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Entropic algorithms and the lid method as exploration tools for complex landscapes
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Monte Carlo algorithms such as the Wang-Landau algorithm and similar “entropic” methods are able to
accurately sample the density of states of model systems and thereby give access to thermal equilibrium properties
at any temperature. Thermal equilibrium is, however, unachievable at low temperatures in glassy systems. Such
systems are characterized by a multitude of metastable configurations pictorially referred to as “valleys” of
an energy landscape. Geometrical properties of the landscape, e.g., the local density of states describing the
distribution in energy of the states belonging to a single valley, are key to understanding the dynamical properties
of such systems. In this paper we combine the lid algorithm, a tool for landscape exploration previously applied
to a range of models, with the Wang-Swendsen algorithm. To test this improved exploration tool, we consider
a paradigmatic complex system, the Edwards-Anderson model in two and three spatial dimensions. We find a
striking difference between the energy dependence of the local density of states in two dimensions and three
dimensions—nearly linear in the first case, and nearly exponential in the second. The dynamical consequences
of these findings are discussed.
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I. INTRODUCTION

Energy landscapes of model systems have been studied
extensively using a variety of numerical methods specialized
for different purposes [1]. For example, using repeated thermal
quenches, each quench leading to the local energy minimum
configuration or inherent state [2] which lies below the current
state of a Monte Carlo (MC) simulation, the landscape is
partitioned into the catchment basins belonging to the different
inherent states. Identifying the important connections between
these basins, i.e., typically, the “mountain passes” of lowest
energy, one can then produce a coarse-grained version of the
landscape and use it to assess both dynamical and equilibrium
properties. This approach encounters problems in models of
glassy systems, which feature a quasicontinuum of metastable
configurations, each configuration parameterized by an energy
barrier gauging its thermal stability and its lifetime under
isothermal conditions.

If equilibrium thermal properties are of interest, entropic
or ”flat histogram” methods [3–5] are powerful and generally
applicable tools. These methods avoid the trapping in local en-
ergy minima which plagues the standard Metropolis algorithm
and produce the global density of states (GDOS) as a function
of the energy. From there, any thermal equilibrium property of
interest can be obtained. Since, however, thermal equilibrium
is not experimentally achievable in glassy systems at low
temperatures, equilibrium properties of pertinent models have
mainly academic interest.

Local geometrical features of the energy landscape as
extracted by the lid method have a direct bearing on the
dynamical properties of glassy model systems: a fictitious
and impenetrable energy barrier, called a ”lid,” is introduced
and the energy distribution of all the microstates which can
be reached starting from a given inherent state without ever
crossing the lid energy is determined. The distribution is called
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local density of states (LDOS) and gives access to the local
equilibrium properties of the (fictitious) valley jointly defined
by an inherent state and a lid, just like the density of states
provides corresponding global information. Furthermore, the
thermal stability of a valley at a given temperature is encoded
in the LDOS.

Finding the LDOS can be numerically challenging.
Metropolis sampling at low temperatures is hampered by the
large number of local minima, while at high temperature,
trajectories linger in many cases just below the lid energy due
to the great number of states available there. In both cases the
result is poor sampling. Exhaustive enumeration was utilized
in Refs. [6–10] to avoid these problems. That procedure is
both fast and exact but puts very high demands on memory
availability and quickly runs out of space when the system size
and/or the energy range is large.

In this paper we show how the LDOS can be efficiently
estimated by combining the lid method with the flat histogram
method of Wang and Landau [4]. From an algorithmic point
of view, imposing a lid restricts the search space. While
this hardly changes the overall convergence properties of
the histogram method, the lid makes it possible to obtain
a far more accurate description of the density of states in
the low-energy region close to the ground state of the model
investigated. As shown below, this accuracy is not guaranteed
by the unrestricted entropic method, since the tiny fraction of
all the available configurations present near the ground state
can be extremely hard to sample. Compared to the lid method
in combination with an exhaustive search, the present approach
is far more powerful—larger systems can be investigated over
a much larger range of energies.

In this paper the algorithm is applied to the Edwards-
Anderson (EA) [11] spin-glass model, a paradigmatic glassy
system featuring quenched disordered interactions. We find
that the energy dependencies of the LDOS in two dimensions
(2D) and three dimensions (3D) differ considerably, and that
the 3D results concur with important experimental features of
real spin glasses.
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II. METHOD AND MODEL

Since key properties of experimental spin glasses [11] are
reproduced by Monte Carlo simulations of the EA model, the
latter can be considered a bona fide complex system in its own
right [12,13]. For completeness, we briefly describe the model
and the relevant features of its energy landscape before turning
to how entropic sampling and the lid method are jointly applied
to the EA model.

A. The Edwards-Anderson model and the lid method

In the EA model Ising spins, Si = ±1, are placed on a
cubic lattice and interact with their nearest neighbors through
quenched random couplings. A system of N Ising spin in
configuration x has an energy E(x) given by

E(x) = −1

2

∑
ij

Jij S
x
i Sx

j − H
∑

i

Sx
i , (1)

where the coupling matrix J is symmetric, with elements Jij

vanishing unless the sites i and j are neighbors on the lattice.
For i < j , the nonzero couplings are random independent
variables, drawn in our case from a Gaussian distribution,
with zero average and unit variance. The last term in Eq. (1)
describes the interaction with an external magnetic field H .

In 3D, at H = 0 and for temperatures below a critical
temperature Tc ≈ 0.95 (see Ref. [14] for a chronologically
ordered list of different Tc estimates) the model is in its
spin-glass phase, which is characterized by a nonzero value
of the spin-glass order parameter [15,16].

At low energies the energy landscape of the EA model
features a multitude of nested metastable “valleys,” i.e.,
regions of configuration space which support a metastable
equilibriumlike probability distribution [7]. A valley jointly
defined by an inherent state of energy Emin and a lid energy
Elid > Emin comprises all configurations connected to the
inherent states by paths (i.e., series of single spin flips) never
crossing the lid energy. For each valley exhaustive enumeration
of all states below the lid is implemented up to the lid value
which opens a connection to a new inherent state of lower
energy [7]. For rather small systems, the LDOS thus obtained
seems to grow in a near exponential fashion (see also [17]).
The lid dependence of the rate of growth has not been clarified,
nor is it clear how the property extends to larger systems.

B. The entropic sampling algorithm

Entropic sampling is a Monte Carlo technique invented
by Lee [5] where transitions are controlled by (the current
estimate of) the density of states �(E). Rather than sampling
with the usual Boltzmann weight e−(E/T ), the entropic method
samples with a probability ∝ 1

�(E) . Unlike the energy, the
density of states � is not known beforehand and must hence
be calculated iteratively during the simulation. Starting with
a (poor) guess �1(E) = constant, we divide the energy axis
into a certain number of bins, calculate a histogram h1(E) of
the energies of the states visited, and normalize it to one. The
probability h1(E) to visit an energy bin E is proportional to the

number of states �1(E) multiplied by the probability 1/�1(E)
with which we sampled, i.e.,

�(E) ∝ �1(E)h1(E). (2)

We use the above to iteratively define

�n+1(E) = �n(E)hn(E), (3)

which specifies the algorithm in terms of successive approxi-
mations to the density of states. In terms of the microcanonical
entropy

S(E) = log �(E), (4)

the algorithm reads

Sn+1(E) = Sn(E) + log hn(E), (5)

from which is clear that the probability of sampling a particular
state is proportional to e−S(E), and that convergence implies
hn(E) → 1 for n → ∞. For a general discussion of entropic
algorithms, we refer the reader to the book by Newman and
Barkema [18].

The entropic sampling algorithm applied in conjunction
with the lid method yields the LDOS previously mentioned.
The first step is to identify a local energy minimum using a
Monte Carlo algorithm running at constant temperature. The
energy of this minimum is taken as the zero of the energy axis,
and as the lower edge of the first bin in the energy histogram
to be constructed. The standard entropic algorithm is modified
by adding a rejection criterion: every spin configuration with
an energy greater then the lid is rejected a priori. The lid value
will therefore be the upper edge of the last bin in the energy
histogram. Finally, a “bail-out” option is included: whenever a
configuration of negative energy is found, a new lower energy
minimum is identified and the whole process starts afresh with
that new minimum used as a starting point.

III. RESULTS

Below we present results for the LDOS, �(ε), for the EA
model on square and cubic lattices of linear size L = 30
and L = 8, respectively. The energy is in all cases scaled by
the number of spins Nspin, i.e., ε = E/Nspin. The average of
the lowest energy values encountered in each of the Nsample

different runs is denoted εmin. We consider four different
valleys defined, in units of energy per spin, by the lid values
λ = 0.1,0.2,0.4, and 0.8. The number of bins in the histogram
is Nh = 20 for λ = 0.1,0.2, and Nh = 40 and Nh = 80 for λ =
0.4 and λ = 0.8, respectively. We also consider for comparison
the GDOS obtained by the entropic algorithm with no lid
restrictions imposed. Unless otherwise specified, the sum of
the density of state over all available energy bins is normalized
to one.

Two types of error may affect the calculations. The
first type is lack of convergence due to an insufficient
number of iterations being performed. As our results show,
the unrestricted entropic algorithm definitely suffers from
this problem near the endpoints of the energy range. The
issue is therefore the convergence of the algorithm when
a lid is imposed. All results presented being averages over
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Nsample = 100 different realizations of the couplings, the
second error type is the statistical error on these averages.

In the entropic algorithm a large number of iterations, i.e.,
reaching a large n value in Eq. (3), is more important than
obtaining an accurate histogram at any particular iteration as
discussed in Ref. [18]. A relatively high number of iterations,
Niter = 40 000, and a relatively low number of MC sweeps at
each iteration, Nsweep = 20, is therefore chosen. The weights
hi(E) of the first 50 iterations are disregarded and these
iterations provide only a less naive starting guess for the
density than the uniform one.

The convergence of the algorithm (with a lid imposed) is
investigated using the deviation from unity of the ratio between
approximations of the density of states taken m iteration steps
apart, hn(i) = �n+m(i)/�n(i), where 1 � i � 80 is the energy
bin index, n is the iteration number, and where m is for
convenience taken to be much larger than one. In Fig. 1 we
show the results of calculations carried out in both 2D and
3D for a single realization of the bonds, using m = 100, three
values of i, and λ = 0.8. The choice λ = 0.8 covers the case
where good convergence is hardest to achieve as the size of
the configuration space to be explored is largest. The three
bin index values used show typical behavior, i.e., very similar
curves are obtained for other values of i. There is, however,
a caveat: since in 3D and for λ = 0.8 only a small fraction
of the states lies near the lower edge of the energy spectrum,
the statistical sampling is insufficient in this region (a problem
easily fixed by choosing a smaller λ). The bins for the 3D case
are accordingly all chosen to lie in the higher part of the energy
interval. In general, our results show that after an oscillatory
transient, the algorithm reaches a good convergence in the
40 000 iterations we have used throughout this work.

We now turn to the error on the LDOS averaged over many
different samples. Since the sample-to-sample fluctuations
of �(ε) are rather small, the statistical errors in the graphs
shown are utterly negligible. To obtain a more quantitative
assessment, the error bar σ (ε) on the data presented is
calculated as the standard deviation of the average LDOS,
estimated over the Nsample independent simulations and divided

by
√

Nsample. The relative statistical error is then given for
each value of the energy as the ratio of σ (ε)/�(ε). The above
procedure was carried out in both 2D and 3D, and in each
case for the two lid values at the opposite ends of the range
investigated, i.e., λ = 0.1 and λ = 0.8. The largest values of
the relative error observed through the energy range provide
relevant bounds. In 2D these bounds are 4% and 7% for
λ = 0.1 and λ = 0.8, respectively. The corresponding values
for the 3D system are 4% and 10%. These bounds all stem
from the lowest energy bin and hence belong to the smallest
value of the LDOS. Since the relative error decreases very
rapidly with energy, they give a rather pessimistic view of the
uncertainty of our data.

In 2D the entropic algorithm repeatedly encounters states
of energy lower than the energy of the “current” lowest state,
meaning that the search is repeatedly abandoned and restarted
from the new lowest state. This behavior is connected to the
form of the LDOS, which is, as we shall see, almost flat, except
for the lowest energies. By contrast, the LDOS increases very
rapidly with energy in 3D. This prevents the algorithm from
fully exploring the relatively few states located at energies
near the bottom of the current valley. Correspondingly, states
of energy lower than the bottom of the current valley may
go unnoticed and the search is restarted in only a few cases.
For the same reason an unconstrained entropic algorithm is
incapable of sampling a large fraction of states at the low
(and high) end of the energy spectrum. By using data obtained
at different lids, it is, however, possible to patch together an
accurate density of states spanning approximately 40 orders of
magnitude.

A. Two spatial dimensions

Our first set of results pertains to a 2D square lattice with
L = 30. In the left panel of Fig. 2, the LDOS is plotted on
a linear vertical scale versus (ε − εmin) for four different lid
values. The three curves corresponding to the lower lids have
been vertically shifted in order to make them coincide with
the fourth curve. Near the ground state, the LDOS increases
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FIG. 1. (Color online) Each curve depicts the ratio of two values of the LDOS taken 100 iterations apart. The simulations are all performed
at lid value 0.8. Left: A 2D system. The three curves shown correspond to values 5,50, and 80 of the energy bin index, 1 � i � 80. Right: A
3D system. The energy bin values for the three curves are here 64,70, and 80.
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FIG. 2. (Color online) Left: LDOS for a 2D lattice with L = 30 for the four different lids λ = 0.1,0.2,0.4,0.8. Right: The GDOS �(ε) for
two different values of the iteration number Niter. All data are for a 2D lattice with L = 30.

very rapidly with energy. At higher energies the growth tapers
off and is nearly linear in the rest of the range explored. The
GDOS depicted in the right panel of the figure are obtained
by running the entropic algorithm without any lid constraint.
Two data sets are shown, obtained using Nh = 250 in both
cases and a number of iterations equal to Niter = 40 000 and
Niter = 60 000, respectively. For these two curves the data are
averaged over ten samples. For comparison, a horizontal line
is drawn as a guide to the eye. The curvature of the GDOS is
seen to decrease slightly as the number of iterations increases,
indicating a certain (and expected) lack of convergence of the
unrestricted algorithm. Nevertheless, the relatively modest
range of � guarantees a passable sampling of the full range of
energies available, including the region near the ground state
energy of the model. As we shall see, the same situation is
not achieved by the unrestricted algorithm in the 3D case.

A simplified cartoon picture of the energy landscape of the
2D EA spin glass is as follows: The landscape contains a series
of valleys, all similar with respect to the internal distribution
in energy of their respective configurations. Configurations
belonging to different valleys have nonoverlapping energies,
i.e., the lowest lying state of one valley lies above the upper rim
of the valley located just below it. The valleys all have a slowly
growing LDOS, and since the GDOS at a given energy mainly
counts states belonging to the single valley located near that
energy, the GDOS is likewise slowly growing. Note that if we
disregard the initial transient, S(E) = ln[�(E)] ∝ ln(E), then
the average energy is simply proportional to the temperature.
This excludes any thermal instability of the kind shown below
to be present in 3D.

B. Three spatial dimensions

Figure 3 shows the LDOS obtained for a 3D cubic lattice
with linear size L = 8. In the left panel, data obtained for four
different lids are plotted versus (ε − εmin). The right panel
shows (i) the same four data sets, now horizontally shifted
in order to superimpose the four lid values, together with
(ii) the LDOS for the very small lid λ = 0.01, also plotted
as just described. The LDOS all admit the exponential

representation

�(ε) = k exp

(
ε

α(λ)

)
. (6)

Their slope on a logarithmic vertical scale, 1/α(λ), systemat-
ically decreases with increasing lid, starting with an almost
vertical slope near εmin. Note, however, that each straight
line covers many decades of variation of the LDOS. Since
the logarithm of the latter quantity is the entropy, the inverse
slope α is nothing but the (microcanonical) temperature. As
one would expect, the latter vanishes as the energy approaches
the ground state energy, a limit enforced by λ → 0.

The left panel of Fig. 4 shows the GDOS obtained using
Nh = 250 and without imposing any lid constraints. The
global minimum would be located on the abscissa at ε ≈
−1.7, i.e., far beyond the actual reach of the unrestricted
entropic algorithm. The huge number of states present in the
system simply prevents the algorithm from sampling a large
fraction of the low-energy states. The line is a Gaussian fit,
given by

�(ε) = k exp

(
ε

b
− ε2

c

)
b = 10;

(7)
c = 0.025; k = 0.035.

The right panel shows the four different LDOS vertically
rescaled to make them approximately lie on the fitted GDOS
curve. These data appear as straight line segments having slope
1/α(λ). The values of α for each segment are, in order of
increasing lid value, α = 0.0049, 0.0058, 0.0071, and 0.0117.
A Gaussian representation of the GDOS, as in the case of the
random energy model (REM) [19,20], is (by construction)
inaccurate near the minimum (and maximum) of the energy
range and utterly fails to reproduce the piecewise lack of
curvature characterizing the LDOS at low energies.

Confirming and extending arguments previously given in
Refs. [6,7,10], the exponential nature of the LDOS qualita-
tively explains why real 3D spin glasses lose their ability
to thermally equilibrate right below the critical temperature
(see Ref. [21] and references therein). The arguments given
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FIG. 3. (Color online) Left: �(ε) for the four different lids λ = 0.1,0.2,0.4, and 0.8. Right: The same four quantities together with an
additional LDOS obtained for λ = 0.01 are plotted on shifted horizontal scales ending in each case at the lid value. The slope of the curves is
clearly seen to decrease with increasing lid value. All data pertain to a 3D lattice with L = 8.

below are valid in any glassy system with an exponential
LDOS and link landscape topography to aging behavior, and
in particular, to the origin of memory effects.

Expressed in terms of the extensive energy E = Nε, the
Boltzmann equilibrium distribution describing local equili-
bration in a valley is

PBoltz(E,T ) = k exp

(
E

[
1

α(λ)N
− 1

T

])
. (8)

Here and in the following N denotes the number of spins
which are thermally active in the valley considered, rather
than the total number of spins in the system. Rescaling the α

values obtained for the LDOS reflects that the energy per spin
ε is replaced in Eq. (8) by the extensive energy variable E.
For local thermal equilibrium within a valley to be possible,
the sum in square brackets must have negative sign, since

this guarantees that the “bottom” states of the valley have
the largest probability. If the sign is instead positive, the rim
states have largest probability. The valley is then abandoned
with probability one and becomes irrelevant to the relaxation
process.

Consider now a system locally equilibrated at T > Tg .
Decreasing the temperature, even slightly below Tg , makes
previously unaccessible valleys, namely, those with with
αN < Tg appear. Hereby a huge number of unexplored
configurations appears. These are separated by energy barriers
corresponding to the internal structure of the new valleys.
Effectively, a slight temperature decrease quenches the system
into a local energy minimum, and thereby starts the aging pro-
cess. Since the value of α slowly decreases with energy, some
lower energy parts of the energy landscape remain inaccessible
to the aging process for T <≈ Tg . If the temperature is further
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FIG. 4. (Color online) Left: GDOS (plusses) obtained by running the entropic algorithm without lid restrictions and a Gaussian fit (line).
Right: The GDOS (line) obtained by extending the range of the fit shown in the left panel and the LDOS (squares) obtained for four different
lids, λ = 0.1,0.2,0.4,08. The numerical GDOS (circles) appears in the rightmost corner of the figure. Note that the vertical axis spans 40 orders
of magnitude. All data are for a 3D lattice with L = 8.
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decreased, a new aging process starts in the yet-unexplored part
of the landscape. Upon raising T back to its previous value, the
system recovers its previous local equilibrium state (a memory
effect), and the effects of aging at the lower temperature
are lost (a rejuvenation effect). Rejuvenation and memory
effects are well known in spin glasses and other complex
systems [22–25].

Our above arguments do not suffice to identify the value
of Tg . Given, however, that the latter is known for the EA
spin glass, Tg = 0.95 [26], we can, as a consistency check,
estimate the number of spins active in thermal relaxation just
below Tg . Using the equilibrium average energy vs temperature
curve (not shown but easily obtained using the density of
states) the equilibrium energy per spin at Tg is found to
be 〈ε〉(Tg) ≈ −1.05. This value falls between the third and
fourth energy intervals in which the LDOS was numerically
investigated. The average of the corresponding two α values,
α ≈ 0.0094, is therefore used to estimate the logarithmic slope
of the LDOS at that equilibrium energy. Using that Tg is the
temperature at which the manifold of low-lying states first
appears imposes 0.0094N = Tg = 0.95. This gives N ≈ 101
active spins, which is slightly above a fifth of the 83 = 512
spins present in the system.

Let us finally consider a structural issue, i.e., the topography
of the energy landscape of the 3D EA spin glass as it
emerges from the present investigations. The exponential
growth of the LDOS can be understood in the context
of a hierarchical picture of valleys within valleys [6,7,27].
The valley rooted at the ground state contains subvalleys
whose number increases exponentially with energy. Each
of these has itself an exponentially growing number of
internal subvalleys and so forth, down to a lower cutoff for
the energy difference between top and bottom states of a
valley. Since states at a given energy belong to a number
of subvalleys which increases exponentially with that energy,
the LDOS itself grows exponentially in energy. A glance at
Fig. 4 indicates that the picture is applicable for energies per
spin below ≈−0.7. At higher energies the logarithm of the
LDOS has non-negligible curvature and the picture no longer
applies.

IV. DISCUSSION

Unrestricted entropic algorithms [3–5] can efficiently and
for a wide range of temperatures provide thermal averages
of relevant quantities in several models of physical interest.
If, however, the density of state varies over, e.g., 40 orders of
magnitude as is the case in the 3D EA model, low-energy states
which constitute only a tiny fraction of the whole are hard to
sample efficiently and accurately. Using entropic algorithms
in lieu of exhaustive enumeration [6,7,10] in connection with
the lid algorithm produces an accurate sampling of the energy
landscape of larger systems over a wider energy range than
previously possible [7,17]. As a consequence, a clear-cut
difference between 2D and 3D landscape topography becomes
evident and in 3D quadratic fits of the logarithm of the density
of states reveal shortcomings for energies near the ground state.

In 2D the density of state has a weak, nearly linear
energy dependence, except in a narrow region close to the
ground state. The average energy is simply proportional to
the temperature and any thermal instability is ruled out. The
situation is completely different in 3D: while a parabola
describes the energy dependence of the logarithm of the density
of state very well over approximately 15 orders of magnitude,
this Gaussian description fails near the ground state. Here
the logarithm of the LDOS has instead a piecewise linear
dependence on the energy. Precisely this feature explains the
inability of the spin glass to equilibrate below Tg and the
instability of the thermalization dynamics to small temperature
changes. From a structural point of view, the form of the LDOS
in 3D points to a configuration space with nested valleys and
to an associated hierarchy of energy barriers, properties which
are widespread in complex systems. We thus believe that the
method described in this work can generally be of use in
mapping out in a computationally efficient way geometrical
properties of the low-energy part of the energy landscapes of
complex systems.
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