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Effects of excluded volume interaction on diffusion-reaction processes in crowded environments
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In nonequilibrium phase transitions of reaction-diffusion processes, the irrelevance of excluded volume
interaction for the critical properties generally has been accepted due to the rare probability of multiple occupancy
at criticality. Moreover, this belief is common sense in scale-free (SF) networks, which correspond to infinite
dimensional irregular structures. However, the conventional belief is not satisfied in crowded environments in
which the total number of particles is preserved in time. In this paper, we show, by investigating a typical
process for epidemic spreading in crowded environments, that excluded volume interaction indeed changes
critical behaviors in one dimension and surprisingly even mean-field behaviors in SF networks.
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I. INTRODUCTION

Crowded environments, including a large number of parti-
cles, are ubiquitous in nature and are of practical importance
in a wide range of phenomena in physics, chemistry, and
biology [1–5]. Examples for such environments range from
cells and narrow channels, such as zeolites [2] and nanosize
pores [3] to cities with large populations. In such environ-
ments, the high density of reactants makes excluded volume
or hard-core (HC) interaction important as in biochemical
reactions in cells [4] and driven diffusive systems in one
dimension [5].

There is much evidence for the important effects of the
HC interaction in crowded environments. Nevertheless, the
HC interaction generally has been believed to be irrelevant in
reaction-diffusion systems undergoing continuous transitions.
The reason is that the density of particles is so low near
criticality that multiple occupancy on a site is unlikely. This
conventional belief has been confirmed by the recent success
of bosonic field theory on reaction-diffusion systems [6]. Only
few exceptions have been reported so far [7]. However, when
the number of particles is conserved, crowded environments
do not satisfy the conventional belief, and thus, there are no
physical reasons that bosonic and HC particle systems share
the same critical behaviors in crowded environments. In this
context, it is particularly important to explore the effect of the
HC interaction on the universality of nonequilibrium phase
transitions in crowded environments.

In this paper, we explore the effect of the HC interaction
on the critical behaviors of nonequilibrium absorbing phase
transitions (APTs) under particle conservation. APTs are a
prototype of nonequilibrium phase transitions widespread in
physics, chemistry, biology, and sociology [8]. The univer-
sality of APTs is classified according to various physical
properties, such as conservation laws and symmetries [8]. The
directed percolation (DP) class is the most well-established
and most of studied models belong to the DP class [8].

When activity spreads upon contact with nonorder fields
via diffusion, the conservation of the total number of particles
plays an important role and leads to various non-DP critical
behaviors depending on the diffusion rate of the nonorder
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fields [9–14]. Various reaction-diffusion processes coupled
to nonorder fields have been studied extensively by means
of bosonic field theory and numerical simulations in con-
nection with self-organized criticality, autocatalytic chemical
reactions, epidemic spreading in lattices [9–13], and even in
scale-free (SF) networks [14]. In such processes, reactions
take place in crowded environments even at criticality due
to the conservation, which does not satisfy the conventional
belief for systems without the conservation. This kind of
process can be encapsulated in the so-called diffusive epidemic
process (DEP) of two species defined by two reactions;
spontaneous recovery A → B and infection upon contact
A + B → A + A [12]. Hence, the DEP is a good test bench
for the effect of the HC interaction on APTs in the crowded
environment.

We study the driven DEP of HC particles in SF networks
with degree distribution P (k) ∼ k−γ and one dimension (d =
1) because the bias of motion is a useful and important probe
for testing the robustness of theoretical results for bosonic
systems. In SF networks, topological bias to hub nodes are
naturally induced by heterogeneous degree distributions [15].
The topological bias drives particles to hub nodes, and then,
compact clusters are formed around the hub nodes due to the
HC interaction. Since motion is impossible in such clusters,
DEP dynamics is reduced to the contact process (CP), which
is a typical model of the DP class. In SF networks, the CP
undergoes APTs at a finite infection rate for γ > 2. On the
other hand, in the bosonic counterpart, particles freely diffuse
and pile up on hub nodes. This free diffusion in the bosonic
counterpart always makes the system, in endemic states, 2 <

γ � 3 [14]. As a result, the interplay of topological bias and
the HC interaction completely changes the critical behaviors of
the DEP in SF networks. We analytically show the formation
of a compact cluster for nodes with a degree larger than a
certain crossover value, and resultant critical behavior is just
that of the CP. We also numerically confirm the analytical
predictions.

The results in SF networks suggest that the interplay of
bias and the HC interaction is relevant to critical behavior in
crowded environments. To examine the effect of the interplay
in regular lattices, we investigate the driven DEP in d = 1.
We apply an external field driving all particles in the same
direction. As in SF networks, we find that the interplay indeed
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affects the critical behavior, and the resultant critical behavior
belongs to the DP class, which is different from the non-DP
behavior of the bosonic counterpart. Unlike SF networks, big
compact clusters around special sites cannot form in d = 1.
Instead, the interplay causes nontrivial blocking effects and
causes a direct infection between the nearest neighbors, which
are dominant over the spreading by motion.

Our results suggest that the conventional belief for the
HC interaction no longer holds in crowded environments
and the interplay of bias and the HC interaction can change
the universality of APTs. In particular, in SF networks,
it is naturally believed that the HC interaction is irrele-
vant to critical phenomena because networks correspond
to infinite dimensional irregular structures. It was shown
that reaction-diffusion processes of single species were well
described by bosonic mean-field (MF) theory in SF net-
works [16] and regular lattices [17]. However, our results
in networks suggest that the HC interaction plays an im-
portant role in multispecies systems and provide physical
phenomena that cannot be described by a bosonic MF
theory.

This paper is organized as follows. We introduce the DEP
in Sec. II and present a MF analysis and simulation results in
SF networks in Sec. III. We present simulation results in one
dimension in Sec. IV. We finally summarize our findings with
some discussions in Sec. V.

II. DEP OF HC PARTICLES

DEP of HC particles (HC DEP) consists of two species
corresponding to infected (A) and healthy (B) individuals.
Both species diffuse with rates DA and DB . Hoppings to
occupied sites are forbidden by the HC interaction. An A

particle spontaneously recovers with rate λ; A → B. With the
unit rate, an A particle selects one of the nearest neighbors. If
the selected site is occupied by B, then B is infected; A + B →
A + A. The reactions conserve the total density of particles
ρ = a + b, where a(b) is the density of A(B) particles. The
HC DEP of ρ = 1 is a CP, the prototype for the DP class [8].
For a fixed λ, the DEP undergoes APTs at a critical density
ρc from active states (a > 0) into absorbing ones (a = 0). In
APTs, the order parameter a, spatial correlation length ξ , and
relaxation time τ scale with the distance from criticality � as
a ∼ �β, ξ ∼ |�|−ν⊥ and τ = |�|−ν‖ for � → 0 [8].

For the normal diffusion, universality of the DEP is known
to depend on the value of μ = (DA − DB)/DA in regular
lattices [11,12]. For d < dc(= 4), the DEP belongs to the
conserved DP (C-DP) class for μ = 1 in d = 2 [11]. For
μ < 1, bosonic field theory predicted two distinct critical
behaviors, which were different from both DP and C-DP
classes for 0 � μ < 1 and discontinuous transition for μ < 0
[12]. However, numerical studies yielded conflicting estimates
of scaling exponents with the theoretical predictions except
for z, so the universality is not firmly established yet [13]. For
d > dc, the exponents take standard MF values; β = ν‖ = 1
and ν⊥ = 1/2 [12]. In SF networks with P (k) ∼ k−γ , the
bosonic DEP exhibits the standard MF behaviors for γ > 3,
but no transitions, i.e., ρc = 0, for 2 < γ � 3 due to the strong
heterogeneity of degree distributions, i.e., hub structures [14].

III. DEP OF HC PARTICLES IN SF NETWORKS

First, we report the results for DA = DB in SF networks.
The generalization for the DA �= DB case is straightforward
and gives the same results. By developing a MF theory for HC
DEP in SF networks, we will show that the HC DEP undergoes
APTs for γ > 2 unlike the bosonic counterpart and shares the
same MF critical behavior with the CP in the networks [18,19].
Networks consist of nodes connected by links. The degree k

of a node is defined as the number of links connected to other
nodes. As usual, we employ the noiseless degree-dependent
MF theory in which one neglects the fluctuations in densities
for nodes with the same k [20]. In the MF theory, one considers
the average density of A particles ak and bk of B’s on a node
with degree k. Total density ρk on a node with k is given as
ρk = ak + bk . Then, the density of A particles is obtained as
a(t) = ∑

k ak(t)P (k) and is obtained similarly for b(t). We
obtain the rate equation of ak as

∂tak = D
[∇2

A

] − λak + bkk
∑
k′

Tkk′ak′P (k′|k), (1)

and we obtain the rate equation similarly for bk(t). We de-
fine [∇2

A] ≡ k(1 − ρk)
∑

k′ Tkk′ak′P (k′|k) − akk
∑

k′ Tk′k(1 −
ρk′)P (k′|k) as the diffusion terms of A’s under the HC
constraint. Tkk′ is the hopping probability from a node with k′ to
one with k, and P (k′|k) is the conditional probability of a node
with k being connected to one with k′. With Tkk′ = 1/k′ and
P (k′|k) = k′P (k′)/〈k〉 for uncorrelated networks, one obtains

∂tak = −λak − D̃ak + [bk + D(1 − ρk)]̃ka, (2)

∂tbk = λak − D̃bk − bkk̃a + D(1 − ρk )̃kb, (3)

where k̃ = k/〈k〉 and D̃ = D(1 − 〈kρk〉/〈k〉). In the steady
states, ρk provides information for the distribution of particles.
Summing up Eqs. (2) and (3), we obtain ρk in the steady states
as

ρk = k/kc

1 − 〈kρk〉/〈k〉 + k/kc

. (4)

kc = 〈k〉/ρ is the crossover k above which ρk ≈ 1. As
expected, the HC constraint bounds ρk � 1, and 〈kρk〉 � 〈k〉. It
results in the reduced diffusion rate D̃ < D. More importantly,
compact clusters of ρk = 1 are formed around nodes with
k  kc. In such compact clusters, diffusion is impossible so
that only the reactions determine the critical behavior of the
clusters. For k � kc, however, particles mainly diffuse due to
ρ � 1, so the contributions of the nodes with k � kc to the
critical behavior of the whole system should be negligible. As
a result, HC DEP should exhibit the same critical behavior
as the CP in SF networks [18,19]. It physically means that
the topologically induced natural bias drives particles to hubs,
and then, compact clusters are formed around the hubs by the
HC interaction. These naturally made compact clusters indeed
change the critical behavior of the DEP in SF networks.

In order to determine the critical behavior, we obtain the
self-consistent equation for the density a in the steady state.
By setting ∂tak = 0 in Eq. (2) and defining λ̃ = 1/(λ + D̃),
one obtains, from a = ∑

k akP (k),

a = λ̃a

〈k〉
∫ ∞

1

[(1 − D)ρk + D]kP (k)dk

1 + λ̃ak/〈k〉 . (5)
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For ρk = 1, Eq. (5) is the density of the CP [18]. With a
fixed ρ, we calculate λc and β. The integral of the first term
I1 in Eq. (5) is I1 � (1 − D)〈kρk〉. Integrating the second
term, one obtains aκc−I1

(γ−1)D = 1
γ−2 − 1

κc(γ−3) + (γ−4)κc
2−γ

(γ−2)(γ−3) with

κc = 〈k〉/̃λa. Comparing the second term with the third, one
obtains λc = 〈kρk〉

〈k〉 , and a ∼ (λc − λ)β with β = 1 for γ > 3
and 1/(γ − 2) for 2 < γ � 3. We note 0 < λc � 1 even for
γ � 3 because of ρk � 1 for all k unlike the bosonic DEP with
λc = ∞ for γ � 3.

At λc, a(t) decays as t−β/ν‖ . ν‖ can be obtained from the rate
equation of a(t). From Eq. (2), we get da/dt = (λc − λ)a(t) −
a(t)〈kak(t)〉/〈k〉. From the quasistatic approximation [21] or
setting ∂tak = 0 in Eq. (2), one obtains the integral form of
〈kak(t)〉. Finally, with the same manner employed to evaluate
the integral in Eq. (5), we obtain

da(t)/dt = (λc − λ)a − ca2 − gaγ−1, (6)

where c and g are nondiverging coefficients. Equation (6) is
just the MF equation for the CP proposed in Ref. [19]. At
λc, one readily finds β/ν‖ = 1 for γ > 3 and 1/(γ − 2) for
2 < γ � 3, so ν‖ = 1 for γ > 2. In the steady state, Eq. (6)
also gave the same β we already found. For DA �= DB , one
easily obtains da/dt by replacing D with DA in Eq. (2), which
gives Eq. (6) with different coefficients. ρk only changes the
dependence of λc on diffusion rates and ρ, for instance, λc = ρ

for DB = 0. Hence, the MF critical behaviors for DA �= DB

are identical to those for the DA = DB case. In conclusion,
the HC DEP undergoes APTs for γ > 2 unlike the bosonic
counterpart and shares the same MF critical behavior with the
CP in SF networks.

To confirm the analytic results, we perform Monte Carlo
(MC) simulations in deterministic annealed SF networks [22].
We used networks with γ = 2.5, kmin = 3, 〈k〉 = 7.3, and size
N up to 106. The density ρ is set as ρ = 0.8. For DA =
DB = 1, we first measure ρk and 〈kρk〉 in the steady states
starting from random distributions and obtain 〈kρk〉 = 6.4. We
can see the simulation result coincides with ρk from Eq. (4)
as shown in Fig. 1(a). For homogeneous initial conditions
of a(0) = ρ, we measure a(t) up to t = 200 time steps by
averaging over 100 independent runs. We first decide the
critical value pc of healing probability p = λ/(1 + λ) for
a fixed ρ. We examine the effective exponent defined as
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FIG. 1. (Color online) The plot of (a) ρk and (b) α(t) for γ =
2.5, ρ = 0.8, and N = 106. (a) Symbols and a solid line correspond
to simulation data and ρk of Eq. (4). (b) Each line from top to bottom
corresponds to the line of p indicated in the legend.

α(t) = − ln[ρ(mt)/ρ(t)]/ ln m, which exhibits upward
(downward) curvature in the active (absorbing) phase. At
pc, a(t) decays as t−β/ν‖ in the limit N → ∞, so α(t)
approaches β/ν‖. In Fig. 1(b), we plot α(t) using m = 2.
We estimate pc = 0.470(1) and β/ν‖ = 1.74(1). Our estimate
is still smaller than the MF value β/ν‖ = 1/(γ − 2) = 2 for
γ = 2.5. However, we confirm α increases with N, α = 1.4(1)
and 1.6(1) for N = 104 and 105, which reflects the strong
finite-size effects of the networks. Hence, we expect β/ν‖ = 2
in the limit N → ∞. We also confirm similar behavior for
DA �= DB and, thus, confirm the MF predictions.

IV. DRIVEN DEP IN ONE DIMENSION

Next, we report simulation results in d = 1 in the presence
of external driving fields to show the effects of the HC
interaction in crowded environments. All particles are driven in
the same direction on a ring of size L. Here, DA(DB) is defined
as the hopping rate of A(B) particles. We perform simulations
with two types of initial conditions, a homogeneous condition
a(0) = ρ and a localized one a(0) = 1/L.

For the homogeneous condition, a(t,L) satisfies a(t,L) =
t−αF (t/Lz) with αν‖ = β at criticality, which allows the finite-
size scaling (FSS) analysis [8]. We set ρ = 0.2 and obtain
simulation results for μ = 1,1/2,0, − 1. From FSS analysis
using L up to 8 × 103, we find z = 1 and α = β/ν⊥ ≈ 1/2 for
μ �= 0. Since the finite-size effects start to come into play at the
relaxation time τ ∼ L for z = 1, FSS analysis for systems of
z > 1 is impossible due to strong finite-size effects. However,
for μ = 0, we observe that the finite-size effects are not strong
enough to hinder FSS analysis. We measure pc = 0.034 65(7)
and estimate α = 0.173(5), β/ν⊥ = 0.25(1), and z = 1.60(5)
(see Fig. 2). These estimates are comparable to DP values;
β/ν‖ = 0.16, β/ν⊥ = 0.252, and z = 1.58 [8].

For the localized condition, one obtains the dynamical
scaling behavior of activity spread, starting from a single A

particle in the sea of randomly distributed B’s. We measure
the number of A particles NA(t) averaged over all samples,
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FIG. 2. (a) aall is a averaged over all runs. The upper inset
shows the data collapsing of aall with α = 0.172, z = 1.6. The lower
inset shows the scaling plot of L = 8000 data with α = 0.172.
(b) as is a averaged over surviving runs. The upper inset shows
the successive slope of the steady state as(L) in the lower inset.
In the insets, line symbols from top to bottom correspond to
p = 0.034 57,0.034 65(pc),0.034 73.
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TABLE I. Critical exponents obtained from localized initial
conditions. DP, C-DP, and anisotropic C-DP (A-C-DP) values are
taken from Refs. [8] and [10]. Figures in parentheses denote statistical
uncertainties.

DA DB μ pc η δ α 2/z

1.0 0.0 1 0.094 55(2) 0.14(1) 0.34(1) 0.17(1) 1.30(2)
1.0 0.5 1/2 0.067 08(8) 0.09(3) 0.39(2) 0.17(2) 1.29(2)
1.0 1.0 0 0.034 50(3) 0.36(2) 0.15(2) 0.16(1) 1.32(3)
0.5 1.0 −1 0.1006(1) 0.05(5) 0.45(5) 0.08(3) 1.1(1)
DP 0.3137 0.159 0.159 1.265
C-DP 0.35 0.170 0.141 1.436
A-C-DP 0 1/2 1/2 2

the survival probability Ps(t), and the mean squared spreading
distance R2(t) averaged over surviving runs, which scale as
NA ∼ tη, Ps ∼ t−δ, R2 ∼ t2/z at criticality [8]. In addition,
we measure a(t) inside the spreading region of size R(t)
defined as a(t) = 〈NA(t)/R(t)〉, which should scale as t−α

at pc. We measure observables up to time tmax(� L). Since
A particles cannot propagate ballistically from the starting
point, we, in principle, remove the finite-size effects [8]. We
set (tmax,L) = (105,106) for μ < 1 and (106,107) for μ = 1.
We summarize our results in Table I.

For μ � 0, η and δ are not universal, but the sum η + δ

agrees with the DP value. This dynamical property has been
found in DP models with infinitely many absorbing states, such
as pair contact process [8]. In addition, α and 2/z are universal
and agree with the values of the DP class. For 0 � μ < 1,
bosonic field theory predicts z = 2, ν⊥ = 2/d [12]. For μ = 1,
our results are different from those of the C-DP and A-C-DP
classes [10]. As a result, we are convinced that driven HC DEP
in d = 1 belongs to the DP class for μ � 0. For μ = −1, we
expect 2/z = 1 for t → ∞. Our estimate of α for μ = −1
also agrees with β/ν‖ = 0.07(2) for the isotropic DEP with
μ > 0 [13]. Hence, the transition for μ < 0 is continuous and
belongs to the class of 0 < μ < 1. As a result, the interplay
of the HC interaction and bias has no effect on the critical

behavior of the DEP for μ < 0. It can be understood from
the fact that B particles move faster than A’s, so the relative
motion of A’s plays a crucial role in infection as in isotropic
cases.

V. SUMMARY

To summarize, we showed that the interplay of the HC
interaction and bias caused nontrivial blocking effects and
changed the universality of APTs in crowded environments.
The blocking effects appear as compact clusters in SF networks
and fragmented small clusters in d = 1. In such environments,
the direct infection between the nearest neighbors dominates
the diffusion-mediated spreading of activity, and thus, the
critical behavior is determined by the reactions themselves.
The DEP is generalized by the reaction scheme mA + kB →
(m + k)A, nA → (n − �)A + �B [23]. Our results suggest
that the generalized DEP of the HC particles with the
driving field should exhibit the corresponding critical behavior
characterized by reactions in compact clusters.

In addition, our results are of practical importance for
disease spreading in the systems with SF network structures.
Some diseases, such as cholera, spread by contagion between
individuals inside local regions, which would naturally be
described by mobile HC particles. In contrast, others, such
as severe acute respiratory syndrome, which spread between
nations or cities are intrinsically bosonic [16]. Since popu-
lations in such networks are fixed, at least on average, our
results suggest that the spreading phenomena in crowded
environments could completely be different depending on the
scale of networks in which diseases spread.
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