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Core-periphery disparity in fractal behavior of complex networks
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We show that there is a disparity in fractal scaling behavior of the core and peripheral parts of empirical
small-world scale-free networks. We decompose the network into a core and a periphery and measure the fractal
dimension of each part separately using the box-counting method. We find that the core of small-world scale-free
networks has a nonfractal structure, whereas the periphery exhibits either fractal or nonfractal scaling. The fractal
dimension of the periphery is found to coincide with one for the whole network.
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Gathering and analyzing data of large-scale complex
networks such as the World Wide Web (WWW), social and
biological networks became possible in recent years with the
rapid advance of information technology [1,2]. Small-world
and scale-free properties have been subjects of primary interest
from the onset of complex network research. The small-world
property means that the average shortest path length (ASPL)
〈l〉 between pairs of nodes in the network grows at most
logarithmically with respect to the total number of nodes N :
N ≈ a〈l〉/l0 (l0 is a characteristic length) [3]. The scale-free
property refers to a power law in the distribution of the number
of nodes with degree (the number of links) k: P (k) ≈ k−γ

(γ is called the degree exponent) [4]. Also, some complex
networks have been found to have fractal scaling behavior if
they are measured by the box-counting method [5–8]. The
fractal scaling means that there exists a power-law relation
between the minimum number of boxes NB to cover the
network and the size of the boxes lB(NB): NB(lB) ≈ lB

DB (DB

is the fractal dimension). This finding came as a surprise for it
was generally thought that complex networks have nonfractal
scaling behavior, and for the small-world property yields a
exponential dependence of N on 〈l〉 [5]. For regular lattices
with finite fractal dimension, the behavior of cooperative
models such as the disease spreading and the Ising model
depends on the fractal dimension of the lattices [9–11],
whereas similar models on the scale-free small-world complex
networks depend on the degree exponent of the network [12].

In this paper, we investigate empirical complex networks
through the box-counting method. We show that they can be
decomposed into two parts: the core consisting of most nodes
of the network with nonfractal behavior and the periphery with
the rest of the nodes exhibiting the same behavior as the whole
network, whether it is fractal or nonfractal. Since the core part
includes most of the nodes, it will play an important role in
many cooperative models. However, there are instances where
the peripheral part may be of critical importance such as in
models of disease spreading.

Previous works suggest that subnetworks of an original
network may have different fractal dimensions [8,13]. We
develop this idea further from the perspective of the core-
periphery partition. We first employ a criterion to define a
subnetwork, the core, from the original network, and call the

network with the rest of the nodes the periphery. The core we
obtain contains most nodes from the original network and yet
has very small diameter (maximum distance between any pair
of nodes) lmax. This core is also central in terms of network
distance. We then apply the original box-counting method
from Ref. [5] to measure the fractal dimension of each part
separately.

In order to define the fractal dimension of an object, we
employ a notion of distance that satisfies metric properties [14].
In previous works the distance between two nodes u and v of
a network d(u,v) has been given as the number of links in a
shortest path between them [15]. This notion of distance d is
called the shortest-path metric, on which our analysis is based.
This distance d is computed first for the original network. Next,
we apply the box-counting method restricted to the nodes in
the core only and then to the nodes in the periphery only. In
short, we apply the method to the nodes of each part separately,
without altering the original distances between nodes.

It is known that random scale-free networks with degree
exponents between 2 and 3 almost surely have an ASPL
〈l〉 of O(log log N ) [16,17]. These networks have a giant
subnetwork made of a large number of nodes, residing in the
central part of the network [16]. This subnetwork is densely
connected and has a small diameter of O(log log N ), which
constitutes the core. At the same time, the network itself
almost always has a diameter of order log N ; that is, there exist
nodes outside the core [16], called the periphery. There have
been studies about the core-periphery structure of empirical
networks, cellular and Internet networks in particular [18–20].
We assume that empirical networks in this work also exhibit
such a core-periphery structure. In the process, we show that
indeed it is easy to subtract the large, dense, and central core
from the empirical networks.

All the empirical networks we focus on have both the
small-world and scale-free properties with a degree exponent
between 2 and 3. We study four kind of networks in this paper:
the WWW of Notre Dame [4] and from the Stanford WebBase
project [21], cellular networks of 43 species of which results
from Escherichia coli and Rickettsia prowazekii are shown
[22,23], the protein interaction network of Saccharomyces
cerevisiae [24,25], and the Internet at the autonomous system
level [26]. The properties of the networks are summarized
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TABLE I. The dimensions of complex networks calculated by the box-counting method. N is the number of nodes for the corresponding
network, 〈l〉 the average shortest path length between nodes, lmax the maximum distance among all pairs of nodes, and DB the fractal dimension.
The dimension for nonfractal behavior is denoted by ∞. Note that the dimension of the whole network is estimated from the tail part of the
curve, taking box-counting data with lB larger than the value of 〈l〉 of each network for the fit. 〈l〉 of each network is chosen as the threshold lth
for Criterion A of the core, 〈l〉-1 for Criterion B, and 〈l〉+1 for Criterion C. In the last two columns, the standard errors from the least-square
method for the power-law model σ̂ε(pl) and the exponential curve model σ̂ε(ex) for the data from the core by Criterion A and the tail part from
whole network are shown.

Criterion A Criterion B Criterion C

Network N 〈l〉 lmax γ N lmax N lmax N lmax DB σ̂ε(pl) σ̂ε(ex)

WWW (Notre Dame) 325729 7.2 46 2.6 Core 280007 12 247852 10 260642 9 Core ∞ 1.71 0.74
Periphery 45722 46 77877 46 65087 46 Whole 3.2 0.37 0.69

WWW (Stanford) 8929 6.6 18 2.5 Core 7706 11 8035 12 6409 8 Core ∞ 0.90 0.31
Periphery 1223 18 894 18 2520 18 Whole 4.1 0.14 0.24

Cell (E. coli) 2859 4.7 18 2.3 Core 2678 8 1825 6 2134 7 Core ∞ 1.18 0.65
Periphery 181 18 1034 18 725 18 Whole 3.4 0.20 0.38

Cell (R. prowazekii) 817 5.0 18 2.5 Core 773 10 680 8 693 8 Core ∞ 0.71 0.31
Periphery 44 18 137 18 124 18 Whole 2.9 0.18 0.28

PIN (S. cerevisiae) 1458 6.8 19 2.9 Core 1143 12 756 10 960 9 Core ∞ 0.72 0.16
Periphery 315 19 702 19 498 19 Whole ∞ 0.22 0.14

Internet (AS level) 22963 3.8 11 2.1 Core 21278 6 21818 8 14543 5 Core ∞ 1.51 0.85
Periphery 1685 11 1135 11 8420 11 Whole ∞ 0.47 0.24

in Table I. The WWW and cellular networks have fractal
scaling, while the protein interaction and Internet networks
have nonfractal scaling as shown in Fig. 1. Note that the
measured results for nonfractal networks are well fitted with
exponential curves. Such an exponential curve can be regarded
as an extreme case of the power law with the infinite fractal
dimension [5]. We also note that all other 41 cellular networks
from Refs. [22,23] exhibit results qualitatively similar to those
of the two cellular networks shown here.

Various criteria can be given to subtract the core from an
empirical network. First, inspired by Ref. [17], we choose
the center of the network as the node with the largest degree
and define the core as nodes within a certain distance from
the center (Criterion A). There are conditions to consider in
choosing an appropriate threshold distance lth for the core:
First, the distance must be large enough to include enough
nodes to the core, so that the core can be clearly analyzable
by the box-counting method. Second, the distance must be
small enough to leave out enough nodes to the periphery
so that the outcome for the periphery and the core can be
distinguished from each other. A suitable threshold distance

lth for our definition is in the vicinity of the ASPL 〈l〉 of each
network. Usually about 80–90% of the nodes are included in
the core with such a threshold. We then apply the box-counting
method to measure the fractal dimension of the core and the
periphery. Results for the six networks with our core-periphery
definition and 〈l〉 as lth are shown in Figs. 1 and 2. The result
of the core always exhibits exponential behavior regardless of
the fractality of the network itself. The tail of the resulting
curve from the periphery always coincides with that from the
whole network.

To test the robustness of our results, we also vary lth, which
results in the variation in the number of core nodes. The result
is shown for the WWW (Notre Dame) in Fig. 2. Choosing lth
in the vicinity of 〈l〉 of the network, the disparity of the core-
periphery is clearly shown. Although not shown, the results are
the same for other networks studied: the core exhibits exponen-
tial behavior when sufficient points are included in the core.

We try two other definitions of the core. From a network,
we may delete nodes with a degree less than k and choose the
largest connected component as the k core. We then add to the
k core the nodes within a certain distance from it (criterion

FIG. 1. (Color online) The box-counting method applied to the original networks (•, red), their core (�, blue), and their periphery (�,
orange) with two guiding lines for the core and the original network. (a) WWW from the Stanford WebBase project, (b) cellular network of
Escherichia coli, (c) cellular network of Rickettsia prowazekii, (d) protein interaction network of Saccharomyces cerevisiae, and (e) Internet.
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FIG. 2. (Color online) The box-counting method applied to the original network (•, red), the core (�, blue), and the periphery (�, orange)
of the WWW of Notre Dame with various threshold distances lth. Two guiding lines are drawn for the core and the original network. The ASPL
〈l〉 of the network is 7.2.

B) [8,16,27]. The value of k is chosen as k = N1/ log log N

following Ref. [16]. Alternatively, we can choose nodes with
their average distances to other nodes within a certain value and
label them as the core (criterion C). The optimal lth for these
two alternative definitions are also in the vicinity of 〈l〉 of each
network. We find that the alternative definitions yield results
very similar to that from the criterion A: the core exhibits
exponential behavior, while the periphery coincides with that
from the whole network. The cores from different definitions
overlap with each other largely, including almost all the nodes
with large degrees. The results from various definitions are
summarized in Table I.

We also analyze a model of the fractal network from
Refs. [6,28] and obtain similar results for a plausible range
of parameters. The fractal model network is built as follows:
We first build a pure fractal scale-free network with fractal
dimension DB by a suitable iterative process. Then we add
shortcuts between nodes with a distance r according to the
probability P (r) ∼ r−α for r > 1. It is known that if α � 2DB ,
then the number of boxes NB(lB) exhibits a power-law with an
exponential cutoff for a large box size lB for the box-counting
method. If α is sufficiently small, the number of boxes decays
exponentially. We apply our analysis to various values of α and
obtain following results: (1) For the pure fractal model and the
model with α � 2DB it is difficult to distinguish the core and
the periphery, because the diameter of the network lmax has a
power-law dependence on the number of nodes N and there
is no such core containing most of the nodes within a small
diameter. (2) For α � 2DB , the analysis begins to yield results
similar to those from the empirical networks. The network
starts to have shortcuts connecting nodes originally far away
from each other, and the core-periphery structure begins to
emerge. The behavior at the tail part for peripheral nodes again
coincides with that of the whole network. (3) For α sufficiently
small, the network shows a small-world behavior with a small
diameter. Again, it becomes difficult to distinguish the core
from the periphery, because the whole network essentially
collapse into a densely connected mass. The result is shown
in Fig. 3. These results suggest that, whenever there a dense
core and a sparse periphery exist in a complex network, the
periphery contributes to the behavior of the whole network at
the tail part when measured by the box-counting method.

We use a least-square method to estimate the dimension DB

from the box-counting data [29]. When testing the data for a
power law (or an exponential curve), we plot the box-counting

data in doubly logarithmic axes (or log-linear axes). We draw
a model line fitted to the data which minimizes the sum of
squared errors S = ∑

i (yi − ŷi)2. Here ŷi is the predicted
model value and yi the measured one, each corresponding
to log(N̂B(lB)i) and log(NB(lB)i). We test the box-counting
data from the core and the tail part from the whole network
for the power-law and exponential curves. The standard error
σ̂ε = √

S/(imax − 2) for each fit, where imax is the number of
different sizes of boxes lB in each box-counting datum, is
shown in the last two columns of Table I. The data from the
core are always better fitted by an exponential curve, while the
data from the whole network is better fitted by a power-law
(exponential) for fractal (nonfractal) networks. Note that there
exists an inherent difficulty in fitting the data, because the
measurement itself is made over only about one order of
magnitude due to the small diameter of complex networks.
The best approach under the circumstance is to compare the
errors for candidate fits.

We have shown that the empirical scale-free small-world
complex networks are spatially inhomogeneous in their fractal
behaviors. The cores of the networks exhibit nonfractal
behavior. These cores include a very large number of nodes,
including almost all the nodes with large degrees, which
influences the outcome of cooperative models on complex

FIG. 3. (Color online) The box-counting method applied to the
model networks from Refs. [6,28]. The results for the whole network
(•, red), the core (�, blue), and the periphery (�, orange) are
shown. Criterion C with lth = 〈l〉 + 1 is used in the analysis. The
parameters of the model are m = 2 and i = 1, with the generation
g = 6, and DB is 1.46. P (r) is given as (a) 1.0, (b) 2DB , and (c) 4DB ,
respectively. Ten percent of entire nodes are given shortcuts in each
cases. Exponential guidelines are drawn for the cores in panels (a)
and (b), and power-law guidelines are drawn for the whole networks
in panels (b) and (c).
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networks significantly. Yet the core only has a diameter of
O(log log N ), meaning that most nodes of the network are
packed into a small space in comparison with the diameter
of the whole network, �(log N ). Only a few nodes reside
on the spacious and sparse space between the diameter of
O(log log N ) and �(log N ), but their spatial distribution gives
rise to the fractal-like behavior of the entire network.

Though small in number, the peripheral nodes can
play an important role in cooperative models on the
network. Consider a simple disease-spreading process as
in Ref. [3]. The process begins with a single infected
node at t = 0. Infected nodes are removed permanently
(either by immunity or death) after one unit of dimen-
sionless time. During this time, each infected node will
infect each of its healthy neighbors with probability r .
After sufficient time, the disease will have either infected all
the nodes or died out having infected some fraction of the

nodes in the process. The core will play an important role as it
contains most nodes. For example, the critical infectiousness
rate rhalf at which the disease infects half of the nodes will
depend on the core heavily. Still, there are instances where the
periphery plays an important role. With r high enough such
that all the nodes would be infected in due time, the time T

it takes to infect all the nodes depends on the diameter of the
whole network and therefore on the diameter of the periphery.
Most of the time will be spent on infecting the peripheral
nodes. The role of the fractal structure of the periphery for
such interacting processes on complex networks would be an
interesting subject of further studies.
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