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We show the existence of a type of excitation, which we term as “gap compactonlike,” within the gap of the
linear spectrum of a system of coupled Kortweg–de Vries equations with linear and nonlinear dispersions. Since
the solutions lie in the gap region of the spectra, they avoid resonance with the linear oscillatory wave and,
therefore, do not decay into radiations. These types of solutions are important in energy localization and transport
in polymers and biopolymers, optical systems, etc.
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I. INTRODUCTION

The class of nonlinear partial differential equations with
linear dispersion, known as nonlinear evolution equations,
have solitary wave solutions, which preserve their shape
through nonlinear interaction. These solutions were named
“solitons” by Zabusky and Kruskal in their work on Kortweg–
de Vries (KdV) equations [1]. The soliton solutions are very
stable, and the stability of these soliton solutions is due to the
balance between the nonlinearity and dispersion. The soliton
solutions are usually exponentially localized in space. They
occur in many branches of sciences [2]. It has been shown
that the equations possessing these solutions have an infinite
sequence of conservation laws and are integrable.

It is well known that collective nonlinear excitations called
gap solitons can exist in spectrum gaps forbidden for linear
waves. The existence of gap soliton was shown by Chen
and Mills [3] during 1987. Theoretical and numerical studies
of the gap solitons have been carried out in many physical
fields such as nonlinear optical systems [3–6], semiconducting
systems [7,8], and super lattices [9,10], etc. The interplay
of nonlinearity and lattice periodicity also results in the
existence of solitary waves in the gap frequency range. A
wider class of gap solitons has been found for one-dimensional
diatomic lattices with nonlinearity introduced through on-site
(substrate) potential [11] and in a diatomic chain of particles
in harmonic potential [12]. New types of localized structures
in nonlinear lattice have been shown to exist as a result of
nonlinearity-induced symmetry breaking between two [13]
(or more [14]) equivalent eigenmodes of the lattice. These gap
solitons were later observed experimentally [15]. Harmonic
gap modes can be obtained in a perfect one-dimensional chain
for a variety of standard two-body potentials [16]. Bilbault,
Kamga, and Remoissenet [17] have studied the nonlinear
transmissivity and gap solitons characteristic in the low-
amplitude or nonlinear Schrödinger limit. Similarly, Flytzanis
and Malomed [18] have shown that the nonlinearity produces
an effective gap in which the solitons exist when the width
of the gap in the linearized system is very small. Grimshaw
and Malomed showed that a new type of a two-parameter
family of solitons may exist in the narrow gap in the spectrum
of two linearly coupled KdV equations with opposite sign
of dispersion coefficient [19]. In 1999, the gap solitonlike
structures were demonstrated in Bose-Einstein condensates

(BEC) in optical dipole trap [20]. Other theoretical studies
of the possibility of nonlinear localization in Bose-Einstein
condensates have been carried out in [21–23]. The existence
of gap solitons in BEC was confirmed experimentally in 2004
for a one-dimensional optical lattice [24].

To understand the role of nonlinear dispersion in the
formation of patterns in liquid drops, Rosenau and Hyman
introduced and studied a family of fully nonlinear KdV equa-
tions with nonlinear dispersion. They discovered that in such a
nonlinear dispersive system, a solitary wave with compact
structure free of exponential tails can exist [25,26]. They
termed such solutions as compactons [25]. The compacton’s
amplitude depends on its velocity [unlike that of the soliton,
which narrows as amplitude (speed) increases], but its width
is independent of its amplitude [25,27]. These compactons
vanish outside a finite core region. The compacton, like the
soliton [1], has a remarkable property that, after colliding
with another compacton, it reemerges with the same coherent
shape [25]. Unlike soliton collision in integrable systems, the
point at which two compactons collide is marked by certain
low amplitude compacton-anticompacton pairs Refs. [25,27].
In contrast to solitons that have an exponential tail, the
compactons are a solitary wave with compact support, i.e.,
they are localized in a finite region of space and zero outside.
The fact that the compactons are stable structures and the
ability of such modes to store energy gives them a particular
importance for energy localization and transport in polymers
and biopolymers. The nonlinear equations with nonlinear
dispersion, which support these solutions, are not completely
integrable, but possess only a finite number of conservation
laws [25,27]. In the presence of higher order nonlinear
dispersion terms, the range of nonlinearity parameter for
which the class of compacton solutions are allowed increases
[28]. From their study of the linear and nonlinear stability
analysis, Dey and Khare have shown that the compactons
are stable structures [29]. The same result is also valid
for equations with higher order nonlinear dispersion [30].
Dinda and Remoissenet [31] demonstrated the existence of
stationary breather compactons in a nonlinear Klein-Gorden
system. Exact discrete compactonlike breather solutions were
obtained for discrete nonlinear dispersive lattice systems [32].
The shape profile study of such compacton solutions showed
that the tail region decays with a faster than exponential
law [33–35]. Kevrekidis and Konotop [36] considered some
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general classes of nonlinear lattice models, which support
bright discrete compact breather solutions. They classified
the models as belonging to three categories by analyzing the
conditions for which such solutions are possible. Existence of
such compact discrete breather solutions in a two-dimensional
Fermi-Pasta-Ulam lattice system was shown by Sarkar and
Dey [37], and for the same lattice, it was shown to exist in the
presence of long-range interaction [38]. It has also been shown
that compacton solutions also exist in a mixed dispersion
model. The mixed dispersion model is the KdV equation where
both linear and nonlinear dispersions are present [26]. This
is useful as, in physical applications, often both linear and
nonlinear dispersions are present.

In this paper, we demonstrate the existence of a type of non-
linear excitation in the gap region of the two linearly coupled
KdV equations with mixed dispersion. These solutions have
properties of compacton solutions. But, unlike compactons
that have finite support, these solutions have compactonlike
support in the sense that they have a finite but very small
nonzero amplitude outside the core region. The small nonzero
amplitude outside the finite support can be further minimized
by adjusting the parameters of the system. The width of
these solutions is independent of the amplitude, similar to
compacton solutions [25]. We term these gap solutions as gap
compactonlike solutions. We also obtain various other exact
soliton solutions in the gap spectrum of the coupled KdV
equations with mixed dispersion.

II. EQUATIONS OF THE SYSTEM

The general problem we consider here is a system of two
linearly coupled Korteweg–de Vries equations with nonlinear
dispersion. This system of coupled KdV equations we consider
can be written as

ut + α1(u2)x + u3x + β1(u2)3x = −λvx, (1a)

vt − �vx + α2(v2)x − αv3x + β2(v2)3x = −βλux, (1b)

where −� is relative group velocity of linear long wave in
the two subsystems, α > 0 (corresponding to the oppositely
signed dispersion in the subsystem), β1 and β2 are the nonlinear
dispersion coefficients, β is an independent parameter (here
we take � > 0 and β > 0), λ is the small coupling constant,
and α1 and α2 are constants. In the absence of nonlinear
dispersion terms (β1 = β2 = 0) and for particular values
α1 = α2 = −1/2, the system of coupled KdV equations (1)
supports gap solitons [19]. However, we keep the value of α1

and α2 as arbitrary.
Looking for traveling solutions of the uncoupled equations

in Eq. (1) (i.e., the coupling constant λ = 0), we get

cuη + α1(u2)η + u3η + β1(u2)3η = 0, (2a)

cvη − �vη + α2(v2)η − αv3η + β2(v2)3η = 0, (2b)

where η = x + ct . Following the method in [28], we first
check if there are any compacton solutions of the uncoupled
equations (2). For this, we take the ansatz for the compacton
solutions to have the form

u(η) = E1 cosδ1 (D1η)

for |D1η| � π/2, u = 0 otherwise (3a)

and

v(η) = E2 cosδ2 (D2η)

for |D2η| � π/2, v = 0 otherwise. (3b)

By inserting Eq. (3a) in (2a) and Eq. (3b) in (2b), we get

D1
2(δ1 − 1)(δ1 − 2) + [

c − D1
2(3δ1 − 2)

]
cos2(D1η)

+ 4β1E1D1
2(2δ1 − 1)(δ1 − 1) cosδ1 (D1η)

+ [
2α1E1 − 4β1E1D1

2(2δ1 − 1)(δ1 − 1)

− 4β1E1D1
2(3δ1 − 1)

]
cosδ1+2(D1η) = 0, (4a)

−αD2
2(δ2 − 1)(δ2 − 2) + [

c − � + αD2
2(3δ2 − 2)

]
× cos2(D2η) + 4β2E2D2

2(2δ2 − 1)(δ2 − 1) cosδ2 (D2η)

+ [
2α2E2 − 4β2E2D2

2(2δ2 − 1)(δ2 − 1)

− 4β2E2D2
2(3δ2 − 1)

]
cosδ2+2(D2η) = 0. (4b)

By equating the coefficient of the terms involving the same
power of cosine in Eq. (4), we get compacton solutions for
u(η) and v(η) for the parameter value δ1 = δ2 = 2 when

D1
2 = α1

16β1
, E1 = 4D1

2 − c

12β1D1
2 , (5a)

D2
2 = α2

16β2
, E2 = � − c − 4αD2

2

12β2D2
2 . (5b)

The solutions satisfy the condition for the compacton solution
that the width is independent of its amplitude [25]. Similarly,
for η = x − ct , we get the same form of the compacton
solutions of Eq. (3) by changing the sign of c in Eqs. (4)
and (5) above. From Eq. (5), we see that α1 and β1 should
have the same sign and α2 and β2 should also have the same
sign. If we replace the nonlinear dispersion term β(u2)3x =
β(6uxu2x + 2uu3x) in Eq. (1) by 2uxu2x + uu3x , then for the
appropriate choice of parameters, the compacton solutions in
Eq. (3) reduce exactly to the compacton solutions of the KdV
equations with mixed dispersion as obtained in [26] [Eq. (15)].

III. EXISTENCE OF THE GAP

To show that is there a gap in the system’s linear spectrum
opened by a weak coupling and to find its width, we study the
spectrum of the system represented by Eq. (1). The spectrum
is represented by the relation between the phase velocity c and
the wave number k. For this, we consider the solution of the
uncoupled (λ = 0) and linear case of Eq. (1) to have the form

u = u0e
i(kx−wt) and v = v0e

i(kx−wt).

By substituting this solution in Eq. (1), we get

w = −k3 and w = αk3 − �k.

The spectra of the uncoupled subsystems is then described by
c(u) = −k2 and c(v) = αk2 − �. Solving these two relations,
we determine the cross points of phase velocity between the
two spectra as

k = ±k0 = ± �1/2

(1 + α)1/2
, c = c(0) = −�

(1 + α)
, (6)

the plot of which is shown in Fig. 1. Here, we have considered
� > 0.
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FIG. 1. Shows the linear spectrum of the system when the
coupling is absent. The intersection points are at k = ±k0 =
0.632 455 526 and the value of c at these points is c = c(0) =
−0.400 000 006. The parameters are λ = 0, � = 1, and α = 1.5.

When coupling is switched on, it prevents the crossing of
the points giving rise to the gap in the spectrum. By substituting
the plane wave solution in the coupled (λ �= 0) linear equations
case of Eq. (1), we get

(c + k2)u0 − λv0 = 0, − βλu0 + (c + � − αk2)v0 = 0.

These equations can be written in the form of the matrix

[
(c + k2) −λ

−βλ c + � − αk2

] [
u0

v0

]
= 0

and, from the condition of the existence of nontrivial solutions
for the coupled linear equations, i.e., the determinant of the
matrix should be zero, we get the new dispersion relation for
the coupled equations as

c2 + (� − αk2 + k2)c + k2(� − αk2) − λ2β = 0. (7)

The turning points of the dispersion relation ( dc
dk

= 0) are

k1
2 = 0, k2

2 = k0
2 − λ

√
β

(1+α) , and k3
2 = k0

2 − λ

√
β

α(1+α) .

The values of c at these points are |c − c(0)| = |λ|√β, |c −
c(0)| = 2|λ|

√
β

1+α
, and |c − c(0)| = 2|λ|

√
αβ

1+α
, respectively.

The gap exists for αβ > 0 in the interval of the velocity

|c − c(0)| < 2|λ|
√

αβ

(1 + α)
. (8)

This is shown in Fig. 2. The gap soliton and the gap compacton
solutions, if they exist in the gap region, will be stable against

FIG. 2. Shows the opening of the gap in the linear spectrum of
the system when the coupling is present. The dotted line shows the
intersection velocity c(0). Parameters are λ = 0.9, � = 1, α = 1.5,
and β = 1.9.

the decay by radiation by resonating with linear oscillatory
waves.

IV. DYNAMICS OF THE SYSTEM INSIDE
THE SPECTRAL GAP REGION

To study the dynamics of the system inside the spectral gap
region, we expand the wave field as [19]

u = U1(x,t)eik0(x−c(0)t) + U2(x,t)e2ik0(x−c(0)t)

+U0(x,t) + c.c., (9a)

v = V1(x,t)eik0(x−c(0)t) + V2(x,t)e2ik0(x−c(0)t)

+V0(x,t) + c.c. (9b)

To obtain gap solitary waves, we consider the weak nonlinear-
ity effect [11,39–41] and assume that the amplitudes of U and
V are small and slowly varying, and the smallness produced
by differentiation of slowly varying functions or squared
amplitude |U1|2 and |V1|2 to be of the order of the coupling
constant λ. By substituting Eq. (9) into (1) and equating the
coefficient in front of the terms that have equal harmonics, we
obtain for the amplitude of the second harmonics

U2 = −1

3

[
4�β1 − α1(1 + α)

�

]
U1

2, (10a)

V2 = 1

3

[
4�β2 − α2(1 + α)

α�

]
V1

2. (10b)

Here, we have taken only the terms for the amplitude of U2

and V2 that are less than λ. Similarly, by using Eqs. (10) and
(6) and from the coefficient of the first and zeroth harmonics,
considering only terms less than the square of the coupling
constant, we get the equations for the amplitude of the first
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harmonics as
∂U1

∂t
− 3�

(1 + α)

∂U1

∂x
− 2

3
ik0(α1 − β1k0

2)

[
4�β1 − α1(1 + α)

�

]
|U1|2U1 + 4ik0

(
α1 − β1k0

2)U1U0 = −iλk0V1, (11a)

∂V1

∂t
− �(1 − 2α)

(1 + α)

∂V1

∂x
+ 2

3
ik0(α2 − β2k0

2)

[
4�β2 − α2(1 + α)

α�

]
|V1|2V1 + 4ik0

(
α2 − β2k0

2)V1V0 = −iλβk0U1, (11b)

and the equations for the amplitude of the zeroth harmonics as

∂U0

∂t
+ α1

∂|U1|2
∂x

= 0, (12a)

∂V0

∂t
− �

∂V0

∂x
+ α2

∂|V1|2
∂x

= 0, (12b)

where we have taken U0 and V0 as real functions. Defining [19]

U1 =
[

3�

2k0
(
α1 − β1k0

2
)
[α1(1 + α) − 4�β1]

]1/2

U, (13a)

V1 =
[

3�α

2k0
(
α2 − β2k0

2
)
[α2(1 + α) − 4�β2]

]1/2

V, (13b)

η = �−1x + 2 − α

1 + α
t, t = t (14)

and using simple notation such as

M = 4k0
(
β1k0

2 − α1
)
U0, (15a)

N = 4k0
(
β2k0

2 − α2
)
V0, (15b)

ε = λk0
√

α

[(
α1 − β1k0

2
)
[α1(1 + α) − 4�β1](

α2 − β2k0
2
)
[α2(1 + α) − 4�β2]

]1/2

, (15c)

γ = β

α

[(
α2 − β2k0

2
)
[α2(1 + α) − 4�β2](

α1 − β1k0
2
)
[α1(1 + α) − 4�β1]

]
, (15d)

we can write equations for first harmonics as

Ut − Uη + i|U |2U − iMU = −iεV , (16a)

Vt + Vη − i|V |2V − iNV = −iεγU, (16b)

and equations for zeroth harmonics as

Mt + 2 − α

1 + α
Mη = 6α1

α1(1 + α) − 4�β1
(|U |2)η, (17a)

Nt + 1 − 2α

1 + α
Nη = 6α2α

α2(1 + α) − 4�β2
(|V |2)η. (17b)

To look for solitary wave solutions for Eqs. (16) and (17), we
consider the general traveling solitary wave form given by

U (η − wt) = e−iσ tA(η − wt), (18a)

V (η − wt) = e−iσ tB(η − wt), (18b)

M = M(η − wt), N = N (η − wt), (19)

where the frequency σ is assumed to be of order λ. By
substituting Eq. (18) in (17) and using Eq. (19), we obtain
the zeroth harmonics amplitude M and N as

M = 6α1(1 + α)

[α1(1 + α) − 4�β1][2 − α − w(1 + α)]
|A|2 , (20a)

N = −6α2(1 + α)α

[α2(1 + α) − 4�β2][2α − 1 + w(1 + α)]
|B|2 . (20b)

By substituting Eq. (18) in (16) and using Eq. (20), we get
a system of coupled ordinary differential equations for the
amplitude A and B as

−iσA − (1 + w)
d

d(η − wt)
A − iC|A|2A = −iεB, (21a)

−iσB + (1 − w)
d

d(η − wt)
B + iD|B|2B = −iεγA, (21b)

where

C = 6α1(1 + α) − [α1(1 + α) − 4�β1][2 − α − w(1 + α)]

[α1(1 + α) − 4�β1][2 − α − w(1 + α)]
,

(22a)

D = 6α2(1 + α)α − [α2(1 + α) − 4�β2][2α − 1 + w(1 + α)]

[α2(1 + α) − 4�β2][2α − 1 + w(1 + α)]
.

(22b)

To obtain the general solution of Eq. (21), we multiply (21a)
by γA∗ and add to it the complex conjugate of the resultant
equation to get

γ (1 + w)[A∗A′ + A′∗A] = iγ ε[A∗B − B∗A], (23a)

where the prime denotes the derivative with respect to η −
wt . Similarly, we multiply Eq. (21b) by B∗ and add to it the
complex conjugate of the resultant equation to get

(1 − w)[B∗B ′ + B ′∗B] = iγ ε[A∗B − B∗A]. (23b)

By equating Eqs. (23a) and (23b), we get

γ (1 + w)
d

d(η − wt)
|A|2 = (1 − w)

d

d(η − wt)
|B|2. (23c)

By integration with respect to (η − wt), we get

|B|2 = γ
(1 + w)

(1 − w)
|A|2. (23d)

The solution of Eq. (23d) takes the form

A =
√

(1 − w)Reiϕ, B =
√

γ (1 + w)Reiψ, (24)

where R, ϕ, and ψ are real and −1 < w < 1. We note that
the solution must satisfy the condition (w2 < 1) for it to be
inside the gap spectrum. By multiplying Eq. (21) by A∗ and
adding to it the complex conjugate of the resultant equation,
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we get
dR2

d(η − wt)
= 2ε

√
γ

1 − w2
R2 sin(ϕ − ψ). (25)

Again, by multiplying (21a) by B∗ and adding to it the complex conjugate of the resultant equation, we get[
(σ + C |A|2)

√
γ (1 − w2) − (1 + w)εγ cos(ϕ − ψ) + (1 + w)

√
γ (1 − w2)

dϕ

d(η − wt)

]
2R2 sin(ϕ − ψ) = 0. (26a)

Also, by multiplying (21b) by A∗ and adding to it the complex conjugate of the resultant equation, we get

−
[

(σ − D |B|2)
√

γ (1 − w2) − (1 − w)εγ cos(ϕ − ψ) − (1 − w)
√

γ (1 − w2)
dψ

d(η − wt)

]
2R2 sin(ϕ − ψ) = 0. (26b)

From Eqs. (26), we can write the first derivative for ϕ and ψ with respect to (η − wt) as

dϕ

d(η − wt)
= ε

√
γ

1 − w2
cos(ϕ − ψ) − [σ + C(1 − w)R2]

(1 + w)
, (27a)

dψ

d(η − wt)
= [σ − Dγ (1 + w)R2]

(1 − w)
− ε

√
γ

1 − w2
cos(ϕ −ψ), (27b)

which allows us to calculate the first derivative of the phase difference with respect to (η − wt) as

d(ϕ − ψ)

d(η − wt)
= 2ε

√
γ

1 − w2
cos(ϕ − ψ) − 2σ

(1 − w2)
−

[
C(1 − w)

(1 + w)
− Dγ (1 + w)

(1 − w)

]
R2. (28)

By dividing Eq. (28) by (25), we get

d(φ − ψ)

dR2
=

2ε
√

γ

1−w2 cos(φ − ψ) − 2σ
1−w2 − Q1Q

−1
2 R2

2ε
√

γ

1−w2 R2sin(φ − ψ)
, (29a)

where

Q1 = α1(1 + α)

α1(1 + α) − 4�β1
[4 + α + w(1 + α)][1 − 2α − w(1 + α)](1 − w)2

+ 4�β1

α1(1 + α) − 4�β1
[2 − α − w(1 + α)][1 − 2α − w(1 + α)](1 − w)2

+ γα2(1 + α)

α2(1 + α) − 4�β2
[4α + 1 − w(1 + α)][2 − α − w(1 + α)](1 + w)2

+ 4γ�β2

α2(1 + α) − 4�β2
[2 − α − w(1 + α)][2α − 1 + w(1 + α)](1 + w)2, (29b)

Q2 = [2 − α − w(1 + α)][1 − 2α − w(1 + α)]. (29c)

By equating Eq. (29a) to zero (extremum of the phase
difference), we get

cos(ϕ − ψ) = � + 2WR2, (30a)

which implies

sin(ϕ − ψ) = [1 − (� + 2R2W )2]
1
2 , (30b)

where

� = [γ (1 − w2)]−
1
2 ε−1σ, (31a)

W = 1
4 [1 − w2]−

1
2 ε−1γ − 1

2 Q1Q2
−1. (31b)

Finally, using Eqs. (30b) and (25) can be written as

dR2

d(η − wt)
= 2ε

√
γ

1 − w2
R2[1 − (� + 2R2W )2]

1
2 . (32)

Now, to obtain the gap compacton solution of Eq. (32),
we rewrite this equation in the compacton equation form

[25] as (
dy

dl

)2

+ p(y,p0) = p1, (33a)

where

p(y,p0) = 4a2W 2y4 + 4a2�Wy3 − a2(1 − �2)y2 + p0,

(33b)

and y = R2, l = η − wt , a = 2ε
√

γ

1−w2 , p0 = p1 = 0. Since

p1 = 0, Eq. (33a) implies that p(y,p0) is negative. To see for
which parameter values of �, p(y,p0) is negative, we note that
the right-hand side of Eq. (33b) has four real roots y = 0, a
dipole root y = 1−�

2W
, and y = − (1+�)

2W
. From the roots, we can

see that the function p(y,p0) is negative for two cases: (i) W >

0 and (ii) W < 0. For W > 0, it can be checked that p(y,p0)
is negative for the intervals of the parameter � given by
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FIG. 3. Shows the variation of p(y,p0) with y for (W > 0) and
−∞ < � < −1. The parameters are a = 1, p0 = 0, W = 1, and
� = −2.

−∞ < � < −1, −1 < � < 1, and � = −1. Figure 3 shows
the plot of p(y,p0) for particular values of �.

Similarly, for W < 0, p(y,p0) is negative when 1 < � <

∞, −1 < � < 1, and � = 1 and the corresponding p(y,p0)
for particular values of � is shown in Fig. 4. By integrating
both sides of Eq. (32), we get∫

dρ

ρ
√

(1 − �2) − 2�ρ − ρ2
= 2Z + A1, (34)

where ρ = 2WR2, A1 is constant of integration, and

Z = ε

√
γ

1 − w2
(η − wt). (35)

V. SOLITARY WAVE SOLUTIONS

As mentioned above, the solution depends on the value of
the parameter �. Therefore, we consider the integration for
three different cases of �.

FIG. 4. Shows the variation of p(y,p0) with y for (W < 0) and
� = 1. The parameters are a = 1, p0 = 0, W = −1, and � = 1.

A. Gap soliton solutions

First case: �2 < 1. Using standard integration [42], we get

ρ = 4(1 − �2)A2e
−2Z

√
1−�2

(A2e−2Z
√

1−�2 + 2�)2 + 4(1 − �2)
,

where A2 = e−A1

√
1−�2

. For a particular choice of A2 =
2(A1 < 0), the solution of Eq. (32) can be expressed as

R2 = (2W )−1 (1 − �2)

2 cosh2[Z
√

1 − �2] − (1 − �)
. (36a)

This represents a gap soliton solution. From the relation
between [tan( ϕ−ψ

2 )] and [cos(ϕ − ψ)] and using Eq. (30a),
the phase difference is given as

tan

(
ϕ − ψ

2

)
=

√
1 − �

1 + �
tanh[Z

√
1 − �2]. (36b)

Equations (24), (35), and (36) therefore describe the
structure of gap soliton solution of Eq. (1).

B. Weak gap soliton solutions

Second case: �2 = 1. Using standard integration [42], we
obtain the following solutions of Eq. (32):

R2 = (2W )−1

[
1

1 + 4Z2

]
, tan

(
ϕ − ψ

2

)
= 2Z

for � = −1, W > 0 (37)

R2 = (2W )−1

[ −1

1 + 4Z2

]
, tan

(
ϕ − ψ

2

)
= (2Z)−1

for � = +1, W < 0. (38)

These solutions describe weak gap soliton solutions as, unlike
solitons, they do not decay exponentially.

C. Gap compactonlike solutions

Third case: �2 > 1. Equation (34) can be written as∫
dρ

ρ
√

(�2 − 1) + 2�ρ + ρ2
= 2iZ + iA1.

By using standard integration [42], we get

ρ = 4(�2 − 1)A2e
−2iZ

√
�2−1

(A2e−2iZ
√

�2−1 − 2�)2 − 4(�2 − 1)
,

where A2 = e−A1i
√

�2−1. For A2 = 2(A1 = ib, b real and
positive), the solution of Eq. (32) can be expressed as

R2 = (2W )−1 (1 − �2)

(1 + �) − 2 cos2[Z
√

�2 − 1]
. (39a)

Similarly, from the relation between [tan( ϕ−ψ

2 )] and [cos(ϕ −
ψ)] and using Eq. (30a), the phase difference can be obtained
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as

tan

(
ϕ − ψ

2

)
=

√
� − 1

� + 1
cot[Z

√
�2 − 1]. (39b)

The solution of Eq. (1) represented by Eqs. (24), (35), and
(39) has two cases with respect to both W and �: (i) W > 0
and −∞ < � < −1, and (ii) W < 0 and 1 < � < ∞. For
the solutions to be a compacton, it should vanish outside the
core region, i.e., it should have a compact support (|η| � π/2).
Also, for compacton solution, the width should be independent
of its amplitude. But, from analysis of Eq. (33), we see that for
the case (i), the solution is not localized within the compact
support and, therefore, we do not consider this case further. For
case (ii), the solution has almost compact support in the sense
that the solution has a very small but finite nonzero amplitude
outside the compact support given by

R2 = (2W )−1

[
1 − �2

1 + �

]
. (40)

The finite but small amplitude of the solution outside the
compact support can be made smaller by adjusting the
parameter values. In the next section, we analyze the gap
compactonlike solution for different values of the parameters.

VI. ANALYSIS OF THE GAP COMPACTONLIKE
SOLUTIONS

We now analyze the structure of the gap compactonlike
solution of Eq. (1) described by Eq. (39) along with Eqs. (24),
(35), and (40). From Eqs. (31b) and (39), we see that the
solution vanishes when Q2 vanishes. From Eq. (29b), we
see that Q2 vanishes when w = 2−α

1+α
or w = 1−2α

1+α
. So, the

parameter α should be in the range 1
2 < α < 2, which also

satisfies the condition that w2 < 1. Also, there are no solutions
when Q1 vanishes.

A. Study of the width and the amplitude

From Eq. (39a), we see that the width of the solution
depends on its amplitude. On the other hand, for the solution
to be a compacton, its width should be independent of its
amplitude. We can, however, adjust the parameters in Eq. (1)
such that the width of Eq. (39a) becomes independent of its
amplitude. From the analysis of Eq. (39a), one can show that,
for the frequency of carrier wave satisfying the relation

σ 2 = (1 − w2)[ε2γ + n2(1 − w2)], (41)

where n is constant, the width becomes independent of its
amplitude. For this frequency, one can express Eq. (39) as

R2 = 2(1 − w2)
3
2

∣∣∣∣ Q2

Q1

∣∣∣∣
[
n2

/(√
λ2

�β

1 + α
+

√
λ2

�β

1 + α
+ n2(1 − w2) − 2

√
λ2

�β

1 + α
cos2[n(η − wt)]

)]

for |n(η − wt)| � π

2
(42a)

and

R2 = 2(1 − w2)
3
2

∣∣∣∣ Q2

Q1

∣∣∣∣ n2√
λ2 �β

1+α
+

√
λ2 �β

1+α
+ n2(1 − w2)

(42b)

otherwise, and

tan

(
ϕ − ψ

2

)
=

√√√√√√
√

λ2 �β

1+α
+ n2(1 − w2) −

√
λ2 �β

1+α√
λ2 �β

1+α
+ n2(1 − w2) +

√
λ2 �β

1+α

cot[n(η − wt)]. (42c)

From Eq. (42a), we see that, for a fixed value of n, the
width of the solution is independent of its amplitude. We
fix n = 1, which gives the minimum value of the amplitude
of the solution outside the compact support Eq. (42b). Thus,
Eq. (42) describes a gap compactonlike solution of a system of
coupled nonlinear dispersive KdV equation (1). Figure 5 shows
the plot of the gap compactonlike solution for three choices
of parameter values. The three solutions in the figure have
different amplitudes but the same widths, implying that the
width of the solution is independent of its amplitude. Here, the
width is represented by full width at half maximum (FWHM).
From Eq. (42b), we see that the nonzero value of the amplitude
of the gap compactonlike solution outside the compact support
can be lowered for the choice of the larger value of parameters
λ and β and the smaller value of α.

Finally, we can express the solutions as obtained above in
terms of the original functions u(x,t) and v(x,t). For this, we
first obtain an expression for the phases φ and ψ . By adding
Eq. (21a) to its complex conjugate and substituting Eq. (27a)
in the resultant equation, we get

a sin φ − b cos φ = sin ψ, (43a)

where a = � + 2WR2 and b = √
1 − a2 are the phase differ-

ence as a function of R [Eqs. (30a) and (30b), respectively].
Similarly, by adding Eq. (21b) to its complex conjugate and
substituting Eq. (27b) in the resultant equation, we get

a sin ψ + b cos ψ = sin φ. (43b)
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FIG. 5. Shows the compactonlike solution for three different
values of parameters β1 and β2. From top to bottom: β1 = β2 =
4, β1 = β2 = 2, and β1 = β2 = 1, respectively. The parameters are
α1 = α2 = 1, λ = 0.9, � = 1, α = 1.5, and β = 1.9.

Solving the above two equations, we obtain two independent
roots sin φ = a, sin ψ = 1, and sin φ = −a, sin ψ = −1.
Knowing R, φ, and ψ and using Eqs. (10), (13), (15), (18),
(20), and (24), we can express the solutions in terms of the
original functions Eq. (9) as

u(x,t) = a1

√
1 − wRe−i[(σ+k0c

(0))t−k0x−φ]

+ a3a
2
1e

−2i[(σ+k0c
(0))t−k0x−φ]

+ a7

a5
(1 − w)R2 + c.c. (44a)

and

v(x,t) = a2

√
γ (1 + w)Re−i[(σ+k0c

(0))t−k0x−ψ]

+ a4a
2
2e

−2i[(σ+k0c
(0))t−k0x−ψ]

+ a8

a6
γ (1 + w)R2 + c.c., (44b)

where the constants ai’s are given by

a1 =
[

3�

2k0(α1 − β1k0
2)[α1(1 + α) − 4�β1]

]1/2

,

a2 =
[

3�α

2k0(α2 − β2k0
2)[α2(1 + α) − 4�β2]

]1/2

,

a3 = −1

3

[
4�β1 − α1(1 + α)

�

]
,

a4 = 1

3

[
4�β2 − α2(1 + α)

α�

]
,

a5 = 4k0(β1k0
2 − α1),

a6 = 4k0(β2k0
2 − α2),

a7 = 6α1(1 + α)

[α1(1 + α) − 4�β1][2 − α − w(1 + α)]
,

a8 = −6α2(1 + α)α

[α2(1 + α) − 4�β2][2α − 1 + w(1 + α)]
.

VII. CONCLUSION

In conclusion, we have shown the existence of a type of
nonlinear localized excitation with compactlike support in the
gap region of the spectrum of a system of linearly coupled KdV
equations with mixed dispersion, which we term as the gap
compactonlike solution. We have shown that the requirement
of a compacton solution, i.e., that the width of the solution
should be independent of its amplitude, can be achieved for a
certain choice of the parameter values of the system. We have
also shown that the nonzero amplitude of the solution outside
the compact support can be reduced to a very small value for
a suitable choice of the parameter values. Further, we have
shown that the system also supports gap soliton solutions. It
has been shown that the dynamics of various polymers and
biopolymers can be modeled by KdV-type equations, which
support compacton solutions [37,38]. Due to their presence
in the gap region of the spectrum, the gap compactonlike
solutions as obtained here are stable as they do not decay by
resonating with linear phonon band and are useful for energy
localization and transport in polymers and biopolymers.
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