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Cluster identification tasks occur in a multitude of contexts in physics and engineering such as, for instance,
cluster algorithms for simulating spin models, percolation simulations, segmentation problems in image
processing, or network analysis. While it has been shown that graphics processing units (GPUs) can result
in speedups of two to three orders of magnitude as compared to serial codes on CPUs for the case of local and
thus naturally parallelized problems such as single-spin flip update simulations of spin models, the situation
is considerably more complicated for the nonlocal problem of cluster or connected component identification. I
discuss the suitability of different approaches of parallelization of cluster labeling and cluster update algorithms
for calculations on GPU and compare to the performance of serial implementations.
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I. INTRODUCTION

Due to their manifold applications in statistical and
condensed matter physics ranging from the description of
magnetic systems over models for the gas-liquid transition
to biological problems, classical spin models have been very
widely studied in the past decades. Since exact solutions are
available only for a few exceptional cases [1], with the steady
increase in available computer power and the advancement of
simulational techniques, in many cases computer simulations
have become the tool of choice even above the more traditional
variational and perturbative techniques [2]. The workhorse
of Monte Carlo simulations in the form of the Metropolis
algorithm [3] is extremely general and robust, but suffers from
problems of slowed dynamics in the vicinity of phase tran-
sitions, or for systems with complex free-energy landscapes.
For the case of continuous phase transitions, critical slowing
down is observed with autocorrelation times increasing as
τ ∼ Lz with z ≈ 2 in the vicinity of the critical point. This
divergence of temporal correlations is a consequence of the
divergent critical correlations in space, compared to which
local modifications of the configuration become inefficient. An
exceptionally successful solution of this problem is given by
a class of cluster-update algorithms working on stochastically
defined connected regions of spins with identical or similar
orientation [4–7], which allow for a significant reduction of
the dynamical critical exponent z over the local value z ≈ 2
and can thus easily lead to an effective speed gain in excess
of 106 for practically considered system sizes. Incidentally,
the practical task of cluster identification resulting from the
probabilistic description of the problem as a bond-correlated
percolation model is identical to that encountered in image
segmentation or computer vision, where neighboring pixels
should be lumped together according to their colors, a problem
that can be mapped to the Potts model [8,9]. Also, numerical
simulations of percolation problems, with their wide range
of realizations from fluids in porous media to epidemic
spreading [10], must deal with a very similar problem of cluster
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identification (see, e.g., Ref. [11]). Further applications occur
in network analysis, particle tracking, or the identification
of structures such as droplets in condensed matter. Efficient
implementations of cluster labeling algorithms are, therefore,
of significant interest for a number of different applications in
scientific computing.

In parallel to the invention of new simulation algorithms, the
need for strong computing power for tackling hard problems
has prompted scientists to always make the best use of
the available computer resources of the time, be it regular
PCs, vector computers, or Beowulf clusters. For the case of
simulations of spin models, for instance, a number of special
purpose computers has been devised, including machines
for local updates such as JANUS for spin glasses [12] and
variants such as the “cluster processor” using cluster-update
algorithms [13]. While these were (and are) highly successful
in their specific application fields, their design and realization
is a rather challenging endeavor, costly in terms of monetary
as well as human resources. It is therefore desirable to search
for a less application specific, but still highly performant,
platform for massively parallel scientific computing that is
less expensive in terms of its acquisition as well as its
power consumption and cooling requirements than traditional
cluster computers. An architecture meeting those standards has
become available in recent years with the advent of general pur-
pose computing on graphics processing units (GPUs) [14,15].
With the availability of convenient application programming
interfaces (APIs) for GPU computing, most notably NVIDIA
CUDA and OpenCL [15], the programming effort no longer
dramatically exceeds that of CPU-based parallel machines.
Still, for efficient implementations architectural peculiarities
of these devices, in particular the organization of compute units
(cores) in groups (multiprocessors) with reduced synchroniza-
tion capabilities between multiprocessors and the pyramid of
memories with latencies, sizes, and access scopes decreasing
from base to tip, need to be taken into account. For the
case of spin models, a wide range of simulation algorithms
with local updates has been previously implemented on
GPUs [16–19], where for the implementations reported in
Refs. [18,20,21] significant speedups of two to three orders
of magnitude as compared to serial CPU codes have been
reported. An efficient parallelization of nonlocal algorithms
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and cluster labeling is significantly more challenging, however,
in particular for the case of cluster updates for spin models
close to criticality, where the relevant clusters undergo a
percolation transition and are therefore spanning the whole
system [22–29].

The implementations discussed here have been realized
within the NVIDIA CUDA [30] framework with benchmarks
performed on the GTX 480, GTX 580, and Tesla M2070
GPUs. While some of the details are specific to this setup, the
algorithmic approaches discussed are fairly general and could
easily applied to other GPU devices or realized with different
APIs such as OpenCL. For an introduction into the details
of the GPU hardware and the corresponding programming
models, the reader is referred to the available textbooks (see,
e.g, Ref. [15]) and previous articles by the present author
[18,20].

The rest of the paper is organized as follows. In Sec. II
GPU implementations of the cluster algorithm of Swendsen
and Wang [4] are discussed. The cluster decomposition of
the complete spin lattice necessary here is identical to that of
a corresponding image segmentation problem or percolation
simulation. Section III is devoted to the case of the single-
cluster variant suggested by Wolff [5]. Finally, Sec. IV contains
my conclusions.

II. SWENDSEN-WANG ALGORITHM

In this paper I focus on the ferromagnetic q-state Potts
model with Hamiltonian

H = −J
∑
〈ij〉

δsi sj
, (1)

where si ∈ {1, . . . ,q} denote the spin variables, J > 0 is the
exchange coupling, and the sum extends over all bonds of
an underlying graph, most commonly a regular lattice. In
dimensions d > 1, the model undergoes a transition from a
disordered phase at high temperatures to an ordered phase
where one of the q states prevails at low temperatures [31].
For d = 2, the transition is continuous for q � 4 and first order
for q > 4, while in d = 3 it is first order for any q � 3. The
special case q = 2 is equivalent to the celebrated Ising model.
A local Monte Carlo simulation of the Potts model proceeds by
iteratively changing the orientation of randomly chosen spin
variables in accordance with the detailed balance condition [2].
In contrast, the cluster algorithm of Swendsen and Wang [4]
updates connected components of (usually) more than one spin
and is based on the following transformation of the partition
function due to Fortuin and Kasteleyn [32]:

Z =
∑
{si }

exp

(
βJ

∑
〈ij〉

δsi sj

)
(2)

=
∑
{si }

∏
〈ij〉

eβJ [(1 − p) + pδsisj
] (3)

=
∑
{nij }

∑
{si }

∏
〈ij〉

eβJ [(1 − p)δnij,0 + pδsisj
δnij ,1], (4)

where β denotes the inverse temperature and p = 1 − e−βJ .
In Eq. (4), a set of auxiliary bond variables nij ∈ {0,1}
is introduced, where nij = 0 whenever si �= sj and nij = 1

with probability p for si = sj . The resulting stochastically
defined clusters are therefore subsets of the geometric clusters
of parallel spins. Using a graphical expansion of the term
in square brackets in Eq. (4) and summing over the spin
configurations {si}, it can be shown that the model is equivalent
to a generalized percolation model with partition function
[32,33]:

Z = eβJ
∑
{nij }

pb({nij })(1 − p)E−b({nij })qn({nij }), (5)

known as the random-cluster model. Here b({nij }) denotes the
number of activated edges resulting from the bond variables
nij , n({nij }) is the number of connected components of
the induced subgraph, and E is the total number of edges
in the underlying graph or lattice. From the percolation
representation (5) it is clear [34] that the stochastic clusters
induced by the bond variables nij (and not the geometric
clusters of like spins) undergo a percolation transition at the
thermal transition point, and hence it is these structures that
should be updated to efficiently decorrelate the system close
to criticality.

Utilizing the representation (4) the algorithm by Swendsen
and Wang alternatingly updates spins si and bond variables nij

as follows:
(1) For a given spin configuration set nij = 0 for each bond

with si �= sj . Set nij = 1 and nij = 0 with probabilities p and
1 − p, respectively, for each bond with si = sj .

(2) Identify the connected components of the subgraph of
the lattice induced by the bond variables nij .

(3) Choose a new spin orientation randomly in {1, . . . ,q}
for each connected component and update the spin variables
si accordingly.

Since clusters of single spins are possible, this update is
trivially ergodic. It is straightforward to show that detailed
balance is fulfilled [4,7]. Hence, the Swendsen-Wang (SW)
dynamics forms a valid Markov chain Monte Carlo algorithm
of the Potts model. Autocorrelations are dramatically reduced
as compared to local spin flips. A rigorous bound for the
dynamical critical exponent is zint � α/ν [35], where zint is the
exponent of the scaling of the integrated autocorrelation time
and α and ν are the (static) critical exponents of the specific
heat and the correlation length, respectively. This bound is
close to sharp in two dimensions [36], but not in d = 3, where,
nevertheless, significant reductions in autocorrelations and the
dynamical critical exponent z are observed.

Attempting a highly parallel GPU implementation of the
SW algorithm, it is clear that the bond activation in step 1
as well as the cluster flipping in step 3 can be rather easily
parallelized as they are perfectly local operations. In contrast,
the cluster identification in step 3 must deal with structures
spanning the whole system, in particular for simulations
close to criticality, which are the main strength of cluster
updates. This is also the crucial step for further applications of
cluster identification such as the image segmentation problem
mentioned above. The total run time for a single update of the
spin lattice with the SW algorithm on a single GPU therefore
decomposes as

T
p

SW = T
p

activate + T
p

identify + T
p

flip. (6)
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We distinguish these times from the corresponding serial run
times T s

SW, T s
activate, etc., for single-threaded calculations. For

definiteness, the implementation is discussed in some detail
for the specific example of the Potts model on the square
lattice of edge length L with periodic boundary conditions.
Generalizations to three dimensions or other lattice types are
straightforward. The different implementations discussed here
have been tested against the exact results of Ref. [37] for the
q = 2 Potts model on the square lattice to ensure correctness.

A. Bond activation

We use an array of 2L2 char variables to represent the
bond activation states nij . For the GPU implementation using
CUDA [15], bond activation is performed by a first kernel,
prepare bonds(). Given a configuration of the spins si , for
each bond an expression of the form

nij =
{

1 if si = sj and r < p

0 otherwise
(7)

needs to be evaluated, where r ∈ (0,1) is a uniform (pseudo-)
random number, and p = 1 − e−βJ . To enable parallelism, the
system is broken up into tiles of B2 = Bx × By spins, and each
tile is assigned to an independent thread block. If we denote
�x = L/Bx , �y = L/By and �2 = �x�y the number of tiles, the
expected parallel run time behaves as

T
p

activate ∼ �2

min(�2,n)

B2

min(B2/k,m)
, (8)

where n denotes the number of multiprocessors (n = 14 for
Tesla M2070, n = 15 for GTX 480, n = 16 for GTX 580),
m is the number of cores per multiprocessor (n = 32 for all
three cards), and k is the number of sites assigned to each
thread.1 For large systems, �2 > n and B2/k > m, Eq. (8)
reduces to T

p
activate ∼ �2B2 = L2. As discussed in detail in

Refs. [18,20], each thread requires its own instance of a
random number generator (RNG) to prevent the formation of
a performance bottleneck. Due to the resulting large number
of RNG instances (for the case of large systems), one requires
a generator with a small state comprising, ideally, not more
than a few bytes. This precludes the use of high-quality
but large-state generators such as Mersenne twister [38] in
applications of the type considered here. Additionally, one
needs to ensure that the thus created streams of random
numbers are sufficiently uncorrelated with each other. Suitable
generator types for this purpose are, for instance, arrays of
linear congruential generators with random seeds, which are
fast but might not produce random numbers of sufficient
quality [16,18,39], generalized lagged Fibonacci generators
[18], or the Marsaglia generator as suggested in Ref. [19]. As

1I do not take the effects of latency hiding and other scheduling
specificities into account in the scaling formulas, but discuss them
in some places in connection with observed deviations from these
simplified laws. It is also assumed that the number of threads per
block is at least four since due to the limitation to eight active blocks
per multiprocessor on current NVIDIA GPUs, there would otherwise
be idle cores.

the cluster identification step, which does not require random
numbers, dominates the parallel runtime of the algorithm,
RNG speed is not as important as in local update simulations on
GPUs. For the benchmarks reported below, I used an array of
32-bit linear congruential generators. Statistically significant
deviations from the exact results [37] for the q = 2 Potts model
at criticality have not been observed. Note, however, that for
high-precision production runs one would presumably prefer
to use a higher-quality generator such as the ones discussed in
Refs. [18,19].

An analysis of the kernel with CUDA’s Compute Visual
Profiler [30] shows that its performance is compute bound.
Still, memory performance can be improved by using an appro-
priate memory layout ensuring that reads of subsequent threads
in the spin and bond arrays map to consecutive locations in
global memory to ensure coalescence of memory requests [15].
With a linear memory arrangement these requirements are
best met when using tiles with Bx � By . Best results for
systems with L > 256 are found here for Bz = 256, By = 4
(considering only lattice sizes L = 2n, n ∈ N). Evaluating the
acceptance criterion leads to unavoidable thread divergence,
but the effects are not very dramatic here. The asymptotic
performance of the kernel with one spin per thread, k = 1,
is T

p
activate/L

2 = 0.66 ns on the GTX 480 (assuming full
loading of the multiprocessors which is reached for sufficiently
large systems). An alleviating effect on thread divergence and
memory limitations is reached by assigning several spin pairs
(bonds) to each thread. Two versions have been considered
here, either assigning a (square) subblock of four spins to
each thread (k = 4), which brings down the updating time
to T

p
activate/L

2 = 0.46 ns, or assigning only Bx threads per
tile, each of which has to update k = By spins, leading to
the same asymptotic performance of T

p
activate/L

2 = 0.46 ns on
the GTX 480. The better performance of these variant kernels
presumably has to do with the possibility of prefetching of data
into registers while arithmetic operations are being performed.
The same kernel is used to also initialize the cluster labels
(see below). Note that the relatively lower performance of this
kernel as compared to the Metropolis update of the Ising model
reported in Ref. [18] of about 0.13 ns per spin (without multihit
updates) on the same hardware is explained by the sixfold
increase in memory writes (two chars and one int versus one
char) and the use of two random numbers (instead of one) per
spin.

B. Cluster labeling on tiles

To allow for an efficient use of parallel hardware, cluster
labeling is first performed on (square) tiles of B × B spins
and cluster labels are consolidated over the whole lattice
in a second step (see Sec. II C) [22–24,26–28]. Hence the
time for cluster identification naturally breaks up into two
contributions:

T
p

identify = T
p

local + T
p

global. (9)

In the field of simulations of spin systems (and percolation), the
standard technique for cluster identification is due to Hoshen
and Kopelman [11]. Although originally not formulated in
this context, it turns out to be a special version of the class of
union-and-find algorithms well known in theoretical computer
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science [40]. Time and storage requirements for this approach
scale linearly with the number N = L2 of sites. A somewhat
more “natural” approach consists of a set of breadth-first
searches on the graph of bonds, growing the clusters in a
layered fashion. While storage requirements are superlinear in
N (and might be as large as N2 depending on the structure
of the underlying graph), computing time scales still linear
in N and implementations are typically very straightforward
and efficient. A third approach considered here, dubbed self-
labeling [23], is very inefficient regarding (serial) computing
time, but very well suited for parallelization.

1. Breadth-first search

In breadth-first search (or “ants in the labyrinth”) the
unvisited neighbors of a starting vertex or seed that are
connected by activated bonds are examined and stored in a
first-in-first-out data structure (a queue). Subsequently, nodes
are removed from the queue in the order they have been
stored and examined in the same fashion as the initial vertex.
This leads to a layered growth of the identified part of a
cluster as illustrated in Fig. 1. The complete set of clusters
is being identified by seeding a new cluster at each node of
the lattice that is not yet part of a previously identified cluster.
Information about the cluster structure is stored in an array of
cluster labels, where originally each cluster label is initialized
with the site number on the lattice and cluster labels are set
to that of the seed site on growing the cluster; cf. Fig. 1.
While this approach is very general (it can be applied without
changes to any graph) and well suited for serial calculations,
it is not very suitable for parallelization. Parallelism can be
implemented in the examination of different neighbors of a site
and in processing the sites on the wave front of the growing
cluster [41]. To avoid race conditions and achieve consistency
of the data structures, however, locks or atomic operations are
required, considerably complicating the code. Additionally,
the number of (quasi-) independent tasks is highly variable as
the length of the wave fronts is fluctuating quite strongly. For
the case of a parallel identification of all clusters as necessary
for the SW algorithm and image segmentation, this approach

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 36 36 46 47

32 33 34 36 36 36 38 39

24 25 26 36 28 36 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

FIG. 1. (Color online) Cluster identification on a 64 × 64 tile
using a breadth-first search. The already labeled sites are indicated in
blue (dark squares), and the current wave front of unvisited neighbors
is shaded in red (light squares).
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FIG. 2. (Color online) Parallel average run time for local cluster
labeling on a 4096 × 4096 square lattice in tiles of edge length
B. Data are for the q = 2 states Potts model at the critical
point. Breadth-first search and tree-based union-and-find are (up
to logarithmic corrections) proportional to the number B2 of sites,
while self-labeling exhibits scaling proportional to B2+dmin ≈ B3.08.
The weaker scaling proportional to Bdmin ≈ B1.08 of self-labeling for
small B is due to underutilization of GPU cores (see main text). The
lines are fits of the power law T

p

local/�
2 = ABκ with the indicated

fixed exponents to the data.

is hence not very well suited for a GPU implementation. A
parallel implementation will be discussed below in the context
of the single-cluster (or Wolff) variant of the algorithm in
Sec. III, however.

The parallel run time of this kernel, local BFS(), employing
one thread per block performing cluster identification in a tile
of edge length B, is therefore expected to scale as

T
p

local ∼ �2

min(�2,n)
B2. (10)

The measured run times for �2 > n follow this expectation,
resulting in perfectly linear scaling of the time T

p

local/�
2 per

tile with the number B2 of tile sites; cf. Fig. 2. Since only
a maximum of eight thread blocks can be simultaneously
active on each multiprocessor on current generation NVIDIA
GPUs [15], however, 24 of the 32 cores of each multiprocessor
are idling, leading to rather low performance. The asymptotic
maximum performance for large system sizes (leading to an
optimum effect of latency hiding through the scheduler) on
the GTX 480 is at around T

p

local/L
2 = 13.4 ns for this kernel,

local BFS().

2. Union-and-find algorithms

It is a well-known problem in computer science to partition
a set of elements into disjoint subsets according to some
connectedness or identity criterion. A number of efficient
algorithm for this so-called union-and-find problem have been
developed [40]. Consider a set of N elements denoted as
vertices in a graph that, initially, has no edges. Now, a number
of edges are sequentially inserted into the graph, and the
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task is to successively update a data structure that contains
information about the connected components resulting from
the edge insertion. Obviously, our cluster identification task
is a special case of this problem. In a straightforward
implementation one maintains a forest of spanning trees where
each node carries a pointer to its parent in the tree, unless
it is the tree root that points to itself. On insertion of an
edge one determines the roots of the two adjacent vertices by
successively walking up the respective tree structures (find).
If the two roots found are the same, the inserted edge was
internal and no further action is required. If two different roots
were found, the edge was external, and one of the trees is
attached to the root of the other as a new branch (union), thus
amalgamating two previously disjoint subsets or connected
components of the graph. The forest structure can be realized
with an array of node labels, where each node is initialized to
point to itself (i.e., it is its own root). This process is illustrated
for the present application in Fig. 3.

(Worst case) time complexity is trivially constant or O(1)
for union steps, while find steps can be extensive, O(N ), if
edges connecting macroscopic clusters are considered. (Stor-
age requirements are clearly just linear in N .) The complexity
of the find step can be reduced by two tricks, tree balancing and
path compression. Balancing can be achieved by making sure
that always the smaller tree (in terms of the number of nodes) is
attached to the larger. To this end, the current number of nodes
is stored in the tree root. Balancing reduces the time to find the
root to O(log N ) steps [40]. Similarly path compression, which
redirects the “up” pointer of each node to point directly to the
tree root in a backtracking operation after each completed find
task, reduces find complexity to O(log N ). The combination
of both techniques can be shown to result in an essentially
constant find complexity for all practically relevant system
sizes [42]. An implementation of the full algorithm geared
toward cluster identification is described in Ref. [43].

Like the breadth-first search, the tree-based union-and-find
approach is intrinsically serial as all operations work on the
same forest structure, whose consistency could not be easily

56 57 58 59 60 61 62 63

48 41 41 51 52 53 54 55

40 32 41 41 44 45 46 47

32 32 34 30 30 30 38 39

24 25 26 27 30 30 13 31

16 17 18 19 20 21 13 23

8 9 10 11 12 13 13 15

0 1 2 3 4 5 6 7

FIG. 3. (Color online) Cluster labeling using union-and-find with
balanced trees and (partial) path compression on a 64 × 64 tile. Under
insertion of the edge between sites 30 and 41, the smaller cluster with
root No. 32 is attached to the root of the larger cluster at No. 13.

maintained under parallel operations. Moderate parallelism
is possible in the union step, where the two find operations
for the vertices connected by the new edge can be performed
in parallel. Due to the resultant thread divergence, however,
using two threads per block is found to actually decrease
performance. Similarly, the extra effect of path compression
(keeping the stack for backtracking in fast shared memory) is
found to actually increase run times, at least in the range of
tile sizes 4 � B � 64 considered. The parallel scaling of the
algorithm is thus the same (up to logarithmic corrections) as
that of breadth-first search given in Eq. (10). In fact, T

p

local/�
2

is found to be almost perfectly linear in B2 in the considered
regime; cf. the data presented in Fig. 2. The asymptotic
performance (neglecting logarithmic terms due to the find step)
of the kernel local unionfind() on the GTX 480 is found to be
T

p

local/L
2 = 8.6 ns, somewhat better than for local BFS(). Note

that for the tree-based algorithms of the union-and-find type,
memory accesses are inherently nonlocal, leading to a certain
performance penalty that hardly can be avoided.

3. Self-labeling

While breadth-first search and tree-based union-and-find
are elegant and very efficient for serial implementations, they
appear not very suitable for parallelization, especially on GPUs
where groups of threads are executed in perfect synchrony
or lockstep and extensive thread divergence is expensive. An
antipodal type of algorithm is given by the simple approach
of self-labeling [23]: Cluster labels are initialized with the
site numbers. Each site then compares its label to that of its
eastward neighbor and sets its own and this neighbor’s labels
to the minimum of the two, provided that an activated bond
connects the two sites. The same is subsequently done with
respect to the northward neighbor; cf. Fig. 4. (On a simple
cubic lattice, the analog procedure would involve three out
of six neighbors.) Clearly, the outcome of a whole sweep
of relabeling events will depend on the order of operations
and several passes through the tile will be necessary until
the final cluster labels have propagated through the whole

56 57 58 59 60 61 62 63

48 49 49 51 52 53 54 55

40 33 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

119

19

FIG. 4. (Color online) Cluster identification on a 64 × 64 tile
using the self-labeling algorithm with one thread per 2 × 2 spins. In
every pass, each site examines its northward and eastward neighbors
and, if they are connected by an active bonds, for each pair sets both
labels to the minimum of the two current labels.
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system. Eventually, however, no label will have changed in a
whole pass through the tile and the procedure can be stopped,
leading to a correct labeling of clusters inside of each tile.
Let us first concentrate on the spin model at criticality. Then
clusters typically span the tile, such that at least of the order of
B sweeps will be required to pass information about correct
cluster labels from one end of the tile to the other. In fact,
even more passes are necessary, as information about cluster
labels needs to be diffusively transmitted between each pair
of sites in the same cluster. Since under the chosen dynamics
this information will be transmitted along the shortest path
connecting the two sites, the required number of sweeps will
scale as

nB ∼ Bdmin , (11)

where dmin � 1 is the fractal dimension of the shortest path on a
percolation cluster. For pure percolation (corresponding to the
q → 1 limit of the Potts model) it is found to be dmin ≈ 1.13 in
d = 2 and dmin ≈ 1.34 in d = 3 [44], whereas for the (Fortuin-
Kasteleyn clusters of the) q = 2 and q = 3 Potts models in
two dimensions it has been estimated as dmin = 1.08(1) and
dmin = 1.01(1), respectively [45]. Obviously, the approach can
be easily parallelized inside of tiles, assigning an individual
thread to one or k > 1 spins. As a consequence, the parallel
run time for the self-labeling approach is

T
p

local = Clocal
�2

min(�2,n)

B2

min(B2/k,m)
Bdmin (12)

at or close to the percolation transition, which asymptoti-
cally appears to be rather unflattering as compared to the
breadth-first search and union-and-find techniques. Due to the
parallelization on the tile level, however, the total run time can
still be quite low for intermediate tile sizes. Off criticality,
the scaling becomes somewhat more favorable. Below the
transition, where clusters span the lattice but they are no longer
fractal, dmin should be replaced by one. Above the transition,
on the other hand, with a finite correlation length ξ , Bdmin in
Eq. (12) is replaced by min(ξ,B). While this somewhat better
behavior is probably not very relevant for the spin models
as simulations close to criticality are the main purpose of
cluster-update algorithms, it is of importance for percolation
simulations or image segmentation problems for the (typical)
case of a finite characteristic length scale ξ .

Figure 2 shows the scaling of parallel run times for the
kernel local selflabel() on tiles of sizes 4 � B � 64 for the
q = 2 Potts model at the critical point βc = ln(1 + √

2). One
can clearly distinguish two regimes with scaling T

p

local/�
2 ∼

Bdmin ≈ B1.08 for B2/k < m and T
p

local/�
2 ∼ B2+dmin ≈ B3.08

for B2/k > m. (The data in Fig. 2 are for k = 4 on the
GTX 480 with m = 32, such that the crossover occurs at
B ≈ 11.) As is apparent from Fig. 2, for tile sizes B �
64 self-labeling is clearly superior in parallel performance
on GPU as compared to breadth-first search or union-and-
find, although it becomes less efficient than the latter two
approaches for B � 128. I tested different variants: (a) an
implementation, local selflabel small(), that assigns one spin
per thread, restricting the tile size to B � 32 on current
NVIDIA GPUs with a limitation of 1024 threads per block,
(2) a kernel local selflabel(), which assigns a 2 × 2 block of
spins to each thread, allowing tile sizes up to B = 64, and (3)

a looped version, local selflabel block(), which assigns one
column of height B to each thread, such that the lines are
worked on through a loop. In all cases, the relevant portion
of the bond activation variables and cluster labels are copied
to shared memory, such that memory fetches in the relabeling
steps are (almost) instantaneous. Bank conflicts are avoided
through an appropriate layout of the data in shared memory.
Depending on the number of spins per thread, a different
order of operations can lead to different results for each
single self-labeling pass. Consistency could be enforced via
atomic operations, but these slow the code and are found
to be not necessary here. Therefore, while the number of
necessary self-labeling passes might vary from run to run
(or device to device) depending on scheduling specificities,
the final result is deterministic and does not depend on the
order of operations. The decision about the end of self-labeling
is taken using the warp vote function syncthreads or() [30],
which evaluates to true as long as any of the threads has seen
a relabeling event in the last pass. Performance differences
between the mentioned three kernels are found to be relatively
small. The best asymptotic performance is observed for the
kernel local selflabel() with 2 × 2 spins per thread, as this
setup avoids read-write conflicts in shared memory. For tiles
of size B = 16 on the GTX 480 the run time per spin is
Tlocal/L

2 = 1.08 ns for all labeling passes. While the total
number of operations is larger for self-labeling than for
breadth-first search or union-and-find, the former is 13 and
8 times faster than the latter at B = 16, respectively, due to the
easily exploited inherent parallelism.

C. Tile consolidation

Each of the three cluster labeling algorithms on tiles
discussed above results in correct cluster labels inside of
tiles, however, ignoring the information of any active bonds
crossing tile boundaries. To reach unified labels for clusters
spanning several tiles, an additional consolidation phase is
necessary. Two alternatives, an iterative relaxation procedure
and a hierarchical sewing scheme, have been considered to this
end.

1. Label relaxation

Cluster labels can be consolidated across tile boundaries
using a relaxation procedure similar to the self-labeling
employed above inside of tiles [28]. In a preparation step, for
each edge crossing a tile boundary the indices of the cluster
roots of the two sites connected by the boundary-crossing bond
are stored in an array; cf. Fig. 5 [kernel prepare relax()]. In the
relaxation phase each tile sets the root labels of its own active
boundary sites to the minimum of its own current label and
that of the corresponding neighboring tile. Relaxation steps are
repeated until local cluster labels do not change any further.
Similar to self-labeling, the number of relaxation steps scales
as the shortest path between two points on the largest cluster(s);
however, the relevant length scale for the relaxation procedure
is now � = L/B, leading to the following scaling behavior at
the percolation threshold:

nrelax ∼ �dmin . (13)
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FIG. 5. (Color online) Tile consolidation via label relaxation.
For each spin on the boundary of a tile (squares) with an off-tile
active bond, the local root nodes (circles) are stored in an array. The
corresponding local root labels are transmitted to neighboring tiles,
which change their local labels to the minimum of their own and the
received labels.

For systems below the transition temperature or more general
cluster identification tasks with extensive, but nonfractal,
clusters, dmin is replaced by 1, whereas above the critical point
and for other problems with finite characteristic length scales,
nrelax ∼ ξ/B. The number of iterations nrelax is shown for a
simulation of the q = 2 Potts model at criticality in Fig. 6. The
expected scaling with dmin = 1.08 [45] is well observed for
sufficiently large system sizes across all tile sizes B: A fit of the
functional form (13) results in dmin = 1.0766. The small, but
visible downward, shift of nrelax with increasing B results from
concurrency effects: For a small total number of tiles many of
them are treated at the same time on different multiprocessors,
resulting in the possibility of a label propagating to tiles more

∼ �1.0766

101

102

103

104

n
re

la
x

4 8 16 32 64 128 256 512 1024
�

∼ �1.0766

B = 4
B = 8
B = 16
B = 32
B = 64

FIG. 6. (Color online) Required number nrelax of iterations for the
label relaxation technique for tile consolidation as a function of the
renormalized system size � = (L/B). The line is a fit of the form (13)
to the data for � � 100, yielding dmin = 1.0766.

than one step away in one pass if (as is likely) several of the
boundary sites belong to the same clusters.

The number of operations per relaxation iteration is
proportional to the length of the tile boundary times the number
of tiles, i.e.,

trelax ∼ B�2. (14)

The relaxation routine [kernel relax()] appears intrinsically
serial in nature as different boundary spins can point to the
same roots such that concurrent operations could lead to in-
consistencies, unless appropriate locks are used. Nevertheless,
an alternative implementation [kernel relax multithread()]
using B threads to update a number of boundary spin pairs
concurrently in a thread block is perfectly valid as similar
to the self-labeling approach only the number of necessary
iterations is affected by the order of operations while the final
result is not changed. As different blocks can essentially only
be synchronized between kernel calls, the stopping criterion is
checked on CPU between kernel invocations. The parallel run
time for this kernel is then given by

T
p

global = Crelax
�2

min(�2,n)

B

min(B,m)
�dmin . (15)

Note that the asymptotic effort per spin from the relaxation
phase, T

p

global/L
2 ∼ B−1�dmin ∝ Ldmin , does not become con-

stant as the system size is increased, unless the tile size B is
scaled proportionally to L.

For root finding in the spin-flipping phase, it is of some
relevance that the relaxation process effectively attaches all
subclusters in tiles belonging to the same global cluster directly
to the root of the subcluster with the smallest cluster label.
Therefore, the algorithm involves path compression on the
level of the coarse-grained lattice.

2. Hierarchical sewing

An alternative technique of label consolidation across
tiles uses a hierarchical or divide-and-conquer approach as
schematically depicted in Fig. 7 [23]. On the first level
2 × 2 tiles of B × B spins are sewn together by inserting

1
2

3

FIG. 7. (Color online) Hierarchical sewing of 64 tiles for label
consolidation. On level 1, 2 × 2 tiles are sewn together to form 16
larger tiles. In levels 2 and 3, the tile numbers are reduced to 4 and 1,
respectively.
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the missing bonds crossing tile boundaries. This results in
B/2 × B/2 larger tiles, which are then combined in a second
step, etc., until, finally, labels of the whole system have been
consolidated. For the case of periodic boundary conditions,
the bonds wrapping around the lattice in both directions need
to be inserted in an additional step. Bond insertion itself is
performed in the union-and-find manner described above using
tree balancing; i.e., the roots of the two clusters connected by
the added bond are identified, and the smaller cluster is then
attached to the root of the larger cluster. We can assume that
find times are essentially constant inside the original tiles of
size B, either because tile labeling was performed with the
breadth-first or self-labeling algorithms that produce labelings
with complete path compression (i.e., each node label points
directly to the root), or since it was done using union-and-find
with (at least) one of the ingredients of tree balancing or path
compression, leading to (at most) logarithmic time complexity
of finds. Then, using tree balancing in the hierarchical sewing
step ensures that find times remain logarithmically small as
tiles are combined. Time complexity could be further improved
by adding path compression, but (as for union-and-find inside
of tiles) it is found here that this rather makes the code
slower in the range of lattice sizes considered here. Note
that the self-labeling approach does not naturally provide the
information about cluster sizes in the tree roots. It is found,
however, that it has no adverse effect on the performance of
the tile consolidation step if cluster sizes are simply assumed
to be identical (and, for simplicity, equal to one) for partial
clusters inside of tiles.

One thread block is assigned to a configuration of 2 × 2 tiles
at each level. The sewing itself is essentially serial in nature.
For one of the two linear seams of each sewing step (e.g., the
horizontal seam), one can use two threads, however, leading to
two 2 × 1 tiles after finishing the horizontal seam that are
combined into one larger tile only by closing the vertical
seam.2 As the tile size for the kth generation is Bk = 2kB and
the length of the seam is 2 × 2kB, the serial computational
effort for level n of the sewing is

T s
k = Csew

(
L

2kB

)2

(2 × 2kB) = Csew
L2

B
21−k, (16)

where I have neglected logarithmic terms due to the find
operations. The total number of levels is kmax = log2(L/B)
(assuming, for simplicity, that L and B are powers of two).
Hence, the total serial effort is

T s
global =

kmax∑
k=1

T s
k = L2Csew

B

kmax∑
k=1

(
1

2

)k−1

= 2L2Csew

B

(
1 − B

L

)
. (17)

2Note that this still leads to some underutilization of the device due
to the limit of eight active blocks per multiprocessor which requires
at least four threads per block for full occupancy with blocks.

On the GPU device with n multiprocessors mapped to
independent blocks available for the sewing procedure, the
parallel run time for generation k is

T
p

k = T s
k

min[(�2−k)2,n]
. (18)

For a sufficiently large system, at the beginning of the process
the number of tiles (�2−k)2 to sew will always exceed n.
As the number of remaining tiles is reduced, the number of
sewing jobs will drop to reach the number of multiprocessors
at (�2−k∗

)2 = n or

k∗ = log2
�√
n
, (19)

where another approximation is made by allowing for non-
integer level numbers k. Due to the variable number of
multiprocessors actually involved in the calculation, the total
parallel effort has two contributions:

T
p

global =
k∗∑

k=1

T s
k

n
+

kmax∑
k=k∗+1

T s
k

(�2−k)2

= Csew
L2

nB

2k∗ − 1

2k∗ + 4CsewB(2kmax − 2n∗
)

= CsewL2

[
1

nB
+

(
4 − 5√

n

)
1

L

]
. (20)

Therefore, the effort T
p

global/L
2 per site becomes asymptoti-

cally independent of L, but this limit is approached rather
slowly with a 1/L correction, whereas effects of incomplete
loading of the device decay as 1/L2 (in two dimensions). This
is illustrated by the numerical results shown in Fig. 8. The data
are well described by the form

T
p

global

/
L2 = a

L
+ b

B
(21)
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T
p g
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B = 64

FIG. 8. (Color online) Total parallel run times T
p

global for label
consolidation via hierarchical sewing as a function of system size L

for different tile sizes B for the q = 2 critical Potts model on the GTX
480. The lines are fits of the form T

p

global = a/L + b/B to the data.
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expected from Eq. (20). Comparing Eqs. (20) and (21), from
the ratio a/b of fit parameters one can deduce the effective
number n of processing units as

n = 25 + 8a/b + √
25 + 16a/b

32
, (22)

and, for instance, the fit at constant B = 16 yields n ≈ 110,
while a fit at constant L = 8192 results in n ≈ 113, rather
close to the theoretically expected result for the GTX 480
with 8 blocks for each of the 15 multiprocessors, resulting in
120 processing elements. The somewhat smaller n estimated
are attributed to effects of thread divergence and the neglect
of logarithmic terms in the find step. For tile size B = 16,
the asymptotic performance of this kernel if found to be
T

p

global/L
2 = 0.78 ns.

D. Cluster flipping

Having globally identified the connected components
resulting from the bond configuration, step 3 of the SW
algorithm described at the beginning of Sec. II consists of
assigning new, random spin orientations to each cluster and
adapting the orientation of each spin in the cluster to the
new orientation prescribed. Since it is inconvenient to keep
a separate list of global cluster roots, it is easiest to generate a
new random spin orientation for each lattice site while using
this information only at the cluster roots. To this end, the
array of now superfluous bond activation variables is reused.
In a first kernel [prepare flip()], a random orientation is drawn
and stored in the bond array for each site. This is done in
tiles of Bx × By sites as for the bond activation, using the
same array of random-number generators. In a second step
[kernel flip()], each site performs a find operation to identify
its root and applies the new spin orientation found there to
the local spin. Since cluster labels are effectively stored in a
tree structure, this step involves nonlocal memory accesses
for each site. In principle, locality could be improved here by
employing full path compression in the union steps before, but
in practice this is not found to improve performance for the
system sizes up to 16 384 × 16 384 considered here. Another
possible improvement would eliminate the wasteful operation
of drawing new proposed orientations for all spins while only
the new orientations of the cluster roots are required. This can
be achieved by carrying the flipping information piggy-back on
the cluster labels, at least for the q = 2 or Ising model where
flipping information is only one bit wide. Again, however,
in practice it is found that due to the incurred complications
in the arithmetics regarding cluster labels in union-and-find
operations, overall performance is actually decreased by
this “optimization.” Due to the necessary tree traversal, the
performance of the cluster flipping procedure depends weakly
on the degree of path compression performed previously in
cluster labeling on tiles and label consolidation as well as on
the tile size B. For the combination of self-labeling on tiles and
hierarchical sewing, it is found to be T

p

flip/L
2 = 0.201 ns for

L = 8192 and B = 16, while it is somewhat smaller at 0.133
ns if label relaxation is used instead of hierarchical sewing.

E. Performance and benchmarks

As a number of options for the cluster identification task
have been discussed, the question arises which of them is
the most efficient for a given set of parameters and a given
GPU device. For the bond activation and cluster flipping steps,
the situation is simpler as no important variants have been
discussed there, such that these steps are always performed
with the outlined local approaches and tiles with Bx = 256
and By = 4, apart from the smallest systems with L < 256.
Regarding the cluster labeling in tiles, it is clear from the
data presented in Fig. 2 that self-labeling shows the best
performance for block sizes B � 128. The main decision is
thus between the label relaxation and hierarchical sewing
approaches for label consolidation. Additionally, an optimal
tile size needs to be determined. For the combination of
self-labeling and hierarchical sewing, the total parallel run
time for cluster identification is

T
p

identify

/
L2 = Clocal

mn
Bdmin +

(
a

L
+ b

B

)
, (23)

assuming that B2/k � m in Eq. (12). Here a and b are the
parameters from Eq. (21). On minimizing, the optimal tile
size is then found to be

Bopt =
(

b

dminClocal/mn

)1/(dmin+1)

. (24)

The fit parameters for the runs on the GTX 480 and dmin =
1.08 then yield Bopt ≈ 14.2. Since, for simplicity, runs were
restricted to L and B being powers of two, B = 16 is closest to
the optimum. Similar fits for the data on the GTX 580 and the
Tesla M2070 also used for test runs yield the same optimum in
the power-of-two step sizes. The pre-asymptotic branch with
B2/k � m in Eq. (12) does not yield an optimum, but total
run times are monotonously decreasing with B. In other words,
as long as idle cores in the multiprocessors are available, the
tile size should be increased. B = 16 hence is also the global
optimum for this setup.

For the combination of self-labeling and label relaxation,
the total run time for an update is

T
p

identify

/
L2 = Clocal

mn
Bdmin + Crelax

mn

Ldmin

Bddim+1
, (25)

such that the optimal tile size becomes

Bopt =
[
Crelax(dmin + 1)

Clocaldmin
Ldmin

]1/(2dmin+1)

, (26)

which (with dmin ≈ 1.08) is approximately proportional to
L1/3 for the critical q = 2 Potts model in two dimensions.
Figure 9 shows the resulting optimal tile size as a function of
L. Due to the limitation of shared memory to 48 kB on current
NVIDIA GPUs, self-labeling on tiles is limited to block sizes
B � 64 (assuming B = 2n, n = 1, 2, . . .), such that the optimal
tile sizes cannot be used for L � 4096. Working directly in
global memory is no option as it slows the code dramatically.
Using breadth-first search or union-and-find on larger tiles
is feasible, but does significantly increase the total run time,
even though the relaxation phase is slightly more efficient.
I therefore did not increase the tile size beyond B = 64, as
indicated in Fig. 9.
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FIG. 9. (Color online) Optimal tile size Bopt in cluster identifi-
cation with self-labeling and label relaxation for the q = 2 states
critical Potts model as a function of L. The solid line shows the result
of Eq. (26), and the dashed line represents the optimum actually
observed under the constraints B � 64, B = 2n, n = 1, 2, . . .

The resulting total run times on the GTX 480 are shown
in Fig. 10. The two consolidation approaches lead to quite
different size dependence. Tile relaxation results in a rather
fast decay of run times per site in the underutilized regime
and is faster than the sewing approach for intermediate system
sizes. Eventually, however, the scaling

T
p

identify

/
L2 ∼ L

d2
min

2dmin+1

implied by Eqs. (25) and (26) kicks in, which amounts to
T

p

identify/L
2 ∼ L0.367 for dmin = 1.08, and results in the upturn
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FIG. 10. (Color online) Total run times T
p

SW per spin in nanosec-
onds for the Swendsen-Wang update of the q = 2 critical Potts model
on the GTX 480 from self-labeling on tiles plus label consolidation
with label relaxation and hierarchical sewing, respectively. Lines are
guides to the eye.
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FIG. 11. (Color online) Breakdown of parallel run times for
one SW update per spin into the components of bond activation,
local labeling, label consolidation via the sewing approach, and
spin flipping. The CPU curve shows reference data for a serial
implementation running on an Intel Core 2 Quad Q6700 at 2.66 GHz.

seen in Fig. 10. For the hierarchical approach, on the other
hand, as implied by Eq. (23) the best performance is reached
only rather slowly as L is increased, but T

p

identify/L
2 ultimately

becomes constant as (theoretically) L → ∞. At L = 8192
and β = βc for the q = 2 Potts model, SW with sewing
performs at 3.18 ns per spin and per sweep on the GTX 480,
while relaxation results in 7.15 ns per sweep. For the pure
cluster identification problem, i.e., without the bond activation
and spin flipping steps, these times are reduced to 2.52 and
6.56 ns, respectively. Figure 11 shows the breakdown of run
times into the algorithmic components of bond activation,
labeling on tiles, tile consolidation, and spin flipping when
using hierarchical sewing. Label consolidation is the dominant
contribution up to intermediate system sizes, and only for
L � 16 384 does its run time drop below that of local labeling
on tiles. For smaller systems, the fraction of time spent on
bond activation and spin flipping is negligible, while (due to
the decrease in time spent for label consolidation) it rises to
about 20% for L = 8192. As a reference, Fig. 11 also shows
the run time of an optimized, serial CPU implementation
using breadth-first search and on-line flipping of spins as the
clusters are grown, running on an Intel Core 2 Quad Q6700 at
2.66 GHz.

The incipient percolating clusters for the Potts model
simulations at βc are typical for a critical model. For
other applications, for instance, in image segmentation, it is
interesting to investigate the performance for more general
situations. Figure 12 displays the run times for an SW update
as a function of inverse temperature β, comparing the setups
with relaxation and hierarchical sewing for tile consolidation.
There is a natural increase in run time with the concentration
p = 1 − exp(−βJ ) of bonds. While for the sewing procedure,
run times increase monotonically with β, for the relaxation
approach there is a pronounced peak of run times near β = βc,
where the number of necessary iterations nrelax shoots up since
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FIG. 12. (Color online) Run times for the SW update on the GTX
480 as a function of the inverse temperature β for the relaxation and
sewing approaches and different tile sizes, for the q = 2 Potts model
with edge length L = 8192.

now information about the incipient percolating cluster needs
to be transmitted across the whole system. Run times become
somewhat smaller again for β > βc as most bonds crossing
tile boundaries belong to the same (percolating) cluster such
that, due to concurrency, cluster labels can travel several steps
in one iteration. This concurrency effect strongly increases
as more tiles are treated simultaneously, which, for a fixed
number of multiprocessors, is the case for larger tile sizes.
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FIG. 13. (Color online) Speed-up of the Swendsen-Wang update
for the q = 2 critical Potts model on GPU as compared to CPU (Intel
Q6700 at 2.66 GHz) as a function of system size L. The circles show
results from using the relaxation procedure, while the remaining data
sets are for the hierarchical sewing process on the GTX 480, GTX
580, and Tesla M2070 GPUs, respectively. The latter is shown in
variants with and without error-correcting code (ECC).

Figure 12 shows that the preference of the sewing procedure
over relaxation for large systems is robust with respect to
variations in temperature and should also be justified for more
general structures not resulting from a percolation transition.

Figure 13 shows the speed-up of the GPU implementation
with respect to the CPU code on the Q6700 processor. For large
systems, speed-ups in excess of 30 are observed. Comparing
different GPU devices, a clear scaling with the number of
multiprocessors and global memory bandwidth is observed
with the best performance seen for the GTX 580 (n = 16,
192 GB/s), followed by the GTX 480 (n = 15, 177 GB/s)
and the Tesla M2070 (n = 14, 144 GB/s). Naturally, effects
of higher double-precision floating-point performance of
the latter are not seen for the present code, which almost
exclusively uses integer and a few single-precision floating
point arithmetic instructions. The penalty for activating error
correction (ECC) on the memory is minute. Some benchmark
results, also including different processors, are collected in
Table I.

III. WOLFF ALGORITHM

For simulations of spin models, Wolff [5] suggested a
variant of the Swendsen-Wang algorithm where only a single
cluster, seeded at a randomly chosen site, is grown at a time,
and it is then always flipped. Empirically, it is found that
this leads to somewhat smaller autocorrelation times than
SW [46,47], but, most likely, no change in the dynamical
critical exponent (at least for integer q) [48]. Conceptually,
one can imagine the single-cluster algorithm as a variant of
the SW dynamics where after a full decomposition of the
lattice according to the SW prescription, a site is picked at
random and the cluster of spins it belongs to is flipped. Since
the probability of picking a specific cluster in this way is
proportional to its size, in this approach larger clusters are
flipped on average than in the original SW algorithm. This
explains the somewhat reduced autocorrelation times.

While this approach is easily coded in a serial program and,
in addition to the smaller autocorrelation times, in a suitable
implementation performs at even somewhat less effort per spin
than the SW algorithm, it is not straightforwardly parallelized
[41,49–51]. The only obvious parallelism lies in the sites at the
wave front of the growing cluster; cf. the sketch in Fig. 1. A
number of approaches for parallel calculations come to mind:

(1) A full parallel cluster labeling as in SW, followed by
picking out and flipping a single cluster. Although many
operations are wasteful here, there might still be a speed-up as
compared to the serial code. If using a relaxation procedure for
label consolidation, this approach can be somewhat improved
by modifying the stopping criterion to only focus on the labels
belonging to the cluster to be flipped.

(2) Restriction to wave-front parallelism [49]. Due to the
rather variable number of sites at the front, however, this
generically leads to poor load balancing between the process-
ing units. Load balancing can be improved by a delocalization
of the wave front with a “randomized” rearrangement of the
lattice. This can be reached, for instance, with a scattered
strip partitioning, where strips of the lattice are assigned to
available processing units in a round-robin fashion, leading to
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TABLE I. Benchmark results for the Swendsen-Wang update of the q = 2, 3, and 4 Potts models on GPU vs CPU.

q β/βc L method CPU GPU Speedup

2 1 512 Self-labeling, relaxation Q6700 61.63 ns GTX 480 6.533 ns 9
2 1 512 Self-labeling, sewing Q6700 61.63 ns GTX 480 12.17 ns 5
2 1 8192 Self-labeling, sewing Q6700 77.39 ns GTX 480 3.179 ns 24
2 1 8192 Self-labeling, sewing Q6700 77.39 ns GTX 580 2.697 ns 29
2 1 8192 Self-labeling, sewing i7@9300 105.8 ns GTX 580 2.697 ns 39
2 1 8192 Self-labeling, sewing Q6700 77.39 ns M2070 3.934 ns 20
2 1 8192 Self-labeling, sewing E5620 149.6 ns M2070 3.934 ns 38
2 1 16 384 Self-labeling, sewing E5620 152.1 ns M2070 3.573 ns 43
2 1 8192 Self-labeling, relaxation Q6700 77.39 ns GTX 480 7.154 ns 11
2 0.6 8192 Self-labeling, sewing Q6700 57.12 ns GTX 480 1.863 ns 31
2 1.4 8192 Self-labeling, sewing Q6700 135.7 ns GTX 480 4.164 ns 33
3 1 8192 Self-labeling, sewing Q6700 70.73 ns GTX 480 3.059 ns 23
4 1 8192 Self-labeling, sewing Q6700 65.51 ns GTX 480 2.887 ns 23

a more even distribution of sites at the wave front to different
processors [50].

(3) Suitable modifications of the single-cluster algorithm to
make it more appropriate for parallel computation.

The first approach can be easily realized with the techniques
outlined in Sec. II. As discussed in Ref. [50], additional load
balancing can result in significant improvements on multiple
instruction, multiple data machines. It appears less suitable
for the mixed architecture of GPUs. In contrast to the more
general case of SW dynamics discussed above in Sec. II,
I refrain here from a comprehensive evaluation of options,
and give only some preliminary results for a modification
(point 3) of the Wolff algorithm appearing suitable for GPU
computing.

In this approach, the lattice is again decomposed into tiles
of edge length B. A single cluster per tile is then grown using
a number of threads per tile to operate on the wave front.
Unlike the case of the SW implementation, the clusters are not
confined to the tiles, but can grow to span the whole lattice. One
can easily convince oneself that the underlying decomposition
remains to be the SW one. If seeds in different tiles turn out to
belong to the same cluster, different parts of that cluster receive
different labels, but since all clusters are flipped the effect is
the same as if a single cluster (for that two seeds) had been
grown (this is for the case of the q = 2 model). Logically, this
algorithm is identical to performing the full SW decomposition
and then selecting �2 points on the lattice, followed by flipping
all distinct clusters these points belong to. While this approach
satisfies detailed balance (the SW decomposition remains the
same and the cluster flipping probability is symmetric), it is not
ergodic as it stands since, for instance, it becomes impossible to
flip only a single spin. This deficiency can be easily repaired,
however, by assigning a flipping probability pflip < 1 to the
clusters, which can be large, but must be strictly smaller than
one. If only a relatively small number of tiles is chosen, the
decorrelation efficiency of this “few-cluster” variant of the
SW algorithm is about the same as that of the single-cluster
variant.

For implementing the labeling in tiles, a number of threads
p per block is chosen. If there are enough pending sites in
the queue, each thread is assigned one of these spins, which
are then examined in parallel. The queue is here realized as a

simple linear array of size N = L2. This appears inefficient as
the size of the wave front will at most be of the order of LdH ,
where dH is the fractal dimension of the cluster boundary. In
contrast to the use of a ring buffer of length ∝LdH , however,
storing in and retrieving from the queue can be realized with
atomic operations only [30], i.e., without the use of locks.
Unfortunately, this setup severely limits the range of realizable
tile sizes for larger systems as memory requirements for this
queue scale as �2N = L4B−2. In contrast to the SW algorithm,
bond activation and spin flipping can be done online with the
labeling pass. Consequently, the “few-cluster” implementation
needs only two kernels, cluster tile() for the labeling and
flipping and reset inclus() for resetting the cluster labels after
each pass. The number p of threads per block is adapted to
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FIG. 14. (Color online) Speed-up of the “few-cluster” update
described in Sec. III implemented on GPU as compared to a
single-cluster update on CPU. For each system size, the optimal
tile size B has been selected from the range of allowable tile sizes
determined by memory constraints.
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maximize occupancy of the device. In general, it is found that
good results are obtained on setting

p = min[1024,1536/ min(max(�2/n,1),8)], (27)

as 1024 is the maximum number of threads per block, 1536 is
the maximum number of active threads, and 8 is the maximum
number of resident blocks per multiprocessor. (Here n denotes
the number of multiprocessors of the device.) The resulting
speed-ups as compared to a serial code on the Intel Core
2 Quad Q6700 are shown in Fig. 14. The performance for
large system sizes is limited by the memory consumption
of the queues, limiting the number �2 of tiles. Speed-ups
by a factor of up to about five are achieved, significantly
lower than for the SW dynamics. It is expected than further
optimizations (such as the use of ring buffers instead of queues)
could approximately double this speed-up. Nevertheless, for
cluster-update simulations on GPUs it might be more efficient
to stick with the SW algorithm.

IV. CONCLUSIONS

Cluster identification is a pivotal application in scientific
computations with applications in the simulation of spin mod-
els and percolation, image processing, or network analysis.
While the underlying problem is inherently nonlocal in nature,
the choice of appropriate algorithms for implementations on
GPU allows for significant performance gains as compared
to serial codes on CPU. The overall speed-up is seen to be
lowest for spin models at criticality, where clusters are fractal
and span the system. In all cases, however, speed-ups up to
about 30 can be achieved on current GPU devices. This is to
be contrasted to the case of purely local algorithms, such as
Metropolis simulations of spin models, where speed-ups are

seen to be larger by a factor three to five [18,20,21]. While
these speed-ups are relative to (optimized) serial CPU code,
parallelization of the cluster update on a multicore CPU does
not offer very substantial gains, and our experience is in line
with that reported in Ref. [51] in this respect. Even with these
caveats, it seems clear that GPU computing is not limited to
the case of purely local problems as significant performance
gains can be achieved for highly nonlocal problems also.
Generalizations within the realm of spin-model simulations,
such as variants on different lattices or embedded clusters for
O(n) spin models [5], are straightforward.

While the considerations presented here have been re-
stricted to calculations on a single GPU, it should be clear
that the approach outlined for the Swendsen-Wang dynamics
or the pure cluster identification problem is easily parallelized
across several GPUs. For the case of spin-model simulations,
the combination of self-labeling and label relaxation appears
better suited for this task as for the final spin-flipping step only
information local to each GPU is required, whereas for the
hierarchical scheme cluster roots (and therefore spin-flipping
states) are scattered throughout the whole system. The most
effective setup for simulating large systems therefore appears
to be the combination of self-labeling and hierarchical sewing
inside a GPU and label relaxation between GPUs, which can
easily be realized using the message passing interface (MPI)
with rather low communication overheads.
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[51] J. Kaupužs, J. Rimšans, and R. V. N. Melnik, Phys. Rev. E 81,

026701 (2010).

036709-14

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1016/0031-8914(72)90045-6
http://dx.doi.org/10.1103/PhysRevB.29.5103
http://dx.doi.org/10.1088/0305-4470/13/8/025
http://dx.doi.org/10.1103/PhysRevLett.63.827
http://dx.doi.org/10.1103/PhysRevLett.99.055701
http://dx.doi.org/10.1103/PhysRev.185.832
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/321879.321884
http://dx.doi.org/10.1103/PhysRevE.64.016706
http://dx.doi.org/10.1103/PhysRevE.64.016706
http://dx.doi.org/10.1088/0305-4470/21/17/003
http://dx.doi.org/10.1016/0378-4371(91)90401-W
http://dx.doi.org/10.1016/0370-2693(89)91563-3
http://dx.doi.org/10.1103/PhysRevB.43.10617
http://dx.doi.org/10.1103/PhysRevB.43.10617
http://dx.doi.org/10.1103/PhysRevE.80.036707
http://dx.doi.org/10.1103/PhysRevE.80.036707
http://dx.doi.org/10.1007/BF01053610
http://dx.doi.org/10.1142/S0129183195000150
http://dx.doi.org/10.1142/S0129183195000150
http://dx.doi.org/10.1103/PhysRevE.81.026701
http://dx.doi.org/10.1103/PhysRevE.81.026701

