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Preventing the recurrence effect in the Vlasov simulation by randomizing phase-point
velocities in phase space
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The Vlasov equation is simulated by following the characteristics of phase points in phase space. It is shown
that by increasing the number of phase points, without enhancing the resolution of phase-space grid, the accuracy
of the simulation will be improved. In addition, the phase-point spacing introduces a smaller scale than grid
spacing on which fine structures might be more conveniently handled. In order to perform simulation with a
large population of phase points, an alternative to the bilinear interpolation scheme is introduced that reduces the
number of operations. It is shown that by randomizing initial phase-point velocities, the recurrence effect does
not happen. Finally, the standard problem of linear and nonlinear Landau damping will be examined.
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I. INTRODUCTION

There are two equally important numerical approaches
to the kinetic problem. The first approach, particle-in-cell
(PIC) methods, self-consistently models the plasma by a finite
number of macroparticles on a fixed grid. Its advantage is
replacing the Vlasov equation by the ordinary differential
equations of motions of macroparticles, which makes PIC
codes easily extendable to multidimensional applications.
However, it is well known that the numerical noise (propor-
tional to 1/

√
N where N is the number of macroparticles)

inherent to PIC simulation becomes, in some cases, too large
to allow a precise description of the distribution function
(DF). Nevertheless, the PIC approach can produce accurate
results when a sufficiently large number of macroparticles are
involved in the simulation [1].

The second approach is direct solution of the Vlasov
equation (for a collisionless plasma), that its noise is much
less than a PIC simulation. The major problem of the
Vlasov simulation has been the development of fine structures
(filamentation) in velocity space, i.e., a problem with no
seemingly simple cure. Partial treatments such as an increase in
velocity resolution have sharply limited the ability to extend
the above work to higher dimensions [2–4] and thus treat
realistic problems. A large class of the Vlasov simulation
models is based on discretizing the Vlasov equation (mainly by
a splitting scheme) on a phase-space fixed grid. In the splitting
method, the new f was obtained as an algebraic expression in
terms of the old f by a suitable interpolation method [5]. There
are a couple of problems with the splitting scheme: (1) It was
not rigorously shown under which circumstances the coupled
equations have solutions approximately consistent with the
Vlasov equation; and (2) the following characteristics along
the phase-space coordinates departs from the characteristics
on which f truly remains invariant [3]. In addition, for
them the partial treatment of the filamentation, i.e., increasing
the velocity resolution, is very expensive because all of the
simulation operations is performed on the grid. Moreover, they
suffer from the recurrence effect [6]. The recurrence effect
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is a kind of periodic behavior associated with the advection
part of the Vlasov equation. [Please see the description after
Eq. (2).]

Integration of the Vlasov equation along the collisionless
phase-point trajectories has been the most promising of these
methods [3]. This method is based on following the charac-
teristics along which f is constant in the collisionless case.
Therefore, characteristic equations of the Vlasov equation are
solved. That is one of the advantages of the scheme and
makes it possible to use all the PIC simulation experiences.
A complete description of the method of characteristics was
presented in Ref. [3]. There, besides the grid points, are an
equal number of phase points over which the DF fp is initially
defined. Interpolation is performed between the phase points
and the fixed background grid to obtain the DF fg on the
grid. The main advantage of introducing fp is that it remains
unchanged when the phase points follow their characteristics
(contrary to the semi-Lagrangian method in which the DF is
altered by the interpolation).

In present paper, we first improve the accuracy of the
simulation by increasing the number of phase points in each
grid cell, without enhancing the resolution of the phase-space
grid. Better accuracy is the result of sampling DF with higher
resolution. A larger population of phase points, in comparison
to grid points, introduces a smaller scale than grid spacing
on which fine structures might be more conveniently handled.
However, increasing the number of phase points necessitates
an effective interpolation scheme (IS) that reduces the number
of operations while keeping the accuracy [e.g., in comparison
to the bilinear interpolation scheme (BIS)]. Accordingly, a new
IS is introduced. In such a way that the DF of each grid point
is obtained by averaging the DF of phase points located in
four cells around a grid point. Moreover, it is shown that by
randomizing the initial position of the phase points along the
velocity axis, the recurrence effect does not happen, and the
reason is given in detail.

II. THE NUMERICAL SCHEME AND ITS FEATURES

Our mathematical model is the one-dimensional Vlasov-
Poisson system,

036702-11539-3755/2011/84(3)/036702(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.036702


H. ABBASI, M. H. JENAB, AND H. HAKIMI PAJOUH PHYSICAL REVIEW E 84, 036702 (2011)

∂tf + v∂xf − E(x,t)∂vf = 0,

∂xE = 1 −
∫ +∞

−∞
f dv, (1)

where f is the electron DF and E is the electric field. In Eq. (1),
and in the rest of the article, time is normalized to the inverse
electron plasma frequency ω−1

pe , space is normalized to the
Debye length λD , and velocity is normalized to the electron
thermal speed vT e = λDωpe. Ions are taken to be motionless,
and their only role is to provide a uniform, neutralizing
background. Furthermore, periodic boundary conditions are
assumed in x.

As was mentioned, the present solution of the Vlasov
equation is based on following the phase-point trajectories
along which phase-space DF is constant. In order to obtain the
phase-point trajectory one has to solve the characteristics of
the Vlasov equation,

dxp/dt = vp,

dvp/dt = −Ep, (2)

where subscript p stands for “phase point.”
Let us first begin with the free-streaming part (the advection

term) of the Vlasov equation, ∂tf + v∂xf = 0, through the
following example. The solution of the advection part at
a time t is given as a function of the initial condition
by the relation f (x,v,t) = f (x − vt,v,0). If we consider
an initial Maxwellian distribution perturbed by a small
perturbation, f (x,v,0) = 1/

√
2π exp(−v2/2)[1 + ε cos(kx)],

then the charge density (
∫ +∞
−∞ f dv − 1) will be given by

ρ(x,t) = exp(−k2t2/2)ε cos(kx) [6]. The analytical solution
is decaying exponentially in time. For the numerical solution,
the charge density is calculated at every spatial grid point
by summation over all grid points in velocity space. On the
Eulerian grid due to equal spacing along the velocity axis �v,
the initial condition can be reconstructed at recurrence time,
TR = 2π/(k�v) [6].

Now, let us examine the above analytical solution by the
method of characteristics. For the free streaming, we just
need to solve dx/dt = v. Since in free streaming the velocity
of the phase points is constant, the characteristic equation
can be exactly solved, that is, xn+1

p = xn
p + vptn, where the

superscript denotes t = n�t . We first consider a fixed grid
with regular phase-point arrangement [Fig. 1(a)]. Second,
according to each xp and vp, its fp is allocated. Next, xp

is advanced one time step while vp remains constant. Then

dpx

dp
v
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2 Δx

0
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FIG. 1. A typical part of the phase-space grid. (a) Regular
arrangement. (b) Random arrangement along the velocity direction.
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FIG. 2. The simulation result of the free-streaming part of the
Vlasov equation with BIS for ε = 0.1, Nx × Nv = 16 × 32, k = 0.5,
and 100 phase points in each grid cell. (a) Regular arrangement.
(b) Random arrangement along the velocity direction.

interpolation is performed between the phase points and the
fixed grid in phase space by BIS [3,7] to obtain fg . Finally, the
charge density is obtained by summation (here, the Trapezoidal
rule) over all grid points in velocity space.

To compare the simulation result, we chose parameters
close to Ref. [6] to better benchmark the results and assess their
performance, that is, ε = 0.1, with grid points Nx × Nv =
16 × 32. The length in space is L = 4π , k = 0.5, and in
velocity space we use −5 � v � 5. The recurrence time of
the Eulerian codes, for this case, is TR = 38.95. We put 100
phase points (10 × 10) in each grid cell. The first result of the
model was surprising. The recurrence took place at 442.3362
instead of 38.95 [Fig. 2(a)]. We realized that contrary to the
Eulerian codes, it is not the velocity grid that specifies the
recurrence time.

Thus, the main question is “How should the recurrence
time be calculated?” To answer this question we have to note
that it is the evolution of the phase-point arrangement that
changes the interpolation weighting and therefore fg (also
ρ). Thus, as time goes on, the recurrence will take place
if there is a possibility to reconstruct the initial phase-point
arrangement (arrangement at t = 0). According to Fig. 1(a),
the velocity spacing in regular arrangement is dpv. That
means, the smallest velocity for the moving phase point is dpv

(in the positive direction), and the other phase-point velocities
are integer multiples of dpv. Since the boundary condition is
periodic, if those phase points with velocity is dpv move a
distance L within a time interval TR , the other phase points
will move an integer multiple of L within the same time
interval. As a result, all the phase points return to their initial
positions and the recurrence occurs. Accordingly, in our model
the recurrence time is TR = L/dpv. In other words, there is
a much smaller scale dpv, in comparison to the grid spacing,
along the velocity axis that becomes an important factor in
the dynamics. The influence of dpv on the recurrence time is
evidence regarding our claim that fine structures might be more
conveniently handled. For the above example, dpv = 0.0284,

which leads to correct recurrence time [Fig. 2(a)]. It is obvious
from Fig. 2(a) that there are several other recurrences with
smaller amplitude. According to our analysis, these smaller
amplitude recurrences are due to subarrangements of the phase
points; that is, a small group of phase points (not all) has
returned to their original arrangement.

The latter analysis of the recurrence time is based on two
facts. First, the boundary condition is periodic. Second, the
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velocity of each phase point is an integer multiple of the
others. Therefore, by randomizing the phase-point velocities
[Fig. 1(b)], we can prevent the occurrence of recurrence
[Fig. 2(b)]. To do that, we used a random number generator
(with an uniformly distributed output) to modify the velocity
of each phase point in the range [−dpv/2,dpv/2] [Fig. 1(b)].
Figure 2 depicts the result after randomizing the velocities of
the phase points. The recurrence that is supposed to take place
at 442.3362 does not happen. That means our suggestion for
the recurrence mechanism works.

As was mentioned, increasing the number of phase points
necessitates an effective IS that reduces the number of
operations while keeping the accuracy (e.g., in comparison
to BIS). For this purpose, we develop a new IS that is almost
as accurate as BIS with the difference that it does not use the
weighting mechanism.

Let us call the new IS as average interpolation scheme
(AIS). In AIS like BIS, all the phase points should be swept
one by one to find those that are located in four cells around a
specific grid point (with the important difference that in AIS,
finding the host cell of the phase point is the only step; see
below). Now, we denote the distance between the ith phase
point (in those four cells) and the grid point along the x

axis by �xi and along the v axis by �vi . Then, by using the
Taylor expansion of fpi(xg + �xi,vg + �vi) around (xg,vg)
and summing over all J phase points, located in four cells, we
obtain

fg(xg,vg) = 1

J

J∑
i=1

fpi(xg + �xi,vg + �vi)

− (∂xfg)
1

J

J∑
i=1

�xi − (∂vfg)
1

J

J∑
i=1

�vi+O(�2).

For an optimum total number of phase points, their initial
density in phase space is almost uniform, and therefore,∑J

i=1 �xi
∼= 0 and

∑J
i=1 �vi

∼= 0. Moreover, the factor of
1/J makes the approximation better. According to Liouville’s
theorem the density of system points in the vicinity of a
given system point traveling through phase space is constant
with time. Therefore, the uniformity of phase-point density is
almost a constant of motion (to the extent of the truncation
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FIG. 3. The simulation result of the free-streaming part of the
Vlasov equation with AIS for ε = 0.1, Nx × Nv = 16 × 32, k = 0.5,
and 100 phase points in each grid cell. (a) Regular arrangement. (b)
Random arrangement along the velocity direction.
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FIG. 4. (Color online) Comparison of BIS and AIS for ε = 0.1,
Nx × Nv = 16 × 32, k = 0.5. (a) Comparison of BIS and AIS with
2500 phase points in each cell. (b) Improvement of the accuracy of
AIS by increasing the number of phase points.

error). That means

fg(xg,vg) = 1

J

J∑
i=1

fpi(xpi,vpi) − O(�2).

Note, the phase-point positions do not explicitly interfere
in AIS (as though weighting comes to play in BIS). This
is an essential feature of AIS that first makes AIS easily
extendable to higher dimensions and also reduces the number
of operations.

Figure 3 demonstrates the simulation of free streaming
that is performed using AIS. Fig. 3(a) shows the result
when the initial phase-point arrangement is regular. At is
expected a recurrence happens at t = 442.3362. However,
after randomizing the initial phase-point arrangements, the
recurrence does not take place.

Now, we first compare the accuracy of BIS and AIS and
then show that the accuracy of the method will improve by
increasing the number of phase points. In order to compare
BIS and AIS, we perform two simulations with these ISs.
Both of simulations are initially fed by a random phase-point
arrangement with 2500 phase points in each cell. Figure 4(a)
shows the result. Although BIS is slightly more accurate
(maximum 1 × 10−4), AIS interpolates much faster than BIS.
It is clear that after the initial stage the accuracy of two
interpolations becomes almost similar. Note that in this letter
we use the simplest scheme with the parameters that are
not necessarily the most appropriate ones (�x = 0.83 and
�v = 0.3125). Recall that the accuracy of the interpolation
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FIG. 5. The linear Landau damping for the parameters ε = 0.01,
Nx × Nv = 256 × 256, four phase points in each grid cell, k = 0.5,
and dt = 0.1. (a) The exponential decay of the amplitude of the
electric field with the damping rate of γ = 0.153, which is in good
agreement with the result of the linear theory (solid line). (b) The
relative error in the total energy in percent.
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FIG. 6. The nonlinear Landau damping for the parameters ε =
0.05, Nx × Nv = 1024 × 1000, 16 phase points in each grid cell,
k = 0.4, and dt = 0.1.(a) The long-time behavior of the amplitude of
the electric field that confirms BGK mode [9] construction (around
t = 900). (b) The short-time behavior. The linear Landau damping
is recovered accurately until t ≈ 25. After the linear stage, trapping
oscillations are observed.

schemes is O(�2). Therefore, we have not invested in the
accuracy and chose parameters close to Ref. [6] to better
benchmark the results and assess their performance. Next, in
order to show the improvement of accuracy of the method,
we redo the simulation of free streaming by AIS for two
different cases when 100 and 2500 phase points are put
in each cell. Figure 4(b) demonstrates the results. It is
obvious that when we put 2500 phase points in each cell,
the result is one order of magnitude more accurate than the
case when the DF is sampled by 100 phase points within a
cell.

We now examine the classical numerical test of the linear
Landau damping. In this case, we start with f (x,v,0) =
1/

√
2π exp(−v2/2)[1 + ε cos(kx)]. The initial arrangement

of the phase points is random along the v axis and regular
along the x axis. By AIS, fg is calculated. Integrating
fg over the velocity space and solving Poisson’s equa-
tion leads to the electric field on the grid Eg . Poisson’s
equation is solved by the Fast Fourier Transform. Then,
by a Lagrange polynomial IS [8], Eg is interpolated to
the position of phase points to obtain Ep. Having Ep,
Eqs. (2) are solved by the Leapfrog-Trapezoidal scheme.
The parameters are ε = 0.01, with grid points Nx × Nv =
256 × 256, and in each cell we put four phase points.
The periodic length is L = 4π , k = 0.5, −5 � v � 5, and

dt = 0.1. In Fig. 5(a), the electric field is plotted against
time. It shows the exponential decay of the amplitude
of the electric field according to Landau’s theory. The
damping rate, the slope of straight line, obtained by this
method is γ = 0.153, which agrees very well with val-
ues predicted by the theory [4]. Figure 5(b) exhibits the
relative error in the total energy in percent, i.e., (total
energyn−total energy0)/total energy0 ×100, recalling that
the superscript n denotes the quantities at t = n�t . As
is seen, the scheme is capable of keeping the energy
conservation.

Now, let us test the scheme for a nonlinear case, that
is, the nonlinear Landau damping. To this end, we compare
our scheme with the results of some accurate numerical
computations for very long times, up to 1000 inverse elec-
tron plasma frequencies, that was done by Manfredi [10].
Accordingly, we choose the parameters exactly similar to
Manfredi’s paper. That is, ε = 0.05, k = 0.4, �t = 0.1, −6 �
v � 6, and 16 phase points in each cell. Figure 6 shows
the evolution of the fundamental mode of the electric field
Ek . Figure 1(b) shows that the linear Landau damping is
recovered accurately until t ∼= 25, in agreement with Man-
fredi’s results. After the linear stage, trapping oscillations are
observed, while the maximum amplitude decreases at each
oscillation. However, around t ≈ 900, no further decrease is
observed, and the electric field goes on oscillating around
an approximately constant value [10]. It is important to
note that for avoiding the recurrence effect Manfredi used
4000 and 8000 phase-space cells along the velocity axis,
yielding TR = 5230 in the less favorable case, which is
much larger than the total time of the run (t = 1600).
However, in our case, since by randomizing the phase-point
arrangement, the recurrence effect does not take place, we
could find similar results with just 1000 cells along the velocity
axis.

III. CONCLUSION

In summary, we improved the method of characteristics [3]
by increasing the number of phase points in phase space.
Naturally, due to phase-point dynamics the development of
steep gradients can be managed without enhancing the velocity
resolution. In order to reduce the number of operations,
AIS was introduced, which is easily extendable to a higher
dimension. By use of AIS and randomizing the phase-
point arrangement, we could prevent the occurrence of the
recurrence effect. The advantages of this scheme are that it is
recurrence free with simpler IS (i.e., weighting is omitted).
Using today’s supercomputers, our method appears to be
a convenient method for dealing with strongly nonlinear
problems in phase space when little noise and good precision
are needed.
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