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Nearest neighbors, phase tubes, and generalized synchronization
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In this paper we report on the necessity of the refinement of the concept of generalized chaotic synchronization.
We show that the state vectors of the interacting chaotic systems being in the generalized synchronization regime
are related to each other by the functional, but not the functional relation as it was assumed until now. We propose
the phase tube approach explaining the essence of generalized synchronization and allowing the detection and
the study of this regime in many relevant physical circumstances. The finding discussed in this Brief Report
provides great potential for different applications.
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Chaotic synchronization is a fundamental phenomenon
that has both theoretical and applied significance [1], which
has been widely studied recently. One of the interesting and
intricate types of synchronous behavior of unidirectionally
coupled chaotic oscillators is generalized synchronization
(GS) [2,3]. This kind of synchronous behavior is said to mean
the presence of a functional relation between the drive and
response oscillator states [4,5] and has been observed in many
systems both numerically [6–8] and experimentally [9–11],
with many interesting features [7,12] and possible applications
[13,14] of this regime being revealed.

The definition of the GS regime generally accepted hitherto
is the presence of a functional relation

y(t) = F[x(t)] (1)

between the drive x(t) and response y(t) oscillator states
[4,5]. Based on this definition are the different techniques that
had been proposed for detecting the presence of GS between
chaotic oscillators, such as the nearest-neighbor method [4,15],
the auxiliary system approach [2], or the conditional Lyapunov
exponent calculation [5] (with the auxiliary system approach
generally being the most easy, clear, and powerful tool to
study the GS regime in the model systems); for the analysis of
the observed experimental time series, however, the nearest-
neighbor method, as a rule, is more applicable [11].

In this Brief Report we report on the necessity of re-
considering and refining the existing concept of generalized
chaotic synchronization. The main reason for this refinement
is the following. Let x(t0) = x0 and y(t0) = y0 be the reference
points belonging to the chaotic attractors of the drive and
response oscillators being in the GS regime, respectively. For
the neighbor point x(ti) = xi of the drive oscillator such that
||xi − x0|| < ε, its image y(ti) = yi in the response system is
also close to the reference point y0 (see Ref. [4] for details),
i.e., ||yi − y0|| < δ(ε). Having linearized Eq. (1), one obtains

yi − y0 = JF[x0](xi − x0), (2)

where J is the Jacobian operator. Since the form of the
functional relation F[·] cannot be found explicitly in most
cases, Eq. (2) may be rewritten in the form

δyi = Aδxi , (3)

where A = JF[x0] is the unknown matrix and δxi = xi − x0

and δyi = yi − y0 are the vectors characterizing the deviation

of the points under consideration xi and yi from the reference
points x0 and y0, respectively. Without loss of generality, we
shall suppose below the identical dimension m of the phase
space of the drive and response systems.

Although the coefficients of the matrix A are unknown, the
validity of Eq. (3) may be verified if there are N > m nearest
neighbors xi of the reference point x0 and the corresponding
vectors yi of the response system. Having tested the presence
of the generalized synchronization (e.g., with the help of
the auxiliary system approach), we can pick out m nearest
neighbors xi (i = 1, . . . ,m) and the corresponding vectors yi

to determine the coefficients aij of the matrix A with the help
of Eq. (3). To reduce the influence of the inaccuracy we select
such vectors xi [and δxi = (δxi1, . . . ,δxim)T , respectively]
from the whole set of N vectors for which

| det(X)| = max , (4)

where

X =

⎛
⎜⎜⎜⎜⎝

δx11 δx12 · · · δx1m

δx21 δx22 · · · δx2m

...
...

. . .
...

δxm1 δxm2 · · · δxmm

⎞
⎟⎟⎟⎟⎠ . (5)

Having determined the matrix A, we can now find the vectors
δzi (i = m + 1, . . . ,N),

δzi = Aδxi , (6)

and compare them with the vectors δyi of the response system
(or compare vectors zi = y0 + δzi with yi) to validate the
correctness of Eq. (3).

Although, at first sight, it seems that there are no funda-
mental causes due to which Eq. (3) may fail, in reality Eq. (3)
is not correct. To illustrate this we have study numerically
the synchronous behavior of two coupled chaotic Rössler
oscillators

ẋd = −ωdyd − zd, ẋr = −ωryr − zr + ε(xd − xr ),

ẏd = ωdxd + ayd, ẏr = ωrxr + ayr, (7)

żd = p + zd (xd − c), żr = p + zr (xr − c),

where x = (xd,yd,zd )T [y = (xr,yr ,zr )T ] are the Cartesian
coordinates of the drive [response] oscillator, the overdots
stand for temporal derivatives, and ε is a parameter ruling the
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coupling strength. The other control parameters of Eq. (7) have
been set to a = 0.15, p = 0.2, and c = 10.0, in analogy with
our previous studies [3,16]. The parameter ωr (representing the
natural frequency of the response system) has been selected to
be ωr = 0.95; the analogous parameter for the drive system has
been fixed to ωd = 0.99. For such a choice of parameter values
the boundary of the generalized synchronization regime found
with the help of the auxiliary system approach is εGS ≈ 0.11.

Having chosen the reference point x0 of chaotic attractor
of the drive oscillator randomly, one can find its nearest
neighbors xi (i = 1, . . . ,N) (and the corresponding vectors yi

of the response system), select [according to Eqs. (4) and (5)]
the vector basis x1−3 to determine the matrix A, and check
the condition in Eq. (3) with the help of Eq. (6) and the rest
of the vectors xi and yi (i = 4, . . . ,N).

In Fig. 1 the vectors zi (i = 4, . . . ,10) obtained with the
help of Eq. (6), as well as the vectors yi of the response
system, are shown for the coupling strength ε = 0.3. The value
of the coupling strength greatly exceeds the threshold εGS of
the generalized synchronization. The GS regime demonstrates
great stability; as a consequence, Eq. (3) is expected to be
correct. However, contrary to expectations, the vectors zi and
yi differ from each other sufficiently, testifying that Eq. (3)
fails. As a matter of fact, the failure of Eq. (3) is also observed
for other reference points of the drive Rössler oscillator as
well as for other chaotic dynamical systems (e.g., Lorenz
oscillators). Since Eq. (3) is just the linearization of Eq. (1),
the failure of Eq. (3) is evidence of the incorrectness of Eq. (1)
being the main definition of the generalized synchronization
concept. At the same time, plenty of results obtained hitherto
are in very good agreement with the generally accepted
concept of GS. This means that the concept proposed by
Rulkov et al. [4] works in some circumstances, but, in general,
must be refined.

The core idea of this correction is the following. The state
of the response system y(t) depends not only on the state of
the drive oscillator x(t) at the moment of time t , but on the
history of the evolution of the drive system during the time
interval (t − τ,t] as well. Indeed, according to the concept
of GS, synchronization means that the response oscillator
y(t) comes to the state defined uniquely by the drive system,
with the convergence time τ being connected with the largest
conditional Lyapunov exponent λr

1, i.e., τ ∼ 1/|λr
1|. In other

words, F[·] in Eq. (1) must be considered a functional, but
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FIG. 1. (Color online) Vectors yi (�) and zi (◦) of the response
Rössler system [Eq. (7)] for ε = 0.3. The numbers i of the vectors
are shown by the roman and italic fonts, respectively

not a functional relation. Obviously, in this case, Eq. (3)
being obtained under the assumption that F[·] is the functional
relation is not satisfied, as shown above (see Fig. 1).

Considering F[·] as the functional, one has to replace Eq. (2)
by

δyi(t) =
∫ t

t−τ

JF[x0(s)]δxi(s)ds. (8)

Having supposed that the deviation δxi(s) from the reference
trajectory x0(s) (t − τ < s � t) is small, in view of the
linearity, one can write

δxi(s) = B(s)δxi(t), t − τ < s < t (9)

[where B(s) is a matrix with time-dependent coefficients],
which results in

δyi(t) =
∫ t

t−τ

JF[x0(s)]B(s)δxi(t)ds (10)

and, as a consequence, in

δyi(t) = C(t)δxi(t), (11)

where C(t) is the square m × m matrix defined as

C(t) =
∫ t

t−τ

JF[xi(s)]B(s)ds. (12)

Thus Eq. (11) coincides formally with Eq. (3) and
therefore may be validated also by the calculations of the
vectors zi in the same way it was done for Eq. (3). At
the same time, Eq. (3) was obtained under the assumption
that the vectors x0(t) and xi(t) are close to each other,
whereas Eq. (11) was obtained under the constraint requiring
the nearness of the trajectories x0(s) and xi(s) during the time
interval t − τ < s � t . Since for the chaotic systems the phase
trajectories can converge in one direction of the phase space
and diverge in another, the neighbor vectors x0(t) and xi(t) may
be characterized by the very distinct phase trajectories x0(s)
and xi(s) for t − τ < s � t . The schematic representation of
such a situation is given in Fig. 2. Although the vectors x1(t)
and x2(t) are close to the reference point x0(t), only the vector
x2(t) obeys Eq. (11) due to the nearness of the phase trajectories
x0(s) and x2(s); for the vector x1(t) Eq. (11) fails since the
phase trajectory x1(s) is not close to the reference one x0(s)
during the whole time interval t − τ < s � t . Therefore, to
verify Eq. (11) we have to consider not all vectors xi(t) being
nearest the reference point x0(t), but only vectors that are
characterized by the phase trajectories xi(s) being close to the
reference one x0(s). Having as a basis the idea of phase-space
strands [17,18] to eliminate the ineligible vectors [such as x1(t)

x0(t)

x1(t)
x2(t)

x1(s)

x2(s)
x0(s)

x3(s)

FIG. 2. Schematic representation of the nearest vectors xi(t), the
phase trajectories xi(s), and the phase tube Tτ (t).
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FIG. 3. (Color online) Vectors yi (�) and zi (◦) of the response
Rössler system [Eq. (7)] for ε = 0.3. The length of the phase tube is
τ = 100. The numbers i of the vectors are shown by the roman and
italic fonts, respectively.

in Fig. 2], we introduce into consideration the phase tube

Tτ (t) = {x : |x0j (s) − xj |〈dj |mj=1 , s ∈ [t − τ ; t]} (13)

and take into account only vectors whose phase trajectories
pass through this phase tube [such as x2(t) in Fig. 2].

The result of this examination for Rössler systems [Eq. (7)]
with the same set of control parameter values and coupling
strength as before is given in Fig. 3. The length of the phase
tube is τ = 100. One can see that the calculated vectors
zi(t) are in excellent agreement with the vectors yi(t) of the
response Rössler system, which confirms both the correctness
of Eq. (11) and, as a consequence, the statement that F[·] is
the functional, but not the functional relation.

With an increase of the coupling strength between chaotic
oscillators, the absolute value of the largest conditional
Lyapunov exponent λr

1 increases and the time interval τ

[the length of the phase tube Tτ (t)] decreases. Finally, in
the lag synchronization (LS) and complete synchronization
(CS) regimes the value of τ tends to be zero. Therefore, in
the LS and CS regimes Eq. (3) is satisfied for all neighbor
vectors xi(t) without any additional requirements concerning
the phase trajectory nearness. In other words, the state vectors
of any chaotic systems in the GS regime (but not in the LS or
CS regime) are connected with each other by the functional,
whereas in the LS and CS regimes (which are strong forms of
GS) they are related to each other by the functional relation.

Though the phase tube approach has been here applied
to the model systems, we expect that it can be used in
many other relevant circumstances. Since the statistics for
the difference between δyi(t) and δzi(t) vectors are rad-
ically different for synchronous and asynchronous motion
(see Fig. 4), the important feature of this approach is the
possibility to consider the relation between vectors [Eq. (11)]
for the analysis of the registered experimental data (vector or
scalar, using the Takens approach [19]) when other classical
methods of GS detection are inaccurate or unapplicable.
Moreover, the proposed approach may be used as a method
to detect the GS regime, including the case when the
chaotic oscillators are mutually coupled, since all arguments
given above are also applicable for the case of bidirectional
coupling.

To prove the generality of our findings we have also
studied numerically two mutually coupled generators with
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FIG. 4. Histograms of the normalized difference � = ||δyi(t) −
δzi(t)||/||δyi(t)|| for (a) the asynchronous dynamics (ε = 0.06) and
(b) the generalized synchronization regime (ε = 0.3). The histograms
have been obtained for the response Rössler system [Eq. (7)]. The
length of the phase tube is τ = 100.

tunnel diodes.1 In dimensionless form the dynamics of such
generators are described by the equations [20,21]

ẋ1,2 = ω2
1,2[h(x1,2 − ε(y2,1 − y1,2)) + y1,2 − z1,2],

ẏ1,2 = −x1,2 + ε(y2,1 − y1,2), (14)

μż1,2 = x1,2 − f (z1,2),

where f (ξ ) = −ξ + 0.002 sinh(5ξ − 7.5) + 2.9 is the dimen-
sionless characteristic of a nonlinear converter, h = 0.2,
μ = 0.1, ω1 = 1.09, and ω2 = 1.02 are control parameter
values, and ε is the coupling parameter strength. The indices
1 and 2 correspond to the first and second coupled systems,
respectively. For such values of the control parameters the
threshold of the generalized synchronization regime deter-
mined by the moment of the transition of the second positive
Lyapunov exponent in the field of the negative values [22,23]
is εGS ≈ 0.08.

As in the case of Rössler systems considered above, we
have chosen the reference point x0 of the chaotic attractor
of the first oscillator randomly and analyze the behavior of
its nearest neighbors xi (i = 1, . . . ,N) and the corresponding
vectors yi and zi . The vector basis x1−3 has been chosen in the
same way as in the case considered above.

Figure 5 shows the vectors yi and zi of the second generator
with a tunnel diode [Eq. (14)] for the coupling parameter
strength ε = 0.15 greatly exceeding the threshold value of
the generalized synchronization regime onset εGS. Figure 5(a)
corresponds to the case in which all neighbor vectors are used,
whereas in Fig. 5(b) only vectors whose phase trajectories
pass through the phase tube with length τ = 110 are used. It
is clearly shown that in the first case the vectors zi and yi

differ from each other sufficiently, testifying to the absence of
the functional relation between the interacting system states.
Conversely, for the phase tube with length τ = 110 [Fig. 5(b)],
the calculated vectors zi(t) are in excellent agreement with
the vectors yi(t) of the second generator, which confirms the
results obtained above for unidirectionally coupled Rössler
systems. Thus, in systems with a mutual type of coupling the
vector states of the interacting systems are related to each other
by the functional.

In conclusion, we have reported that the concept of gen-
eralized synchronization (except for the LS and CS regimes)
needs refining since the state vectors of the interacting chaotic

1In this case Eq. (1) should be written as F[x(t),y(t)] = 0.
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FIG. 5. (Color online) Vectors yi (�) and zi (◦) of the second generator with a tunnel diode [Eq. (14)] for ε = 0.15. The numbers i of the
vectors are shown by the roman and italic fonts, respectively. (a) All neighbor vectors are used. (b) Only vectors whose phase trajectories pass
through the phase tube with length τ = 110 are used.

systems are related to each other by the functional, but not
the functional relation as it was assumed until now. Even
though systems with a small number of degrees of freedom
have been considered in this Brief Report, the formalism
developed herein can be extended also to systems with infinite-
dimensional phase space.2 Fortunately, this modification of
the generalized synchronization concept does not discard the
majority of results concerning GS obtained hitherto. At the

2In this case the system state is defined uniquely by the function
(or vector function), but not by the finite-dimensional vector as in the
case of the system with a small number of degrees of freedom.

same time, this refinement has a fundamental significance
in terms of understanding the core mechanisms of the
phenomena considered and should offer great potential for
different approaches and applications dealing with nonlinear
systems.
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