy
the local detailed balance condition [16]. A pair of nearest-
neighbor sites located at r and r′ in a configuration C are
chosen randomly and an attempt is made to interchange the
occupation variables where the attempted final configuration
is denoted by C ′. Let us denote the corresponding transition
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rate from configuration C to C ′ as w(C ′|C). For movements
of particles inside the same system (i.e., particles not jumping
from one system to the other), a quantity �(E) = H (C ′) −
H (C) − E(r ′

x − rx), which depends on the driving field E, is
defined, where rx denotes the x component of the position
vector r and H (C) is the energy of the configuration C. The
transition rate is assigned to be

w(C ′|C) = min{1,e−β�(E)}, (2)

where β is the inverse temperature of the heat bath. When the
chosen pair of sites is such that a jump is attempted from one
system to the other across the contact, the transition rate is
assigned to be

w(C ′|C) = min{1,e−β�(0)}, (3)

where �(0) = H (C ′) − H (C). Note that there is no field along
the bonds connecting the two systems. In the simulations we
consider two-dimensional systems (V = L × L) with periodic
boundaries in both directions. We set β = 1 throughout the
paper.

When E1 = E2 = 0 the jump rates satisfy the detailed
balance condition and the configuration C of the combined
system has the Boltzmann probability distribution P (C) ∼
exp[−H (C)]. For E1,E2 	= 0 there is a constant current
in the steady state. However, unlike in equilibrium, the
nonequilibrium steady-state probability distribution generally
is not given by the Boltzmann distribution with an a priori
known energy function and, except for a few cases (e.g.,
with only hard-core interactions), the steady-state probability
distribution is not known. When two systems are brought into
contact, they can exchange particles with the total number of
particles N = N1 + N2 conserved, where N1 = ∑

r1∈V1
η(r1)

and N2 = ∑
r2∈V2

η(r2) are the numbers of particles in systems
1 and 2, respectively. In the following sections we consider the
cases in which the conserved quantity is the number of particles
and therefore attempt to define an intensive variable, called
the chemical potential in analogy with equilibrium, which is
conjugate to the conserved particle number.

Bilayer systems have been considered before in which
particles can jump from one layer to the other at any site
in the cases of driven [24] and equilibrium [25] layers in
contact. Here, however, we consider the case in which particles
can jump from one system to the other through a very
small contact region between the systems. Moreover, these
previous studies have mainly focused on the phase transition
from the disordered state with a fluid phase to the ordered
symmetry-broken state with coexisting phases of gas and
liquid and on properties of droplets that are formed in the
coexisting phases. In this paper we confine ourselves to only
the disordered fluid phase that is obtained by suitably choosing
the interaction strengths K1 and K2 and the driving fields E1

and E2. Although the model considered here is very simple,
the chosen transition rates can be physically motivated through
the local detailed balance condition and therefore the model
could still capture, in a crude way, the features of more realistic
systems.

System 3System 1 System 2 

Experiment 1

Experiment 2

Experiment 3

FIG. 2. (Color online) Schematic diagram to test the zeroth law
of thermodynamics for equilibrium systems using a sequence of three
thought experiments where three systems (for simplicity, shown in
two dimensions) are separately kept in contact with each other and
allowed to equilibrate. In experiment 1, systems 1 and 3 are in contact.
In experiment 2, systems 2 and 3 are in contact. In experiment 3,
systems 1 and 2 are in contact.

III. NUMERICAL RESULTS

A. Zeroth law

First let us describe the zeroth law in the context of equi-
librium systems. We consider three systems and perform the
following three thought experiments, which are schematically
presented in Fig. 2 . In the first experiment systems 1 and 3 are
brought into contact and allowed to exchange particles with
each other. Systems 1 and 3 eventually equilibrate and reach a
final equilibrium state with constant average densities n1 and
n3, respectively. In the second experiment systems 2 and 3
are separately brought into contact and allowed to exchange
particles. In this case the initial density of system 2 is tuned
such that system 3 has the same final density as that of system
3 in the first experiment. Let us denote the final equilibrium
densities for systems 2 and 3 in the second experiment as n2

and n3, respectively. Now in the third experiment systems 1
and 2 with initial densities n1 and n2, respectively, are brought
into contact and allowed to exchange particles. One could ask
what the final densities in this case would be. The zeroth law
of thermodynamics provides the answer that the final densities
will not change anymore and will be exactly equal to the
respective initial densities. Thus the zeroth law allows us to
assign to an equilibrium system an intensive thermodynamic
variable, called the chemical potential, that equalizes for two
systems in contact. Note that, in Fig. 2, if one compares
the density profiles of two systems in the same column, the
corresponding average density profiles would be exactly the
same.

We use the preceding strategy to test the zeroth law for
systems in nonequilibrium steady states. We perform the same
set of numerical experiments as described above, but now with
two of the systems driven out of equilibrium due to external
driving fields present in the bulk of the individual systems.
Interestingly, similar to the equilibrium case, we observe that,
for various values of interaction strengths, driving fields, and
densities, the zeroth law is quite well satisfied, i.e., if two
driven lattice gases are separately equilibrated with a common
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FIG. 3. (Color online) Numerical experiments to test the zeroth
law (2 × 2 contact region). The top panel shows the average densities
as a function of position coordinates rx and ry . The bottom panel
shows the cross sections (in the x direction) of the density profiles.
For driven system 1, K = −1 and E = 6 (top density profiles); for
driven system 2, K = −0.75 and E = 4 (middle density profiles); for
equilibrium system 3, K = 0 and E = 0 (bottom density profiles).
All systems considered here are with same volume V = 50 × 50. In
experiment 1, system 1 with density n1 
 0.60 (top gray profile in
the top panel or top dashed gray line in the bottom panel) equilibrated
with system 3 with density n3 
 0.15 (bottom red profile in the top
panel or bottom solid red line in the bottom panel). In experiment 2,
system 2 with density n2 
 0.29 (middle magenta profile in the top
panel or middle solid magenta line in the bottom panel) equilibrated
with system 3 with density n3 
 0.15 (bottom green profile in the top
panel or bottom dotted green line in the bottom panel). In experiment
3, system 1 with density n′

1 (top black profile in the top panel or top
dash-dotted black line in the bottom panel) equilibrated with system 2
with density n′

2 (middle blue profile in the top panel or middle dotted
blue line in the bottom panel), where n′

1 
 n1 and n′
2 
 n2.

system with a fixed density, they will also equilibrate among
themselves. Two such examples are given below where we
choose a small 2 × 2 contact region.

1. Example of driven systems with attractive interactions

In Fig. 3 we consider three systems, a driven system 1
with K = −1, E = 6, a driven system 2 with K = −0.75,
E = 4 and an equilibrium system 3 with K = 0, E = 0.
First, system 1 with density n1 
 0.60 and system 2 with
density n2 
 0.29 are separately equilibrated with system 3
with a fixed density n3 
 0.15. We then find that system 1 and
system 2, with the initial densities n1 
 0.60 and n2 
 0.29
respectively, equilibrate with each other such that, to a very
good approximation, the respective final steady-state values of
densities n′

1 
 0.60 and n′
2 
 0.29 remain almost unchanged.

2. Example of driven systems with repulsive interactions

In Fig. 4 we consider three systems: a driven system 1 with
K = 3.75 and E = 6, a driven system 2 with K = 1.5 and
E = 5, and an equilibrium system 3 with K = 0.75 and E = 0.
System 1 with density n1 
 0.40 and system 2 with density
n2 
 0.57 are separately equilibrated with system 3 with a
fixed density n3 
 0.76. In Fig. 4 one could see that systems
1 and 2 with the initial densities n1 
 0.40 and n2 
 0.57,
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FIG. 4. (Color online) Numerical experiments to test the zeroth
law (2 × 2 contact region). The top panel shows the average densities
as a function of position coordinates rx and ry . The bottom panel
shows the cross sections (in the x direction) of the density profiles. For
driven system 1, K = 3.75, E = 6, and V = 32 × 32 (bottom density
profiles). For driven system 2, K = 1.5, E = 5, and V = 40 × 40
(middle density profiles). For equilibrium system 3, K = 0.75, E =
0, and V = 50 × 50 (top density profiles). In experiment 1, system
1 with density n1 
 0.40 (bottom red profile in the top panel or
bottom solid red line in the bottom panel) equilibrated with system
3 with density n3 
 0.76 (top gray profile in the top panel or top
dotted gray line in the bottom panel). In experiment 2, system 2 with
density n2 
 0.57 (middle black profile in the top panel or middle
dotted black line in the bottom panel) equilibrated with system 3 with
density n3 
 0.76 (top green profile in the top panel or top solid green
line in the bottom panel). In experiment 3, system 1 with density n′

1

(bottom blue profile in the top panel or bottom dotted blue line in
the bottom panel) equilibrated with system 2 with density n′

2 (middle
magenta profile in the top panel or middle solid magenta line in the
bottom panel), where n′

1 
 n1 and n′
2 
 n2.

respectively, equilibrate with each other with their respective
final densities n′

1 
 0.39 and n′
2 
 0.58. Also in this case the

zeroth law is satisfied to a good approximation, where final
densities n′

1 and n′
2 remain almost the same as the initial

densities.
Interestingly, as seen in Figs. 3 and 4, two systems in contact

have homogeneous density profiles even when one or both of
them may be driven. The driven systems are indeed far away
from equilibrium since the numerical values of the currents in
the nonequilibrium steady states considered in Figs. 3 and 4
are near the respective maximum values of the currents (data
not shown). Moreover, in the top panel of Fig. 4, system 1
with density n1 
 0.40 has a homogeneous disordered state in
contrast to an ordered state for the corresponding equilibrium
system. The equilibrium system, with the same interaction
strength K = 3.75 and the same density, has a symmetry-
broken ordered phase with a checkerboardlike pattern where
sublattice densities are different [17].

Importantly, the macroscopic properties such as densities
do indeed depend on the driving field when a driven system
1 is kept in contact with an equilibrium system 2 with a fixed
density n2. This can be seen in the behavior of density n1 of
a driven system as a function of driving field E1. We consider
the driven systems that were previously used to test the zeroth
law in Figs. 3 and 4. In the top panel of Fig. 5, densities of
two driven systems with attractive interactions, with K1 = −1
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FIG. 5. (Color online) Density n1 of a driven system 1 as a
function of driving field E1 when system 1 is in contact (in the
2 × 2 contact region) with equilibrium system 2 with a fixed density
n2. The top panel shows the densities of two driven systems with
interaction strengths K1 = −1 and −0.75 plotted as a function of their
respective driving fields E1 when the systems are separately in contact
with an equilibrium system with K2 = 0 and n2 
 0.15. The bottom
panel shows the densities of two driven systems with interaction
strengths K1 = 3.75 and 1.5 plotted as a function of their respective
driving fields E1 when the systems are separately in contact with
an equilibrium system with K2 = 0.75 and n2 
 0.76. Horizontal
straight lines are guides to the eye, representing the density values of
the corresponding driven systems at very large driving fields.

and −0.75, have been plotted as a function of the driving
fields E1 in their respective systems where both systems are
separately kept in contact with an equilibrium system with
K2 = 0 and a fixed density n2 
 0.15. In the bottom panel of
Fig. 5, densities of two other driven systems with repulsive
interactions, with K1 = 3.75 and 1.5, have been plotted as a
function of the driving fields E1 in their respective systems
where both systems are now separately kept in contact with an
equilibrium system with K2 = 0.75 and a fixed density n2 

0.76. One could see that the densities vary quite significantly,
by almost 10% or more from the respective equilibrium values
depending on the interaction strengths, when the driving field
varies from E1 = 0 to a large value E1 � K1.

Provided that the zeroth law is satisfied, one can define
a chemical potential even for a driven system as follows. A
driven system is kept in contact with an equilibrium system
and allowed to reach a steady state. Then, in the steady state,
one can simply assign the chemical potential of the equilibrium
system to the driven one. For nonzero interaction strengths
K 	= 0, even the equilibrium chemical potential μ cannot be

 0.2

 0.4

 0.6

 0.8

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

n

μ

K2=0
K2=-0.25
K2=-0.5

FIG. 6. (Color online) Density n vs chemical potential μ plotted
for a driven system with K1 = −1 and E1 = 6, which is separately
kept in contact (in the 2 × 2 contact region) with three equilib-
rium systems with interaction strengths K2 = 0 (asterisks), −0.25
(squares), and −0.5 (circles). The collapse of the curves agrees well
with the zeroth law.

calculated directly as one does not know the explicit form of
μ(n) as a function of density n. However, for an equilibrium
system with noninteracting hard-core particles K = 0, the
chemical potential μ can be expressed as a function of density
n, where

μ = ln

(
n

1 − n

)
, (4)

by using the relation μ = −(∂s/∂n), where s = −[n ln n +
(1 − n) ln(1 − n)] is the equilibrium entropy per lattice site.
Since the zeroth law is exactly satisfied in equilibrium, the
chemical potential for any equilibrium system with K 	= 0
can be measured by keeping the system in contact with an
equilibrium system with K = 0 and then assigning a chemical
potential for a system with K = 0 to that with K 	= 0. In Fig. 6
we plot the density n as a function of chemical potential μ

when a driven system with K1 = −1 and E1 = 6 is separately
kept in contact with three equilibrium systems with various
interaction strengths K2 = 0, −0.25, and −0.5. Given that
the zeroth law is satisfied, the various curves for density as a
function of chemical potential should fall on each other. The
collapse of curves in Fig. 6 indeed agrees quite well with the
zeroth law.

We have studied the dependence of densities on the system
sizes as well. We find that the densities of two systems in
contact with each other, when one or both systems may be
driven, are almost independent of system sizes. In Fig. 7 we
plot the density n as a function of chemical potential μ for
various system sizes and for various values of interaction
strengths and driving fields. The densities seem to depend
only on the interaction strengths and driving fields of their
respective systems.

In Figs. 3 and 4 we have tested the zeroth law for only
a particular set of values of densities. We now study the
zeroth law for other various densities where the interaction
strengths and driving fields are kept fixed. We consider driven
systems 1 and 2 with respective densities n1 and n2, where the
systems are separately equilibrated with an equilibrium system
3 with density n3 and corresponding chemical potential μ.
Then systems 1 and 2, with the respective initial densities n1
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FIG. 7. (Color online) Density n as a function of chemical
potential μ for driven systems (with fixed K1 and E1) with different
values of system size V1 in contact (in the 2 × 2 contact region) with
an equilibrium system of noninteracting hard-core particles (with
K2 = 0 and E2 = 0) with different values of system size V2. Circles
correspond to the case in which system 1, with V1 = 32 × 32, is in
contact with system 2, with V2 = 32 × 32. Squares correspond to the
case in which system 1, with V1 = 20 × 20, is in contact with system
2, with V2 = 100 × 100. Shown from left to right are two curves
[red (leftmost)] for systems with K1 = −1 and E1 = 6, two curves
[blue (second from left)] for systems with K1 = −0.75 and E1 = 4,
two curves [sky blue (third from left)] for systems with K1 = 1 and
E1 = 6, and two curves [black (rightmost)] for systems with K1 = 2
and E1 = 2.

and n2, are equilibrated with each other where they eventually
reach final densities n′

1 and n′
2. Clearly, if the zeroth law is

satisfied, then the corresponding initial and final densities
would be exactly the same, i.e., n1 = n′

1 and n2 = n′
2. We

consider the systems as previously discussed in Figs. 3 and 4.
In Fig. 8 we plot n1 and n′

1 for system 1 with K = −1 and
E = 6 as well as n2 and n′

2 for system 2 with K = −0.75
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FIG. 8. (Color online) Final densities n′
1 (open black squares)

and n′
2 (solid magenta squares) for two driven systems (with K = −1

and E = 6 and with K = −0.75 and E = 4, respectively) in contact
(in the 2 × 2 contact region) with each other, compared with their
respective initial densities n1 (open red circles) and n2 (solid blue
circles). The initial densities correspond to those obtained by keeping
the driven systems separately in contact (in the 2 × 2 contact region)
with an equilibrium system of a fixed chemical potential μ. If the
zeroth law is satisfied, the initial and final densities should be exactly
the same for a given μ.
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FIG. 9. (Color online) Final densities n′
1 (open black squares) and

n′
2 (solid magenta squares) for two driven systems (with K = 3.75

and E = 6 and with K = 1.5 and E = 5, respectively) in contact
(in the 2 × 2 contact region) with each other, compared with their
respective initial densities n1 (open red circles) and n2 (solid blue
circles). The initial densities correspond to those obtained by keeping
the driven systems separately in contact (in the 2 × 2 contact region)
with an equilibrium system of a fixed chemical potential μ. If the
zeroth law is satisfied, the initial and final densities should be exactly
the same for a given μ.

and E = 4 as a function of chemical potential μ of the
equilibrium system 3, with K = E = 0. Similarly, in Fig. 9
we plot n1 and n′

1 for system 1 with K = 3.75 and E = 6
as well as n2 and n′

2 for system 2 with K = 1.5 and E = 5
as a function of chemical potential μ of the system 3, with
K = 0.75 and E = 0. Although the zeroth law is satisfied to
a good approximation, there are indeed small but observable
deviations from the law, i.e., up to 5% deviations in the final
densities from the corresponding initial density values. In the
following section we discuss the deviations from the zeroth
law in more detail.

B. Deviations from the zeroth law

In the preceding section we have seen that, for a large
parameter range, the driven lattice gases have an approximate
but remarkably simple thermodynamic structure. However, it
should be noted that there are also larger observable deviations
from the simple thermodynamic law, as discussed next.

In Fig. 10 we perform numerical experiments similar to
that discussed before (see, e.g., Figs. 3 and 4) in which
system 1 with density n1 and system 2 with density n2 are
separately equilibrated with system 3 with a fixed density n3.
Then systems 1 and 2, with their respective initial densities
n1 and n2, are equilibrated with each other where the final
steady-state densities are n′

1 and n′
2, respectively. In the top,

left panel of Fig. 10, six density profiles in the x direction are
plotted for equilibrium systems 1, 2, and 3. As expected, for
equilibrium systems, the zeroth law is exactly satisfied where
n1 = n′

1 
 0.79 (top density profiles) and n2 = n′
2 
 0.41

(middle density profiles), i.e., initial densities are equal to their
respective final densities. In the top, right panel of Fig. 10, six
density profiles in the x direction are plotted when systems 1
and 3 are equilibrium systems but system 2 is driven with a
large field E2 = 10. In this case, the zeroth law is observed
to be violated significantly where n1 
 0.79 	= n′

1 
 0.75 (top
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FIG. 10. (Color online) Cross sections (in the x direction) of
the density profiles are plotted in top panel. Systems 1, 2, and 3
(all with the same size V = 50 × 50 and 2 × 2 contact region) have
interaction strengths K = −1 (top density profiles), −0.75 (middle
density profiles), and 0 (bottom density profiles), respectively. First,
system 1, with density n1, and system 2, with density n2, are separately
equilibrated with system 3, with density n3. Then systems 1 and 2,
with initial densities n1 and n2, respectively, are equilibrated with each
other where the final steady-state densities are n′

1 and n′
2, respectively.

The top panel (left) shows equilibrium systems where n1 = n′
1 and

n2 = n′
2. The top panel (right) shows system 2 driven with field

E2 = 10 where n1 	= n′
1 and n2 	= n′

2. The bottom panel shows the
difference in density δn2 = n′

2 − n2 plotted versus driving field E2

for system 2. The blue line, which is a fitting function a − be−κE2
2

with a = 0.036, b = 0.036, and κ = 0.78, is a guide to the eye.

density profiles) and n2 
 0.34 	= n′
2 
 0.38 (middle density

profiles), i.e., final densities change appreciably as compared
to their respective initial densities. In the bottom panel of
Fig. 10, the density difference δn2 = n′

2 − n2 is plotted as a
function of the driving field E2 in system 2.

One can also observe the deviations from the zeroth law,
which is now studied in a slightly different way as follows.
We first try to assign a chemical potential to a driven system
by keeping the system separately in contact with various
equilibrium systems and then compare the density versus
chemical potential curves. In Fig. 11 we plot the density n

as a function of chemical potential μ for a driven system,
with K1 = −1 and E1 = 6, which is separately kept in contact
with three equilibrium systems with the following interaction
strengths: K2 = 0, −0.8, and −0.9. If the zeroth law was
satisfied, all the curves should fall on each other. However,
we observe that there are significant deviations that occur
especially around the density n = 1/2. In Fig. 12 we plot
n vs μ for another driven system, with repulsive interaction

 0.2

 0.4

 0.6

 0.8

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

n

μ

K2=0
K2=-0.8
K2=-0.9

FIG. 11. (Color online) Density n as a function of chemical
potential μ for a driven system with K1 = −1 and E1 = 6, which
is separately kept in contact with three equilibrium systems with
interaction strengths K2 = 0, −0.8, and −0.9 (2 × 2 contact region).

K1 = 3.75 and E1 = 6, that is separately in contact with
equilibrium systems with K2 = 0.75 and 1. We again see
deviations from the zeroth law when the density approaches
n = 1/2.

IV. ROLE OF CONTACT DYNAMICS: EXACT RESULTS

A. Excess chemical potential in the ZRP

We now study a simple class of driven systems, known as
the zero-range process [13], to understand the role of contact
dynamics in the context of equalization of thermodynamic
variables for driven systems. The ZRP is defined on a discrete
lattice where, unlike the KLS model, there is no restriction on
the occupation number of a site, i.e., the lattice sites can be
occupied by more than one particle. The jump rate of a particle
out of any site is assumed to depend on the number of particles
on the site.

For simplicity, we consider two one-dimensional rings, ring
1 and ring 2, consisting of sites L1 and L2, respectively. The
rings are kept in contact with each other so that they can
exchange particles through the contact area. In the αth ring
(α = 1,2), any site iα (iα = 1,2, . . . ,Lα) is occupied with niα

particles. Any configuration C can be specified by using the

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-1  0  1  2  3  4

n

μ

K2=0.75
K2=1.0

FIG. 12. (Color online) Density n as a function of chemical
potential μ for a driven system with K1 = 3.75 and E1 = 6, which
is separately kept in contact with two equilibrium systems with
interaction strengths K2 = 0.75 and 1 (2 × 2 contact region).
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occupation numbers at all sites of two rings, C ≡ ({ni1},{ni2}).
Two rings are connected at two sites, say, i1 = 1 and i2 = 1,
through which particles can be exchanged between the rings.
The dynamics is defined as follows: A particle at site iα can
jump only in one direction, say, to the nearest neighbor site
iα + 1 in the clockwise direction (therefore violating detailed
balance), with rate

uα(niα ) = vα

fα(niα − 1)

fα(niα )
with α = 1,2, (5)

where fα(niα ) is a function of occupation number niα and the
factor vα is independent of niα . The form of the jump rates
is the same as given in Eq. (5) irrespective of jumps in the
bulk or jumps from one ring to the other. The factors vα ,
however, can generally be different, i.e., vα = v(b)

α when a
particle jumps in the bulk of the αth ring and vα = v(c)

α when
a particle jumps in the contact region from the αth ring to
the other ring. For the zero-range process, the properties of
nonequilibrium steady states while two systems are in contact
has been previously studied, but only for a special case when
v(b)

α = v(c)
α and v

(c)
1 = v

(c)
2 [15]. Here we consider the more

general case when v(b)
α 	= v(c)

α as well as v
(c)
1 	= v

(c)
2 , i.e., the

factor vα taking different values at the bulk and the contact of
the two rings. However, it would be easy to see that the factor
v(b)

α taking different values in two different rings does not
change the steady-state properties. Therefore, we henceforth
set v

(b)
1 = v

(b)
2 = 1. In addition, for notational simplicity, we

denote v1 ≡ v
(c)
1 and v2 ≡ v

(c)
2 . For completeness, let us first

discuss the special case when v1 = v2 [15]. The steady-state
probability distribution can be written in a factorized form

P ({ni1},{ni2}) = 1

ZN

[
L1∏

i1=1

f1(ni1 )
L2∏

i2=1

f2(ni2 )

]

× δ(N1 + N2 − N ), (6)

where N1 = ∑L1
i1=1 ni1 and N2 = ∑L2

i2=1 ni2 are the numbers
of particles in rings 1 and 2, respectively, and ZN is the
normalization constant. The δ function in Eq. (6) takes into
account that the total number of particles N = N1 + N2

is conserved. Clearly, in this case, the joint probability
distribution P (N1,N2) of particle numbers N1 and N2 can
be written in a product form

P (N1,N2) = Z1(N1)Z2(N2)

ZN

, (7)

where Zα(Nα) = ∑
{niα }

∏Lα

iα=1 fα(niα )δ(
∑Lα

iα=1 niα − Nα). As
discussed in Refs. [12,15], in this case, one can define an
intensive variable μα = −∂ ln Zα/∂Nα that equalizes when
two rings are kept in contact, i.e., μ1 = μ2.

Now we discuss the general case when v1 	= v2, which leads
to our main points. Interestingly, as shown in Appendix A, the
steady-state probability distribution can still be written in a
factorized form

P ({ni1},{ni2}) = 1

ZN

[
L1∏

i1=1

f1(ni1 )
L2∏

i2=1

f2(ni2 )

]

× eμ̃1N1eμ̃2N2δ(N1 + N2 − N ), (8)

where μ̃1 = ln(1/v1) and μ̃2 = ln(1/v2), which we call excess
chemical potentials. Now the joint probability distribution
P (N1,N2) of particle numbers N1 and N2 can be expressed as

P (N1,N2) = Z1(N1)Z2(N2)

ZN

eμ̃1N1eμ̃2N2 . (9)

The macrostate is obtained by maximizing ln P (N1,N2),
i.e., ∂ ln P (N1,N2)/∂N1 = 0. Therefore, it straightforwardly
follows that(

∂ ln Z1

∂N1
+ μ̃1

)
=

(
∂ ln Z2

∂N2
+ μ̃2

)
(10)

or, in other words, there indeed exists a new intensive
variable μ′

α = (−∂ ln Zα/∂Nα + ln vα), with α = 1,2, which
takes the same values for two rings in contact, i.e., μ′

1 = μ′
2.

For the special case when v1 = v2, the excess chemical
potentials are equal (i.e., μ̃1 = μ̃2) and drop out of Eq. (10),
which then implies that the old variables μ1 and μ2 equalize.
However, in the case when v1 	= v2, the new variable μ′

α

takes the role of the chemical potential, which then equalizes
upon contact. This identification of μ′

α as an intensive
variable that equalizes for two systems in contact was missed
in Refs. [12,15], where it was concluded that there is no
such equalization when v1 	= v2. Moreover, contrary to the
suggestion in Ref. [15], the detailed balance condition is still
satisfied at the contact even when v1 	= v2.

For a class of systems specified by a particular set of
parameters {fα(n),vα}, it can be immediately checked that
the zeroth law is indeed satisfied. In Fig. 13 we perform
various numerical experiments similar to those discussed in

 2
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 3.1

 7.7

n1′
n1

n2
n2′

n3

x

 2.3
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 7.7

n1=n1′

n2=n2′

n3

n

x

FIG. 13. (Color online) Density profiles for rings 1, 2, and 3 (all
with the same size L = 100). The left panel shows three numerical
experiments to test the zeroth law in the case of the ZRP. In experiment
1, ring 1 (with δ1 = 3 and v1 = 1) is in contact with ring 3 (with δ2 = 5
and v2 = 0.5). In experiment 2, ring 2 (with δ1 = 4 and v1 = 0.75)
is in contact with ring 3 (with δ2 = 5 and v2 = 0.5). In experiment
3, ring 1 (with δ1 = 3 and v1 = 1) is in contact with ring 2 (with
δ2 = 4 and v2 = 0.75). The zeroth law is satisfied in this case. The
right panel shows three numerical experiments to illustrate the role of
contact dynamics for the deviations from the zeroth law. In experiment
1, ring 1 (with δ1 = 3 and v1 = 1) is in contact with ring 3 (with
δ2 = 5 and v2 = 0.5). In experiment 2 with slightly perturbed jump
rates in the contact region, ring 2 (with δ1 = 4 and v1 = 0.85) is in
contact with ring 3 (with δ2 = 5 and v2 = 0.4). In experiment 3, ring
1 (with δ1 = 3 and v1 = 1) is in contact with ring 2 (with δ2 = 4 and
v2 = 0.75). The zeroth law is not satisfied in this case.
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Figs. 3 and 4. We choose fα(n) = nδα−1 with various sets of
parameter values for {δα,vα}. In the first experiment, ring 1
with δ1 = 3, v1 = 1, and density n1 
 2.3 equilibrated with
ring 3 with δ2 = 5, v2 = 0.5, and density n3 
 7.7. In the
second experiment, ring 2 with δ1 = 4, v1 = 0.75, and density
n2 
 3.8 is equilibrated with ring 3 with δ2 = 5, v2 = 0.5, and
density n3 
 7.7. In the third experiment, ring 1 with δ1 = 3,
v1 = 1, and density n′

1 
 2.3 is equilibrated with ring 2 with
δ2 = 4, v2 = 0.75, and density n′

2 
 3.8 where n′
1 
 n1 and

n′
2 
 n2. In this case one can see that the zeroth law is satisfied

(see the left panel of Fig. 13). We have also checked that values
of the densities are such that chemical potential μ′

α takes equal
values for two rings in contact. In the right panel of Fig. 13 we
again perform three similar numerical experiments but now,
in the second experiment, the values of the factors v1 = 0.85
and v2 = 0.4 are slightly perturbed by an arbitrary amount
from the earlier values of the factors v1 = 0.75 and v2 = 0.5,
which were chosen in the second experiment of the first set
of numerical experiments (i.e., corresponding to the left panel
of Fig. 13). One can see that, in this case, the zeroth law is
violated even though the factorization property as given in
Eq. (8) exactly holds in each of the three experiments. This
illustrates the role of contact dynamics for the zeroth law,
which is satisfied only for a precise set of jump rates in the
contact region with no arbitrariness allowed in these rates.

B. Excess chemical potential in the equilibrium KLS model

The above situation in the case of the ZRP is very similar
to the special case of the equilibrium KLS model when one
chooses the transition rates as given in Eqs. (2) and (3) with no
driving in the bulk of the individual systems, i.e., E1 = E2 =
0, and a slightly modified transition rate in the contact region
as follows. In general, the transition rate for a particle jumping
from system 1 to system 2 is given by

w(C → C ′) = v1min{1,e−�(0)} (11)

and the reverse transition rate for the particle jumping from
system 2 to system 1 is given by

w(C ′ → C) = v2min{1,e−�(0)}, (12)

where we set β = 1. For v1 = v2 = 1, the jump rates in
the contact region are same as given in Eq. (3). Clearly,
the modified transition rates in the contact region amount
to an additional field E12 = ln(v1/v2), say, from system 1 to
system 2, along the bonds connecting the two systems. Note
that the field E12 is not a driving field and just introduces
an extra overall shift in the chemical potential of system
1. The field E12 accordingly modifies the energy function
from H to H ′ by introducing an extra chemical potential
in Eq. (1), i.e., H ′ = H + E12N1. In this case, the detailed
balance is satisfied with respect to the Boltzmann distribution
with the modified energy function H ′. Consequently, one could
effectively think of an excess contribution to the equilibrium
free energy of system 1 due to the shift in the chemical
potential of system 1 by an amount E12. Now the condition of
minimization of the total free energy F = F1 + F2, as given
in Eq. (10) for the zero-range process, would imply that
the new intensive variables μ′

α = (−∂ ln Zα/∂Nα + ln vα),
not the variables μα = −∂ ln Zα/∂Nα , equalize where the

free energies of the respective systems are F1 = − ln Z1 +
μ̃1N1 and F2 = − ln Z2 + μ̃2N2 with partition function Zα =∑

C e−Hα (C), the energy function for the individual systems
Hα = Kα

∑
〈rα,r′

α〉 η(rα)η(r′
α) [see Eq. (1)] for α = 1,2. Con-

sequently, the zeroth law is satisfied in the case when each
system is assigned a particular set of values of the factors vα .
However, if the factors vα are chosen arbitrarily in any of the
numerical experiments as shown in the right panel of Fig. 13
in the case of the ZRP, the zeroth law would not hold even for
the equilibrium KLS model with the modified jump rates in
the contact region.

V. ANALYTICAL APPROACHES FOR
THE DRIVEN KLS MODEL

In this section we discuss first how the zeroth law, which has
been shown to be satisfied to a very good approximation in the
simulations of the driven KLS model for various parameter
values, could be explained in terms of the large-deviation
principle. Then we discuss how the deviations from the zeroth
law, also observed in the simulations, could be explained by
modifying this large-deviation principle.

A. Large-deviation principle

In equilibrium, the zeroth law can be derived from vari-
ational principles, e.g., by maximization of entropy of an
isolated system or by minimization of free energy in the case
in which the system is in contact with a reservoir. For some
nonequilibrium systems, there may be a similar principle,
called the large-deviation principle [3,26]. The zeroth law
can be derived from the large-deviation principle along the
same lines as in equilibrium in the following way. Let us
consider the scenario in which two systems are kept in contact
with each other with a particular dynamics specified in the
contact region. The two systems exchange, according to the
contact dynamics, some conserved quantity, say, the number
of particles, such that N1 + N2 = N = const, with N1 and
N2 the number of particles in systems 1 and 2, respectively
(schematically shown in Fig. 1). The quantities N1 and N2 are
considered to be extensive, i.e., proportional to the volumes V1

and V2 of systems 1 and 2, respectively. We are interested in
large deviations of N1 and N2 and assume that the probability
of a large deviation P (N1,N2) in the quantities N1 and N2 is
given by

P (N1,N2) ∼ e−V1f1(n1)e−V2f2(n2)

e−F (N)
(13)

in the limit of N1,N2,V1,V2 � 1, keeping their respective
densities n1 = N1/V1 and n2 = N2/V2 finite with the normal-
ization constant exp[−F (N )]. Equation (13) is the statement
of the large-deviation principle [3,26] and the functions f1(n1)
and f2(n2) are called the large-deviation functions for the
corresponding systems. The sign “∼” implies equality in terms
of the logarithm of the respective quantities and Eq. (13) can
be written more rigorously as

− ln P (N1,N2) = V1f1(n1) + V2f2(n2) − F (N )

+ ε(N1,N2), (14)

where ε(N1,N2)/ ln P (N1,N2) → 0 as N1,N2 → ∞. Note
that in writing Eqs. (13) and (14) we have assumed that the
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correlation between systems 1 and 2 can be neglected as a
boundary effect in the limit of large volume. To ensure that the
correlation is minimal, in this paper we consider the model of
two systems in contact where the contact area is chosen to be
very small compared to the volume of each of the systems so
that the contact region does not affect the bulk of the systems
much. In the case in which the contact area is comparable
to the volume of the system, as in the case of driven bilayer
systems studied before [24], the combined system may not be
divided into two subsystems and in that case the fluctuations
in the subsystems are not independent of each other.

Now, from Eq. (14), the macroscopic stationary
state {N∗

1 ,N∗
2 }, under the constraint N1 + N2 = const,

can be determined by maximizing ln P (N1,N2), i.e.,
∂ ln P (N1,N2)/∂N1 = 0, which gives(

∂f1

∂n1

)
n∗

1

=
(

∂f2

∂n2

)
n∗

2

= μ, (15)

where n∗
1 = N∗

1 /V1, n∗
2 = N∗

2 /V2, and μ is the chemi-
cal potential, which takes the same values in the steady
state when systems 1 and 2 are kept in contact. Note that the
validity of Eq. (15), which implies the existence of an intensive
thermodynamic variable, follows from the assumption of the
large-deviation principle of Eq. (13). The preceding arguments
are quite general and could be valid irrespective of the specific
nature of the dynamics one considers in a particular problem.
Therefore, Eq. (15) can be equally applicable to an equilibrium
and a nonequilibrium steady state. Another consequence of
equalization of intensive variables is the fluctuation-response
relation between the compressibility and the fluctuations in
particle number N1 of system 1, i.e.,

∂〈N1〉
∂μ

= 〈
N2

1

〉 − 〈N1〉2, (16)

when system 1 is kept in contact with a very large system
2, with chemical potential μ, which can be considered as
a particle reservoir (i.e., N1 � N2 and V1 � V2). For more
details regarding the above fluctuation relation in the context
of the ZRP as well as for the KLS model, see Appendix B.

B. Modified large-deviation principle

The exact results for the ZRP and the equilibrium KLS
model give us insight into the role of the contact dynamics,
which can effectively introduce an excess chemical potential
across the contact region. Consequently, the intensive variable
for a system that equalizes upon contact can have different
functional forms depending on the specifics of the dynamics in
the contact region and therefore on the other system in contact.
To describe this situation in a more general context where
there may be equalization of an intensive variable but still the
zeroth law does not strictly hold, we write the large-deviation
probabilities as given in Eq. (13) in a modified asymptotic
form

P (N1,N2) ∼ e−V1f1(n1)e−V2f2(n2)eμ̃1N1eμ̃2N2

e−F (N)
(17)

where f1 and f2 are the large-deviation functions for a putative
contact dynamics for which the zeroth law is satisfied and the
two additional quantities μ̃1 and μ̃2 can be thought of as excess

chemical potentials arising solely due to the actual contact
dynamics that is under consideration for which the zeroth
law is not satisfied. Clearly, for an arbitrarily chosen contact
dynamics, the old intensive variables μ1 = ∂f1/∂n1 and μ2 =
∂f2/∂n2 do not equalize. Note that, unlike in the case of the
ZRP or the equilibrium KLS model, the potentials μ̃1 and μ̃2

generally are a priori unknown for a given contact dynamics.
Moreover, for an arbitrarily chosen contact dynamics, it may
not always be possible to assign to the individual systems an
intensive variable that is independent of the specifics in the
contact region between two systems. In this case, even though
there can be equalization of some intensive variable when two
systems are kept in contact, the zeroth law may not be satisfied
as demonstrated in the case of the ZRP (see the right panel of
Fig. 13).

The modified large-deviation principle in Eq. (17) still
assumes that two systems in contact have an asymptotic
factorization property in the sense that the correlations between
the systems can be ignored in the large-volume limit. In a
special case (e.g., the ZRP or the equilibrium KLS model), the
chemical potentials μ̃1 and μ̃2 can be constant over an entire
density range. However, in general, the quantities μ̃1(n1) and
μ̃2(n2) can be functions of densities n1 and n2. Note that,
although the large-deviation principles in Eqs. (13) and (17)
appear to have different forms, they are essentially the same.
The only difference is that in the modified form of Eq. (17) we
identify the contribution to the large-deviation function due to
the contact dynamics and separate this contribution from that
arising due to the bulk of the individual systems.

The asymptotic factorization can indeed be a very good
approximation even in the case of a more complicated driven
lattice gas such as the KLS model. To show this we now
study various spatial density correlations c

(α)
ij (rj,α) between

two points located in the individual systems as well as two
points located in two different systems across the contact
region. We define the function

c
(α)
ij (rj,α) =

〈{
�η

(
rc
i

)}{
�η

(
rc
j + rj

)}〉
√〈{

�η
(
rc
i

)}2〉√〈{
�η

(
rc
j + rj

)}2〉 , (18)

which denotes the scaled correlation along αth direction
between two points in systems i and j , where rj,α is the αth
component of the position vector rj with i,j = 1,2 and α =
x,y (for a two-dimensional system), �η(r) = η(r) − 〈η(r)〉
is the fluctuation in the occupation variable η(r), and rc

i is
the position vector of the contact site in system i. For i = j ,
c

(α)
ii (ri,α) denotes the density correlation, along the α axis,

between two points, both located in the same system i and,
for i 	= j , c

(α)
ij (rj,α) denotes the cross correlation, along the α

axis, between two points, one located in system i and the other
located in system j . In Fig. 14 the scaled correlation c

(α)
ij (rj,α)

is plotted as a function of rj,α for a driven system with K1 =
−0.75, E1 = 4, and an equilibrium system with K2 = −0.75,
where the systems are kept in contact, both at density n = 1/2.
One can see that the amplitude of the cross correlations
among nearest-neighbor sites located in two different systems
across the contact region are very small, almost an order
of magnitude smaller than those among neighboring sites in
the individual systems, i.e., c

(α)
21 (0),c(α)

12 (0) � c
(α)
11 (1),c(α)

22 (1).
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FIG. 14. (Color online) Correlations between various neighbor-
ing sites as a function of distance when a driven system 1 (with
K = −0.75, E = 4, and V = 50 × 50) and an equilibrium system
2 (with K = −0.75, E = 0, and V = 50 × 50) are in contact (in
the 2 × 2 contact region) with each other. The function c

(α)
ij (rj,α)

denotes the scaled correlation [see Eq. (18)] in the αth direction
between two points located in systems i and j , where rj,α is the αth
component of the relative position vector rj between the two points
with i,j = 1,2 and α = x,y (for two-dimensional systems), and
�η(r) = η(r) − 〈η(r)〉 is the fluctuation in the occupation variable
η(r). For i 	= j , c

(α)
ij (rj,α = 0) is the correlation between two nearest-

neighbor sites located across the contact.

Therefore, the asymptotic factorization property is expected
to be well satisfied in this case. Moreover, the very weak
cross correlation between two systems in contact explains
why the density profiles remain almost homogeneous even
around the contact. Note that the density-correlation functions
c

(x)
11 (r1,x) and c

(y)
11 (r1,y) for the driven system in the x and

y directions, respectively, are clearly different due to the
presence of a strong driving field that breaks the isotropy,
whereas for the equilibrium system the correlations c

(x)
22 (r1,x)

and c
(y)
22 (r1,y) remain the same, as expected. For attractive

interaction strengths, the correlations perpendicular to the
driving field become negative at larger distances. This picture
remains qualitatively the same at other densities as well.

C. Excess chemical potential in the driven KLS model

The role of the contact dynamics in the KLS model can be
more complex than that in the previously discussed models of
the ZRP. However, interestingly for some parameter values, we
indeed find evidence of a constant difference δμ = μ̃1 − μ̃2 in
the excess chemical potentials in a wide density range even in
the KLS model for nonzero driving. This supports the modified
form of the large-deviation principle even for the KLS model.

We consider the density n as a function of the chemical
potential μ for a driven system with K = −1 and E = 6 that
is separately kept in contact with various equilibrium systems
with interaction strengths K = 0, −0.8, and −0.9. As we
have already shown in Fig. 11 for the same systems, there
were indeed deviations from the zeroth law observed as the
different curves for n vs μ in Fig. 11 do not fall on each other.
However, by now shifting the chemical potential μ to μ + δμ

and choosing a suitable δμ in each of the cases, all the curves
can be made to collapse on each other quite well, as can be
seen in Fig. 15.
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n

μ

FIG. 15. (Color online) Density n vs shifted chemical potential
μ plotted for a driven system with K = −1 and E = 6, which is
separately kept in contact (in the 2 × 2 contact region) with three
equilibrium systems with interaction strengths K = 0, −0.8, and
−0.9. By shifting μ → μ + δμ, all curves collapse on each other
well where we choose δμ = 0.06 and 0.095 for the cases in which
the driven system is in contact with the equilibrium systems with
K = −0.8 and −0.9, respectively.

We have done the same analysis for another driven system
with a different set of parameter values K = 3.75 and E = 6.
The driven system is separately kept in contact with two
equilibrium systems with interaction strengths K = 0.75 and
1.0. In Fig. 16 the densities n are plotted as a function of the
shifted chemical potential μ (also see Fig. 12). The curves
could be collapsed on top of each other reasonably well by
shifting the μ to μ + δμ.

However, for both cases in Figs. 15 and 16, it should be
noted that the collapse is not so good at very low chemical
potentials (i.e., low densities). This indicates that the difference
in the excess chemical potential δμ actually may not be
constant over the entire chemical potential range and can
depend on the chemical potential itself (or, equivalently, the
density) of the corresponding equilibrium system in contact.
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FIG. 16. (Color online) Density n vs shifted chemical potential
μ plotted for a driven system with K = 3.75 and E = 6, which is
separately kept in contact (in the 2 × 2 contact region) with two
equilibrium systems with K = 0.75 and 1. Shifting μ → μ + δμ,
two curves collapse on each other reasonably well by choosing
δμ = 0.1 for the case when the driven system is in contact with
the equilibrium system with K = 0.75.
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VI. CONCLUDING PERSPECTIVE

In this paper we have studied equilibration of driven lattice
gases when two systems are kept in contact and allowed to ex-
change particles with the total number of particles conserved.
Interestingly, for both attractive and repulsive nearest-neighbor
interactions and for a wide range of parameter values, there
is a remarkably simple, though approximate, thermodynamic
structure where the zeroth law is quite well satisfied.

However, deviations from this simple thermodynamic law
are also observed. To understand these deviations, we studied
the nontrivial role of the contact dynamics for a variant of
the zero-range process as well as a variant of the equilib-
rium Katz-Lebowitz-Spohn model, where one can calculate
the steady-state probability distribution exactly. Using these
simple examples, we pointed out that, due to the modified
contact dynamics, there can be an excess chemical potential
induced across the contact region. These results led us to
express the large-deviation principle in a modified form that
elucidates the role of the contact and can substantially account
for the deviations from the zeroth law.

It is important to note that the modified form of the
large-deviation principle is still based on the asymptotically
factorized form of the steady-state distribution for two driven
systems in contact and is valid if the correlations between the
systems can be neglected in the large-volume limit. In the case
of the variant of the ZRP discussed here, these correlations are
zero. In the case of the driven KLS model, we observed that
the spatial density correlations across the contact are indeed
very small compared to the nearest-neighbor correlations
in the individual systems. Interestingly, we found evidence
of an almost constant excess chemical potential for various
parameter values and in a wide range of densities, therefore
supporting the applicability of the modified large-deviation
principle to the KLS model.

In general, the results in this paper lead us roughly to the
following possible scenarios for driven systems in contact.

(i) The large-deviation principle (in other words, the
asymptotic factorization property) may break down due to
long-ranged correlations that may be present in the driven
systems [27–29]. In this case, the combined system cannot be
divided into independent subsystems and there would be no
intensive variable that equalizes upon contact.

(ii) However, when the amplitudes of these correlations are
sufficiently weak, it is possible that a large-deviation principle
holds, although in a modified form. In these cases, the systems
can be characterized by the excess chemical potentials across
the contact and consequently there would be some intensive
variable that would then equalize upon contact. Note that
introducing the excess chemical potential is essentially a way
of reparametrization of the chemical potential of the driven
system under consideration. These excess chemical potentials
can depend on the specifics of the contact dynamics and they
are generally a priori unknown, therefore in a sense arbitrary.
For some parameter values, the excess chemical potential
may be almost constant over a range of densities. In special
cases, the arbitrariness of the excess chemical potential can be
removed by choosing a suitable contact dynamics such that the
zeroth law strictly holds. In these cases it is actually possible
to assign to the individual systems an intensive variable,

independent of the specifics in the contact region between two
systems, which would then equalize. It should be noted here
that the modified large-deviation principle could be satisfied
irrespective of whether or not the zeroth law is satisfied, which
has been illustrated in this paper by using a variant of the ZRP.

For the ZRP, since the steady-state properties are exactly
known, it is easier to choose a contact dynamics so that the
zeroth law can be satisfied. However, for the KLS model that
has nontrivial steady-state properties, it would be difficult to
find a contact dynamics, even if it exists, for which the zeroth
law would strictly hold. For the KLS model, here we have
considered a contact dynamics, mainly based on a physical
ground albeit on an ad hoc basis, that satisfies the local
detailed balance condition. The simple modification of the
large-deviation principle suggested in this paper indicates that
it could still be possible to choose a contact dynamics such that
the thermodynamic laws are satisfied even better. The origin of
the excess chemical potential in the contact region should be
understood in more detail, which could give valuable insight
into whether it is possible to choose a contact dynamics for
which a simple thermodynamic structure emerges for driven
systems in general.

There are additional important aspects in exploring such
a simple structure for driven systems in contact. Unlike in
equilibrium, where there is a well-defined prescription to
describe various thermodynamic properties using the standard
Boltzmann distribution, there is no such prescription for
nonequilibrium systems. However, the numerically observed
simple thermodynamic structure concerning driven lattice
gases in contact may give us a useful tool to characterize
such systems and offers the possibility of describing phase
transitions that are known to occur in these driven interacting
many-particle systems.
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APPENDIX A: STEADY-STATE DISTRIBUTION
FOR THE ZRP WHEN v1 �= v2

In the general case when v1 ≡ v
(c)
1 	= v2 ≡ v

(c)
2 , the ansatz

for the steady-state probability distribution is given by

Pst({ni1},{ni2}) = 1

ZN

[
L1∏

i1=1

f1(ni1 )
L2∏

i2=1

f2(ni2 )

]

× 1

v
N1
1 v

N2
2

δ(N1 + N2 − N ), (A1)

where N1 and N2 are the numbers of particles in rings 1 and 2,
respectively, and N = N1 + N2 is the total conserved particle
number. Now we consider the two following cases: (i) when
a particle jumps in the bulk, say, in ring 1, and (ii) when a
particle jumps from one ring to the other.

Case (i). Consider the two following transitions
from a configuration C to C ′ and a configuration
C ′′ to C where C ≡ ({. . . ,ni1−1,ni1 ,ni1+1, . . .},{ni2}),
C ′ ≡ ({. . . ,ni1−1,ni1 − 1,ni1+1 + 1, . . .},{ni2}), and C ′′ ≡
({. . . ,ni1−1 + 1,ni1 − 1,ni1+1, . . .},{ni2}). The steady-state
probability current J (C → C ′) = Pst(C)w(C ′|C) from
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configuration C to C ′ [where Pst(C) is the probability of
configuration C in a steady state and w(C ′|C) is the transition
rate from C to C ′] can be explicitly written as

J (C → C ′) = 1

ZN

[· · · f (ni1−1)f (ni1 )f (ni1+1) · · ·]

×
[
v

(b)
1

f (ni1 − 1)

f (ni1 )

] [
L2∏

i2=1

f2(ni2 )

]

× 1

v
N1
1 v

N2
2

δ(N1 + N2 − N ), (A2)

where we have used the jump rate in the bulk of ring 1, which
is w(C ′|C) = v

(b)
1 f (ni1 − 1)/f (ni1 ). Finally, we get

J (C → C ′) = 1

ZN

[· · · f (ni1−1)f (ni1 − 1)f (ni1+1) · · ·]

×
[

L2∏
i2=1

f2(ni2 )

]
v

(b)
1

v
N1
1 v

N2
2

δ(N1 + N2 − N ).

(A3)

Similarly, the probability current J (C ′′ → C) =
P (C ′′)w(C|C ′′) from configuration C ′′ to C can be
explicitly written as

J (C ′′ → C) = 1

ZN

[· · · f (ni1−1 + 1)f (ni1 − 1)f (ni1+1) · · ·]

×
[
v

(b)
1

f (ni1−1)

f (ni1−1 + 1)

][
L2∏

i2=1

f2(ni2 )

]

× 1

v
N1
1 v

N2
2

δ(N1 + N2 − N )

= 1

ZN

[· · · f (ni1−1)f (ni1 − 1)f (ni1+1) · · ·]

×
[

L2∏
i2=1

f2(ni2 )

]
v

(b)
1

v
N1
1 v

N2
2

δ(N1 + N2 − N ).

(A4)

The probability currents J (C → C ′) and J (C ′′ → C)
are clearly equal. Since for any transition from C to C ′
it is always possible to find a corresponding transition
C ′′ to C, the net current into C vanishes pairwise, i.e.,
J (C → C ′) = J (C ′′ → C) in the steady state.

Case (ii). Consider two transitions from C to C ′ and the con-
figuration C ′ to C where C ≡ ({. . . ,nk1 , . . .},{. . . ,nk2 , . . .}),
C ′ ≡ ({. . . ,nk1 − 1, . . .},{. . . ,nk2 + 1, . . .}), and k1 and k2 are
the respective contact sites in rings 1 and 2. In this case the
probability current J (C → C ′) can be written as

J (C → C ′) = 1

ZN

[· · · f (nk1 ) · · ·]
[
v1

f (nk1 − 1)

f (nk1 )

]

× [· · · f (nk2 ) · · ·] 1

v
N1
1 v

N2
2

δ(N1 + N2 − N )

= 1

ZN

[· · · f (nk1 − 1) · · ·][· · · f (nk2 ) · · ·]

× 1

v
N1−1
1 v

N2
2

δ(N1 + N2 − N ) (A5)

Similarly, the probability current J (C ′ → C) can be written
as

J (C ′ → C) = 1

ZN

[· · · f (nk1 − 1) · · ·][· · · f (nk2 + 1) · · ·]

×
[
v2

f (nk2 )

f (nk2 + 1)

]
1

v
N1−1
1 v

N2+1
2

δ(N1+N2−N )

= 1

ZN

[· · · f (nk1 − 1) · · ·][· · · f (nk2 ) · · ·]

× 1

v
N1−1
1 v

N2
2

δ(N1 + N2 − N ). (A6)

Clearly, the net probability current into C is again zero
as J (C → C ′) = J (C ′ → C) in the steady state. This
completes the proof for the steady-state ansatz given in
Eq. (A1), which satisfies master equation ∂tPst(C,t) = 0 =∑

C ′ 	=C[Pst(C ′)w(C ′ → C) − Pst(C)w(C → C ′)]. Note that
the condition J (C → C ′) = J (C ′ → C) is nothing but the
detailed balance condition that is satisfied in the contact region
even when v1 	= v2. However, detailed balance is not satisfied
in the bulk and consequently there are nonzero currents within
the individual systems.

APPENDIX B: FLUCTUATION-RESPONSE RELATIONS

One interesting consequence of Eq. (15) is a relation
between the susceptibility and the fluctuation in particle
number of a system when the system is in contact with a large
reservoir characterized by a chemical potential μ. Consider
that system 1 is in contact with system 2, which is very large
compared to system 1. Let us denote by σ 2

N1
the standard

deviation of fluctuations in the total number of particles N1 in
system 1, i.e., σ 2

N1
= 〈N2

1 〉 − 〈N1〉2. Then the large-deviation
principle with the definition of chemical potential as given in
Eq. (15) implies that the fluctuation of particle number around
an average particle number N∗

1 ,

P (N1) ≈ conste−(N1−N∗
1 )2/2χ , (B1)
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FIG. 17. (Color online) A 20 × 20 driven system in contact (in
the 2 × 2 contact region) with a 250 × 250 equilibrium reservoir
of noninteracting hard-core particles. Integrated compressibility Iχ

(squares) and integrated fluctuation Iσ (circles) plotted as a function
of μ for a driven system with two different sets of parameter values
with K = −1 and E = 6 (solid red line) and with K = −0.75 and
E = 4 (dotted blue line). The fluctuation-response relation is well
satisfied.
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where 1/χ = ∂μ/∂N1 = (∂2F1/∂N2
1 )N∗

1
with F1(N1) =

V1f1(n1). Since the root-mean-square fluctuation in the parti-
cle number N1 is σ 2

N1
= 2χ , one gets the fluctuation relation

∂〈N1〉
∂μ

= (〈
N2

1

〉 − 〈N1〉2
)
. (B2)

For the ZRP, even when v1 	= v2, the fluctuation-response
relation between the compressibility and the root-mean-square
fluctuation in particle number N1 is still exactly satisfied if ring
1 is in contact with a much larger ring 2, which is a particle
reservoir. Moreover, since in this case the variables μ′

α and
μα differ only by a constant ln vα [see Eq. (10) and the text
immediately following it], the fluctuation-response relation
is satisfied with respect to both the new and old intensive
variables μ′

α and μα , respectively.
Now we briefly discuss the numerical results concerning the

fluctuation-response relation for the KLS model with attractive
interaction strengths. To numerically test the fluctuation

relation as given in Eq. (B2), we consider a driven system that is
in contact with an equilibrium reservoir of hard-core particles
that are otherwise noninteracting (i.e., K = 0). The chemical
potential μ of the equilibrium hard-core particle reservoir
is given by the expression in Eq. (4). For better numerical
accuracy, we check the integrated version of Eq. (B2),
i.e., we calculate the integrated fluctuation Iσ = ∫ μ

μ0
(σ 2

N1
)dμ′

and the integrated susceptibility Iχ = ∫ μ

μ0
(d〈N1〉/dμ′)dμ′

for different values of μ obtained by varying the density
of the equilibrium reservoir. We take a two-dimensional
20 × 20 nonequilibrium system in contact with a 250 × 250
equilibrium reservoir. In Fig. 17 the integrated compressibility
and the integrated fluctuations are plotted as a function
of chemical potential μ for two driven systems with two
different sets of parameter values with K = −1 and E = 6 and
with K = −0.75 and E = 4. In these cases, the fluctuation-
response relation is remarkably well satisfied, as seen in
Fig. 17.
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Rev. Lett. 87, 195702 (2001); M. A. Muñoz, in Nonequilibrium
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