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The Lagrange-mesh method is a very accurate procedure for computing eigenvalues and eigenfunctions of
a two-body quantum equation written in the configuration space. Using a Gauss quadrature rule, the method
only requires the evaluation of the potential at some mesh points. The eigenfunctions are expanded in terms
of regularized Lagrange functions, which vanish at all mesh points except one. Using the peculiarities of the
method, it is shown that the Fourier transform of the eigenfunctions, computed in the configuration space, can
easily be obtained with good accuracy in the physical domain of the momentum space. Also, observables in this
space can easily be computed with good accuracy only using matrix elements and eigenfunctions computed in
the configuration space.
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I. INTRODUCTION

The Lagrange-mesh method is a very accurate procedure
for computing eigenvalues and eigenfunctions of a two-body
Schrödinger equation [1–5] as well as a semirelativistic
Hamiltonian [6–9]. The trial eigenstates are developed in
a basis of well chosen functions, the Lagrange functions.
Using their special properties, the potential matrix elements
are simply the values of the potential at mesh points if they
are computed with a Gauss quadrature. At first sight, this
method could look like a discrete variational method, but
this is absolutely not the case since the eigenfunctions can
be computed at any position. Because of the use of the
Gauss quadrature scheme, the method is not variational, but
nevertheless, great accuracy can be reached [10]. The method
presented here relies on a mesh of points built with the zeros
of a Laguerre polynomial, but a general procedure for deriving
other Lagrange meshes related to orthogonal or nonorthogonal
bases has also been developed [11]. It is worth mentioning that
this method can be extended to treat three-body systems very
accurately in nuclear physics as well as in atomic physics (see,
for instance, Ref. [12]).

At the beginning, this method was developed in the position
space. As we see below, the potential matrix elements are very
easy to compute if the interaction is known in terms of the
distance r between the interacting particles. This is also true
for mean values of observables depending on r . For some
problems, it can also be useful to compute the eigenfunctions
in the momentum space by the Fourier transform as well as
observables depending on the relative momentum between
the particles. We will show that the Lagrange-mesh method
can provide these types of data very efficiently and very
easily using the fundamental properties of the Lagrange
functions.

The Lagrange-mesh method in configuration space is
described in Sec. II, while Sec. III presents some results
in momentum space. An ansatz to easily compute the only
nonlinear parameter of the method is described in Sec. IV.
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Test calculations are presented in Sec. V, and some concluding
remarks are given in Sec. VI.

II. METHOD IN POSITION SPACE

A. Lagrange functions

The basic ingredients for the Lagrange-mesh method are
a mesh of N points xi associated with an orthonormal set of
N indefinitely derivable functions fj (x) [1–3]. The Lagrange
function fj (x) satisfies the Lagrange conditions,

fj (xi) = λ
−1/2
i δij , (1)

that is to say, it vanishes at all mesh points except one. The
xi and λi , respectively, are the abscissas and the weights of a
Gauss quadrature formula,

∫ ∞

0
g(x)dx ≈

N∑
k=1

λkg(xk). (2)

As we work with the radial part of the wave functions, we
consider the case of the Gauss-Laguerre quadrature because
the domain of interest is [0,∞]. The Gauss formula (2) is
exact when g(x) is a polynomial of degree 2N − 1 at most,
multiplied by exp(−x). The Lagrange-Laguerre mesh is then
based on the zeros of a Laguerre polynomial of degree N [1],
and the mesh points are given by LN (xi) = 0. These zeros can
be determined with high precision using the usual methods
to find the roots of a polynomial [13] (the MATHEMATICA

expression Root does the job efficiently) or as the eigenvalues
of a particular tridiagonal matrix [14]. The weights can be
computed by the following formula [10]:

ln λi = xi − ln xi + 2 ln �(N + 1) −
N∑

j �=i=1

ln(xi − xj )2. (3)

It is worth noting that, for most calculations, it is not necessary
to compute the weights λi . The original Lagrange functions do
not vanish at the origin, so it is preferable to use the regularized
Lagrange functions whose explicit form is given by

fi(x) = (−1)ix−1/2
i x(x − xi)

−1LN (x) exp(−x/2), (4)
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which is a polynomial of degree N , multiplied by an exponen-
tial function. Such a function fi(x) vanishes at the origin and
at xj with j �= i.

With the Lagrange-mesh method, the solution of a quantum
equation reduces (as is often the case) to the determination of
eigensolutions of a given matrix. Let us consider the eigenvalue
equation,

[T ( �p 2) + V (r)]|ψ〉 = E|ψ〉, (5)

where T ( �p 2) is the kinetic energy term of the Hamiltonian and
V (r) is the potential that only depends on the radial coordinate
r = |�r|. In the following, we will always work in natural units:
h̄ = c = 1. A trial state |ψ〉, an approximation of the genuine
eigenstate, is expanded on a basis built with these regularized
Lagrange functions,

|ψ〉 =
N∑

j=1

Cj |fj 〉, with 〈�r|fj 〉 = fj (r/h)√
hr

Ylm(r̂), (6)

with r̂ = �r/r . The coefficients Cj are linear variational
parameters, and the scale factor h is a nonlinear parameter
aimed at adjusting the mesh to the domain of physical interest.
Contrary to some other mesh methods, the wave function is
defined between mesh points by Eqs. (4) and (6).

Basis states |fi〉, built with the regularized Lagrange
functions, are not exactly orthogonal. But, at the Gauss
approximation, we have 〈fj |fi〉 = δji . So, in the following,
all mean values will be performed using the Gauss quadrature
formula (2). In this case, the potential matrix elements are
given by

〈fi |V (r)|fj 〉 = V (hxi)δij . (7)

The potential matrix is simple to obtain and is diagonal. Let us
assume that the matrix elements 〈fi |T |fj 〉 ≈ Tij are known.
Their computation will be explained in the next section. With
Eqs. (6) and (7), the variational method applied to Eq. (5)
provides a system of N mesh equations,

N∑
j=1

[Tij + V (hxi)δij − Eδij ]Cj = 0. (8)

In the Lagrange-mesh method, the Hamiltonian matrix
elements are not exactly calculated but are computed at the
Gauss approximation. So, the variational character of the
method cannot be guaranteed, except if an exact quadrature is
performed. In practice, for a sufficiently high number of basis
states, the method is often variational (eigenvalues computed
are all upper bounds) or antivariational (eigenvalues computed
are all lower bounds). It has been observed [1–3] that the
accuracy of the mesh approximation remains close to the
accuracy of the original variational calculation without the
Gauss approximation. So, in most cases, very high accuracy
can be achieved in the framework of the Gauss approximation,
although the mathematical reasons for the high efficiency of
this method are not well known yet [10].

The accuracy of the eigensolutions depends on two param-
eters: The number of mesh points N and the value of the scale
parameter h. For a sufficiently high value of N (which can be
as low as 20 or 30), the eigenvalues present a large plateau as a
function of h. This is a great advantage for the Lagrange-mesh

method since the nonlinear parameter must not be determined
with high precision. Nevertheless, if h is too small, a significant
part of the wave function is not covered by the points of the
Lagrange mesh. When h is too large, all points of the mesh are
located in the asymptotic tail of the wave functions, and then,
it is impossible to obtain good eigenvalues. So, it is interesting
to have a procedure to directly estimate a reasonable value of
h in order to avoid a search, which is always time consuming.
We have remarked that the best results are obtained when the
last mesh points are located not too far in the asymptotic tail.
So, if we choose a point rmax in the tail of the wave function,
the value of h can be obtained by h = rmax/xN , where xN is the
last mesh point. A procedure to estimate rmax will be presented
in Sec. IV.

B. Kinetic parts

Let us first look at the matrix P whose elements are Pij =
〈fi | �p 2|fj 〉. With Eq. (2), these matrix elements are given by

Pij = 1

h2

[
tij + l(l + 1)

x2
i

δij

]
, (9)

where l is the orbital angular momentum quantum number and
where

tij =
∫ ∞

0
fi(x)

(
− d2

dx2

)
fj (x)dx ≈ −λ

1/2
i f ′′

j (xi). (10)

This compact expression is exact for some Lagrange meshes.
This is not the case for the regularized Laguerre mesh. An
exact expression can easily be obtained (see the Appendix in
Ref. [2]). However, as shown in Ref. [3], it is preferable to
use the approximations (9) and (10). Then, the kinetic matrix
elements are even easier to obtain and are [3]

tij =
{

(−)i−j (xixj )−1/2(xi + xj )(xi − xj )−2 (i �= j ),(
12x2

i

)−1[
4 + (4N + 2)xi − x2

i

]
(i = j ).

(11)

For a nonrelativistic Hamiltonian, Tij = 1
2μ

Pij , where μ is
the reduced mass of the system. For a more general operator
T ( �p 2), as the kinetic part of a spinless Salpeter equation
2
√

�p 2 + m2, the calculation is much more involved. The idea
is to use the four-step method suggested in Ref. [15] (see also
references therein) and applied in Ref. [6]:

(1) Computation of the matrix P whose elements are Pij =
〈fi | �p 2|fj 〉, given by Eqs. (9)–(11).

(2) Diagonalization of the matrix P . If P D is the diagonal
matrix formed by the eigenvalues of P , we have

P = SP DS−1, (12)

where S is the transformation matrix composed of the
normalized eigenvectors.

(3) Computation of T D , a diagonal matrix obtained by
taking the function T (x) of all diagonal elements of P D [for
instance, T (x) = 2

√
x + m2 for the case of a spinless Salpeter

equation].
(4) Determination of the kinetic matrix T in the original

basis by using the transformation (12),

T = ST DS−1. (13)
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The elements Tij of the matrix computed with Eq. (13) are
approximations of the numbers 〈fi |T ( �p 2)|fj 〉. The calculation
is not exact for two reasons. First, the elements Tij are
computed with approximate formulas (9)–(11). Second, the
diagonalization is performed in the limited definition space of
the trial function (6). In order to exactly compute the matrix
elements of the operator T ( �p 2), it is necessary to exactly
compute all eigenvalues of the infinite matrix whose elements
are 〈T ( �p 2)〉, again exactly computed. This is obviously not
possible. In Ref. [6], it has been shown that this four-step
procedure can give very good results.

C. Mean values of radial observables

The mean value of the operator U (r) for a trial state |ψ〉 is
given by

〈ψ |U (r)|ψ〉 =
N∑

i,j=1

CiCj 〈fi |U (r)|fj 〉. (14)

Using the Lagrange condition (1) and the Gauss quadrature
(2), this integral reduces to

〈ψ |U (r)|ψ〉 =
N∑

j=1

C2
j U (hxj ). (15)

If U is the identity, we recover the normalization condition as
expected. Very high accuracy can be obtained with this simple
procedure [5,12].

III. METHOD IN MOMENTUM SPACE

A. Fourier transform

For some particular problems, it can be useful to compute
the Fourier transform of a wave function in the position space
in order to obtain the corresponding wave function in the
momentum space. The Fourier transform φFT( �p ) of a wave
function φ(�r ) is defined by

φFT( �p ) = 1

(2π )3/2

∫
φ(�r)e−i �p·�rd�r. (16)

Using the spherical representation of the wave function,

φ(�r ) = Rnl(r) Ylm(r̂), (17)

and using the spherical expansion of the function e−i �p·�r [16],
it can be shown that

φFT( �p ) = RFT
nl (p)Ỹlm(p̂), (18)

where p = | �p| and p̂ = �p/p, and where

RFT
nl (p) = (−1)l

√
2

π

∫ ∞

0
Rnl(r) jl(pr)r2dr, (19)

Ỹlm(p̂) = ilYlm(p̂). (20)

jl(x) is a spherical Bessel function [17], and Ỹlm(x̂) is called a
modified spherical harmonic [16].

Using expansion (6), the radial part R(r) of the trial function
is given by

R(r) =
N∑

j=1

Cj

fj (r/h)√
hr

. (21)

The Fourier transform RFT(p) of this radial function is defined
by Eq. (19). It is tempting to use the Gauss quadrature rule (2)
with the Lagrange condition (1) to perform this calculation.
The problem is that spherical Bessel functions are rapidly
oscillating functions. Then, it is not obvious that such a
procedure could work. Actually, we have checked that the
Fourier transform of a unique regularized Lagrange function,
which is also a rapidly oscillating function, cannot be obtained
in this way with good accuracy. Fortunately, the radial part of
a wave function has a much smoother behavior. As we will
see, with several examples in Sec. V, its Fourier transform
can easily be obtained in the framework of the Lagrange-mesh
method by taking benefit of the very special properties of the
regularized Lagrange function. Using Eq. (2) with Eq. (1), the
integral (19) for a given eigenfunction (21) simply reduces to

R̄FT(p) = (−1)l
√

2

π
h3/2

N∑
i=1

Ci

√
λixijl(hxip), (22)

where we use the bar to indicate that this is not the exact
Fourier transform RFT(p). For a sufficiently high value of
N (which can be as low as 50), R̄FT(p)Ỹlm(p̂) can be a
very good approximation of the genuine eigenstate in the
momentum space for values of p ∈ [0,pmax], where pmax can
be determined with the procedure used to compute rmax (see
Sec. IV). For values of p � pmax, R̄FT(p) can present large
unphysical rapid oscillations. These oscillations do not develop
in R(r) because they are killed by the rapid decrease in the
regularized Lagrange functions. Let us note that, in order to
take benefit of the Lagrange condition (1) and to obtain the
simple expression (22), the mesh used to compute the integral
(19) must be the same as the mesh used to solve the eigenvalue
equation (8).

B. Mean values of momentum-dependent observables

The mean value of the operator K(p) for a trial state |ψ〉 is
given by

〈ψ |K(p)|ψ〉 =
∫ ∞

0
K(p)[RFT(p)]2p2dp, (23)

where the angular part is already integrated. In this formula,
the function RFT(p) can be replaced by R̄FT(p). Good results
can sometimes be obtained, but accuracy cannot always be
guaranteed. This is the case when the observable grows rapidly
with p and needs very good quality for the asymptotic tail of
the wave function in the momentum space. Actually, it is easier
and much more efficient to directly compute

〈ψ |K(p)|ψ〉 =
N∑

i,j=1

CiCj 〈fi |K(p)|fj 〉. (24)

The matrix elements 〈fi |K(p)|fj 〉 can be determined by a
procedure identical to the one used to compute 〈fi |T ( �p 2)|fj 〉.
An intermediate step is the calculation of the matrix KD , a
diagonal matrix obtained by taking the function K(

√
x) of all

diagonal elements of P D (remember that P is linked to the
matrix elements of �p 2, not p). The numbers 〈fi |K(p)|fj 〉 are
well approximated by the elements of the matrix K obtained
by using the transformation (12): K = SKDS−1. As we see
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below, very good accuracy can be reached for the mean values
〈K(p)〉.

IV. SCALE PARAMETER

An estimation of rmax can be computed using the technique
developed in Ref. [18]. The first step is to find a potential
V∞(r), which matches, at best, the potential V (r) for r → ∞.
Three cases are considered in Ref. [18]:

(1) κ rp with κ > 0 and p > 0;
(2) −κ/rp with κ > 0 and 0 < p � 1;
(3) a square well.

The second step is to choose a trial state |λ〉, which depends
on one parameter λ, taken as the inverse of a distance.
Two cases are considered in Ref. [18]: uλ(r) ∝ rl+1e−λ2r2/2

(harmonic oscillator state) for V∞(r) = κrp; uλ(r) ∝ rl+1e−λ r

(hydrogenlike state) for V∞(r) = −κ/rp or a square well. If
the quantum number n is not zero, an effective value of l

is used: l → 2n + l if uλ(r) is a harmonic oscillator state;
l → n + l if uλ(r) is a hydrogenlike state (see Ref. [18]).
In a third step, the optimal value of λ is determined by the
variational condition

∂

∂λ
〈λ|T + V∞(r)|λ〉 = 0, (25)

where T is the kinetic part of the Hamiltonian considered.
In the case of the complicated T function, the following
approximation can be used:

〈T ( �p 2)〉 → T (〈 �p 2〉). (26)

In particular, we have

〈
√

�p 2 + m2〉 �
√

〈 �p 2〉 + m2. (27)

Various expressions for the optimal parameter λ are given in
Ref. [18].

By introducing the dimensionless variable s = λr , the
regularized radial part uλ(s) of the trial state |λ〉 is then
analyzed to find the value of sε that satisfies the following
condition:

uλ(sε)

max
s∈[0,∞]

[uλ(s)]
= ε, (28)

where ε (typically in the range of 10−4–10−8) is a number
small enough to neglect the contribution of uλ(s) for values of
s greater than sε . This is the last step of the procedure, which
is very fast, and the details of which are given in Ref. [18]. The
dimensionless quantity sε is the solution of the transcendental
equation (36) in Ref. [18] (xN is replaced here by sε in order
to match the present notations and to avoid confusion with
the last Lagrange-mesh point). Note that this equation has an
analytical solution given by

sε =
[
−(l + 1)W−1

(
−εm/(l+1)

e

)]1/m

, (29)

where W−1 is the Lambert function [19] and m = 1 or 2
depending on the trial function uλ(r).

At this stage, the ratio sε/λ approximately corresponds to
a radial distance in the asymptotic tail of an eigenstate of the
Hamiltonian T + V∞(r). The idea is to identify this distance

with the value of rmax for the genuine Hamiltonian considered.
In Ref. [6], it has been shown that this procedure works quite
well and can give a value of the scale parameter h (h =
rmax/xN ) in the plateau mentioned above. The efficiency of
this ansatz is due to the fact that the value of h need not be
known with great accuracy in the Lagrange-mesh method.
So, a crude determination of rmax is sufficient, and it is
not necessary to go beyond the use of the very simple trial
functions uλ(r) mentioned above and the approximation (26)
for the computation of the kinetic contribution.

To determine an estimation of pmax, let us look at the Fourier
transform uFT

λ (s = p/λ) of the trial states considered uλ(s =
λ r), where s is a dimensionless variable,

uλ(s) ∝ sl+1e−s2/2 ⇒ uFT
λ (s) ∝ sl+1e−s2/2, (30)

uλ(s) ∝ sl+1e−s ⇒ uFT
λ (s) ∝ sl+1

(s2 + 1)l+2
. (31)

If uλ(s) is a harmonic oscillator state, uFT
λ (s) has the same

form. So it seems quite natural to set pmax = λsε , since both
functions present the same ratio (28) at the same value of their
dimensionless argument. If the trial state is a hydrogenlike
state, the situation is different since uFT

λ (s) decreases much
faster than uλ(s) for large (but not too large) values of s.
Nevertheless, the simple choice pmax = λsε works quite well
also, as shown below. So, finally, we have

rmax = sε/λ and pmax = λsε, (32)

with sε and λ determined by the procedure described above.

V. NUMERICAL TESTS

In this section, several tests will be performed for the
Lagrange-mesh method with both nonrelativistic and semirel-
ativistic kinematics. We will focus on the quality of wave
functions and observables in the momentum space since the
efficiency of the method in the position space has already
been demonstrated elsewhere [1–9]. In order to estimate the
quality of the Fourier transform (22) more precisely, we define
a quality factor Q(p∗),

Q(p∗) = max
p∈[0,p∗]

∣∣∣∣∣∣
ūFT(p) − uFT(p)

max
p∈[0,p∗]

|uFT(p)|

∣∣∣∣∣∣ , (33)

where ūFT(p)/p = R̄FT
nl (p) given by Eq. (22) and uFT(p)/p =

RFT(p) is the exact solution in momentum space (p∗ is
not necessarily identical to pmax). For the two simple cases
considered here, V∞(r) = V (r).

A. Confining semirelativistic Hamiltonian

Let us consider the ultrarelativistic two-body system with
a quadratic potential,

H = 2
√

�p 2 + ar2. (34)

This Hamiltonian is particularly interesting because it is
probably the only one with a semirelativistic kinematics, which
is (partly) analytically solvable. With an appropriate change
in variable, this Hamiltonian can be recast into the form of a
nonrelativistic Hamiltonian with a linear interaction [20], for
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Lagrange mesh

Exact

Lagrange mesh

Exact

FIG. 1. The exact solution (36) with a = 0.25 for n = 2 is compared with the corresponding approximation given by formula (22) for
0 � p � 2pmax. The values of rmax = 8.76 and pmax = 6.13 are determined with the procedure presented in Sec. IV with ε = 10−8.

which solutions are known for the S states. The eigenvalues
for l = 0 are given by

En0 = (4a)1/3|αn|, (35)

where αn is the (n + 1)th zero of the Airy function (Ai) [17].
The corresponding regularized eigenfunctions are obtained
directly in the momentum space [21],

uFT
n0 (p)=pRn0(p)= 1

Ai′(αn)

(
2

a

)1/6

Ai

[ (
2

a

)1/3

p + αn

]
.

(36)

Let us note that
∫ ∞
αn

Ai2(s)ds = Ai′2(αn), where Ai′ is the
derivative of Ai. Using the generalized virial theorem [22], it
can be shown that 〈n0|

√
�p 2|n0〉 = 〈n0|ar2|n0〉 where |n0〉 is

an S eigenstate. Moreover, all powers of p can be computed
exactly [23]. So, we have

〈n0|
√

�p 2|n0〉 = En0

3
, (37)

〈n0| �p 4|n0〉 =
(

a

2

)4/3 16

315
(8|αn|4 + 25|αn|). (38)

The only energy scale of the problem is given by a1/3. So, all
physical quantities considered are given in powers of the unit
chosen for a1/3. For instance, all results are given in powers of
GeV in hadronic problems for which a is given in GeV3. To

TABLE I. Some observables with a = 0.25 for the eigenstate
l = 0 and n = 2 computed with formula (24) and compared with the
exact values. Results are given in powers of the unit for a1/3.

〈√ �p 2〉 〈 �p 4〉 〈exp(− �p 2/a2/3)〉
Exact 1.840 19a 24.0273b 0.109 740c

ε = 10−6 N = 10 1.841 98 23.6260 0.108 562
20 1.842 65 24.0735 0.109 299
40 1.843 99 24.0982 0.108 892

ε = 10−8 N = 10 1.819 01 23.6006 0.112 181
20 1.841 63 24.0545 0.109 512
40 1.842 36 24.0680 0.109 359

aComputed with Eq. (37).
bComputed with Eq. (38).
cComputed with the quadrature using Eq. (36).

perform the following calculations, we have set a = 0.25. Us-
ing the Lagrange-mesh method with N = 10 and ε = 10−4, the
eigenvalues (35) can already be obtained with a relative error
smaller than 1%. But, to obtain a good Fourier transform of the
wave function, it is necessary to use more points. As we can see
in Fig. 1, the agreement can be very good for the main part of
uFT(p). With N = 20, unphysical oscillations appear just
before pmax. With N = 40, they develop halfway between pmax

and 2pmax. With N = 80 (not presented here), the asymptotic
behavior is correct until 2pmax. In these three cases, for
which ε = 10−8, we have Q(pmax) = 0.034,0.0042,0.0052,
respectively. The quality factor first decreases rapidly due to
the improvement in the wave function for large values of p

and then stabilizes because the quality of the wave function
stays constant in the low-p part. It is possible to improve the
quality factor by decreasing the value of ε (increasing the value
of pmax). For N = 40, the value of Q(pmax) decreases from
0.015 to 0.0020 when ε varies from 10−4 to 10−12.

Some observables for the particular eigenstate l = 0 and
n = 2 computed with formula (24) are presented in Table I
and are compared with the exact values. Similar results are
obtained for other eigenstates. Very good accuracy can be
obtained with quite a small number of points. Actually, it
appears that the precision does not automatically increase with
N . On the contrary, for a given value of ε, the accuracy is
optimal for a given number of points. This behavior is typical of
semirelativistic Hamiltonians. This is due to the computation

TABLE II. Some observables for the hydrogen atom eigenstate
l = 1 and n = 1 computed with formula (24) and compared with the
exact values. Results are given in powers of keV.

〈 �p 2〉 〈 �p 4〉 〈exp(−p/η)〉
Exact 1.544 14a 11.9218b 0.786 997c

ε = 10−6 N = 10 1.544 17 11.9225 0.787 043
20 1.544 14 11.9218 0.786 995
40 1.544 14 11.9218 0.786 994

ε = 10−8 N = 10 1.547 11 11.9471 0.787 255
20 1.544 14 11.9218 0.786 997
40 1.544 14 11.9218 0.786 997

aComputed with Eq. (39).
bComputed with Eq. (40).
cComputed with the quadrature of the numerical Fourier transform
of the wave function in position space.

036705-5



GWENDOLYN LACROIX AND CLAUDE SEMAY PHYSICAL REVIEW E 84, 036705 (2011)

Lagrange mesh

Exact

Lagrange mesh

Exact

FIG. 2. The accurate numerically computed (exact) Fourier transform of the hydrogen atom wave function for l = 1 and n = 1 is compared
with the corresponding approximation given by formula (22) for 0 � p � 2pmax. The values of rmax = 18.44 and pmax = 28.48 are determined
with the procedure presented in Sec. IV with ε = 10−6.

of the kinetic part, which requires a supplementary approxi-
mation to the use of the Gauss quadrature rule (see Sec. II B).
Our experience is that an optimal value for an observable can
be found by looking at extrema or plateaus in the behavior of
this observable as a function of N for a given value of ε. In
the next section, in an example, we will see that the accuracy
increases with N for a nonrelativistic system.

B. Hydrogen atom Hamiltonian

Now, we consider a completely different case, the hydrogen
atom: The kinematics is nonrelativistic, and the Coulomb
potential −α/r is nonconfining. The eigensolutions in the
position space are well known, and their Fourier transforms can
be expressed in terms of the Appell hypergeometric function
F2 [24]. As these special functions are difficult and lengthy
to accurately obtain, it is more convenient to work with
numerically computed eigensolutions in momentum space.
Particular momentum-dependent observables can exactly be
computed [23] as

〈 �p 2〉 = η2

(n + l + 1)2
, (39)

〈 �p 4〉 = η4 8n + 2l + 5

(2l + 1)(n + l + 1)4
, (40)

where η = μα, with μ as the reduced mass.
To perform the following calculations, we have set m1 =

940 MeV, m2 = 511 KeV, and α = 1/137. The units of the
results are given in powers of keV. Some observables for the
particular eigenstate l = 1 and n = 1, computed with formula
(24), are presented in Table II and are compared with the
exact values. Similar results are obtained for other eigenstates.
Again, very good accuracy can be obtained with quite a small
number of points. This time, the accuracy always increases
with N for a given value of ε, as already found in previous
papers [2,10].

Although good accuracy can be obtained with quite a small
number of mesh points for the eigenvalues, the eigenfunctions
in configuration space, and some momentum-dependent ob-
servables, it is necessary to use many more points to obtain
a good Fourier transform of a wave function in the physical
momentum domain. For instance, a relative error as small
as 10−6 can be reached for the lowest eigenvalues with

only N = 10. But, as can be seen in Fig. 2, the situation
is very different for the Fourier transform. With N = 100,
unphysical oscillations appear before pmax. With N = 200,
they develop halfway between pmax and 2pmax. For ε = 10−6,
we have Q(pmax) = 0.504, 0.097, 0.000 28, respectively, for
N = 50,100,200. Nevertheless, the quality factor Q(p∗) can
be as small as 10−6 if p∗ is in the main part of the wave
function. It is also possible to improve the quality factor by
decreasing the value of ε (increasing the value of pmax). In
several examples, we have checked that the necessity to use
a large number of mesh points to compute a good Fourier
transform of the wave function is common for potentials that
present a singularity at the origin as −1/r or ln r .

VI. CONCLUDING REMARKS

The Lagrange-mesh method is a procedure for computing
eigenvalues and eigenfunctions of quantum equations. It
is very simple to implement and can yield very accurate
results for many observables, especially for nonrelativistic
kinematics. At the origin, the method was developed in the
position space since the evaluation of potential matrix elements
only requires the computation of the interaction at some mesh
points. This is due to the use of a Gauss quadrature rule
with the fact that the basis functions satisfy the Lagrange
conditions, that is to say, they vanish at all mesh points
except one. Using this very special property, we have shown
that the computation of the wave function in the momentum
space by the Fourier transform of the wave function in the
configuration space can easily be performed with very good
accuracy, although it seems necessary to use a larger number
of mesh points for potentials that present a singularity at
the origin. Moreover, mean values of momentum-dependent
operators can also easily and accurately be calculated us-
ing a technique similar to the one used to compute the
semirelativistic kinetic matrix elements. Again, this shows
the great efficiency of the Lagrange-mesh method, which
can yield very accurate results for a minimal computational
effort.

If the interaction considered is only known as a function
of the relative momentum, it could be interesting to work
directly in the momentum space. In this case, the eigenvalue
equation appears as an integral equation in this space. The
Lagrange-mesh method could then be applied by considering
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a mesh of points to discretize the module of the relative
momentum and by computing the integrals with the associated
Gauss quadrature rule. This problem will be addressed in a
subsequent paper.
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